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NUMERICAL INTERPRETATIONS OF CREEP BUCKLING BEHAVIOR
OF COLUMNS

J. WALCZAK and J. ZACHARZEWSKI (RZESZOW)

Analysis of creep buckling columns is described and evaluated, Two different approaches
are presented: 1) @ numerical solution of a differential equation for the large deflection

analysis; 2) the finite element method for material and geometric nonlinearities. An approxi-
mate energy method is also employed to evaluate the critical time. The discussion presented -
underlines the basic divergences in existing solution.

1. INTRODUCTION

Creep buckling analysis of columns has been studied by numerous
authors. In those investigations the problem is generally defined in terms
of unbounded deflections or deflection rates. Only a few of the authors
included the geometrical nonlinearity in the way of large defiection analysis.
However, they presented different conclusions. Zvczkowskr [1] found that
due to the geometrical nonlinearity and a perfect viscoelastic material, the
finite critical time can not exist. HUANGS conclusion [2] is that the creep
buckling may occur but only if the effect of plasticity is' included in creep
law. Both authors made use of Norton’s nonlinear creep law and the
_collocation method. SamueLson [3] exposed, using the finite difference
method,. that creep buckling occurs with no additional conditions for the
applied external load or the plastic strains. This conclusion is in a good
agreement with experimental observations and, as it is going to be seen,
with the results presented in the paper.

There- are also some additienal problems such as idealization of a real
cross section by a theoretical I-section and creep failure analysis. The
appropriate’idealization is found to have a significant influence on the creep
buckling time, therefore Samuelson’s method is assumed as a better choice
in - the numerical procedure presented in the paper. The study of creep
failure requires a creep failure criterion. One of them may be a dissipated
barrier [4—6]. This criterion has also been used in the creep buckling
analysis of columns to evaluate the critical time, on the basis of the small
deflection theory [7]. The dissipated barrier is handy in case of constant
stresses. In creep buckling problems where stress redistributions take place
it is not cfficient enough. Therefore we will use it as an additional approach
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since in practical analysis the achievement of an approximate critical time
t.. with no computatlonal efforts is very useful. It should be recognized
and underlined that in reality the criterion is a creep failure eriterion
and the time ¢, is a creep failure time. Having obtained this value or
at least the upper and lower bounds of the critical time, we thus indirectly
have an answer to the problem whether or not creep fallure occurs prior
to creep bucklung,

2. A NUMERICAL SOLUTION OF CREEP BUCKLING COLUMNS

The creep buckling behaviour of a column may be described in the
natural coordinates (s, #) (Fig. 1) which are related to the Cartesian coordinates
{x,y) in the well-known forms:

¥ = |

" Fie. 1.

= | cos 0 ds,
0

.1 s
' y= |sin0ds,
O

where # = 8 (s, f) is our investigated solution.

To avoid numerical integration along the thickness of the column we
will make an idealisation of the cross section, similar to SAMUELSONS
assumptions [4]. The cross section is divided into a number of flanges
and cores (Fig. 2), where the cores do not take normal forces. All dimensions
shown in Fig.2 can be obtained from a comparison of inertia moduli
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where m is the number of flanges.

The constitutive equation is accepted in the form of the Norton-Hooke
viscoelastic material law:

@3 = %JFB ",

where the creep term has the following meaning: |
(2.4) B-¢"=Bis|" V.

To find a bending line of the column we have to consider a deformed
element (Fig. 3). One can find from the figure

25 | " L _ A
i U — = —,
2.5) ’ R H
where ¢, and ¢, denote strains of extreme fibres, H is the distance between
.the fibres and x is the curvature of the deformed column, and

2.0 x—ﬂ‘
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Taking the first derivative of Eq. (2.5) with respect to time, we have
(2.7) i g, =% H. '
Equation (2.6) holds for any pair of flanges, thus it may be wntl‘én in
a system of equations:

(2.8) B —%H, i=1,2,..,m and H,=23,
Making a linear combination of Eqs. (2.7) ‘we have
2.9) =iy~ 2 H+ ) B,=%H— ) H)

. i=2 i—2 i=2

For any flange, one can evaluate stresses as follows:
' . PH,
(2.10y - G, = —0g COS Hi—j—[—‘a ¥,

where ¢, = P/A, I = bh*/12 (rectangular cross section).
Substiiution of Egs. (2.3) and (2.10} into Eq. (2.9) leads to a differential
equation which may be written in the form

pH, 8[[ . PH, [. .
— |+ B fds—opcos 8] +
{2.11) iE o [Jsm 9da]+ [ 5 sin §ds—ag c

0 0
+ 3 [( )" B(PH Jsm 0 ds+ o, cos 6) B(
i=2 21 .
0

3

sin G ds—

sin & ds+

1
;

" PH, @ - . o PH)
— 0y 0039) ~IE ‘E(JSandS)] (—1)y- B[ T

0

+JO COS B:I :}'ﬂ(Hl_ Z Hl)
. i=2
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Equation (2.11) can be solved by the Newton—Raphson iteration method.
To achieve the goal it would be convenient to rewrite it as follows:

(2.12) . 1+ArE‘( = 2r+ArF1+B (:+ArF1'_1+AtS)n+§: |:(_ 1)" BK(HA{F,HF H"HS)_"—

i=2

?

+B {HA'FI-*HA:S)"-F% ‘r+A.'F‘]+(_ 17 B (r+ArF1 +r+mS)n:
where B -
. n
UK = (- Y H),
. i=2
(2.13) IS = a4 cos ("T49),

PH,
r+A:F_ — i x 1A, .
i< 7 sin (‘F0) ds

0,

All the integrals above have been carried out numerically by the
trapezoid rule. The columns have been divided  into twenty elements and
more subdivisions did not change results significantly. To solve Eq. (2.12)
we have to replace all differentials by finite differences:

HARE = (FUK® ) A = [HIKE D AR KA,
(2 14) :+ArF(k#1) = [r+ArF!(k- 1} —tF,-]/At,
- ,‘+Axe(kg1) — [r+Are(km1);:e]/At
where the superscr‘ipt k denotes iterations.
Substituting the above formulas into Eq. (2.12), we have

‘ o .
(2.15) 4K :F(HAIF(Ekfl)_yFI)_i_B(t+AtF{1k—1)l_:+‘A:S(k~l))n At+

+{ i [(—= 1" B(*4Ff D r+age-nyp_ g erape—1)_

i=2 : :

— tHdigle—1pyn —% (TAFED _,Fi)/AtJ}‘ At—

—(—1yB (r+th(1k*1}+r+ArS(k-71))n+tK_r+ArK(k—1),{
which may be written as follows ‘ ..
(216) AK — £+AIR(k—1) At-}—tK—H-d(K(k__“,

where "*“R%*™1 denotes the right hand side of Eq. 2.12)

Since ware sceking the curvature of the column corresponding to time
(t+4r), it is natural to require that the curvature at the end of each -
iteration be within a tolerance of the true solution. Hence the convergence
criterion is [8]
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where |K||, denotes the Euclidean norm of K[9] and ¢ is a curvature
tolerance. Unfortunately, the vector ‘f’"K is unknown, so we use the modified
criterion

@17

£k,

’ ' iK1,
(218) ) ’ m < Eg,

which was effective in the analysis.

To show some of the problems mentioned above we will stody two
kinds of columns for two different material sets. One of them (column
number 1) is relatively. short and thick with a slenderness ratio 1= 36.9.
The other one (column number 2) is long and slender with 4 = 554.2.

All numerical results are presented in graphic forms. Figure 4 shows
the predicted displacement response for column” number 1. As expected,
it can be seen from the figure that by increasing the number of flanges
we get a better solution, and the approximation by six flanges is a computa-
tional optimum. Figure 5 presents solutions for column number 2. In both
cases the idealisations by two flanges give worse. results. It may also be
said that the idealisation by the theoretical I-section is difficult to implement.
If we set a restriction to compare inertia moduli only, then the compressive
stresses will be too high and the obtained critical time will be several
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times too low. If we set up the same cross section areas for the real
and I-section, then the time to buckdle will be several times too high. It
is admittedly possible to combine the compressive and bending stresses
getting quite good results, but the combination is artificial. Therefore the
I-section does not represent any real section with the except of I-section.
This conclusion is not in agreement with other papers. As pointed out
by N.J. Horr [10], the idealization of the cross section by two identical
flanges separated by a web would not introduce any significant error to
~the creep buckling analysis on the basis of the small deflection theory.
But as stressed by Huanc [2] the small deflection theory is questionable,
Other authors did not even mention the real cross section assuming the
theoretical T-section by the default. A good answer fo the problem will
be presented on the basis of the finite element analysis.

As can be seen from Figs. 4 and 5 for the materials obeying Norton’s
creep law and the large deflection theory, the finite critical time can exist,
To be positively sure we will present another solution based on a different
methodology and assumptions.

‘ .
3. FINITE ELEMENT ANALYSIS OF CREEP BUCKLING COLUMNS

As pointed out by K. J. Batue [11], the nonlincar finite element analysis
still encounters difficulties, particularly in creep buckling problems. Some
of the questions have been studied by J. Warczak [12]. In this paper
we are going to present the finite element solution based on the ADINA
program [8] with no intention to analyse the finite element difficulties
but to focus on the issue of existence of the critical time. To make our
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discussion more valuable, let us summarize the basic equations used m the
ADINA program [13—14]. S . _

Since the column can undergo the large defleciion analysis, we have used
the total Lagrangian formulation (T. L) [14] and the thermo-¢lastic-plastic and
creep material model for 2/D solid elements.

The equation 'of motion in the T. L. formulation may be written as
follows [14—157: ‘ :

(3.1) j‘ r+d(§Sij 5 Hd‘;éb" OdV: :+A:R,

oy

where ‘48, is the component of the 2nd Piola-Kirchhoff stress tensor in

the configuration at 'time t-+Af, referred to configuration at time O,
‘+4e;—component of the Green-Lagrange strain tensor in the configuration
at time t+ At, referred to the configuration at time 0, OY_volume of the
body in the configuration at time 0, & denotes “variation in”, t+4R—external
virtual work at time ¢+ 4t. ' '

Taking incremental decompositions of stresses and strains we have

(3.2) l+A(I)S|‘j = oS8+ 034
t+d(§3ij = g8;;F okij> ,

where S;; and og; denote the components of the stress and strain increments,

respectively. The component of the strain increment may be decomposed

into linear and nonlinear parts: '

(3.3)

where

08i; = o€+ oMlijs

I t t
o€ (othy, ;+ otty; T ol i-0Mk, i+ 0B, T

1
= 5
offiyy = ‘2— oMk, i oM, j-

To find the stress increment let us write the constitutive equation in the
incremental form for the Cauchy stress tensor and engincering strains:

(34 o =CFe—e"—eP—¢),

where o dehotes the increment in the Cauchy stress temsor in a vector
notation, e—increment in the total infinitesimal strain tensor, e"’—incre;ngnt
in thermal strains, e’~—increment in plastic strains and e“—increment in
croep strains, CF—elastic property matrix. The increment in creep infinitesimal
strains may be written as follows: '

(3.5) . e’ ='k's,

where s denotes the deviatoric stress components in a vector notation.
To evaluate 'k let us take the Norton-Odqvist creep law '
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(3.6) | te = Blg"~1lg,

thus _ ]
3.7 'k = Ba"~ 1,

or

(3.8 il = BTGt

hence Eq. (3.4) can be rewritten in the form

(3.9 - o = CE? ¢—otTH

where C¥ is the tangent elastic plastic material property matrix and
o™ is the incremental solution containing the creep and thermal terms.
For the large deflection analysis we can rewrite Eq. (3.9) into the form

G100y , S = CEF ¢—SCTH,

The reason for being able to use in the TL formulation the above
equation is that the 2nd Piola—Kirchhoff stresses and the Green-Lagrange
strains are approximately equal in magnitude to the Cauchy stresses and
engineering strains measured in a convected coordinate system. Hence Eq. (3.1)
takes the form

(311 (6T C e %V 4+ [ 8 o7 (S%V="""R— |5 ex
OV' ()V 0
X (8- SC"H)OdV

Assuming finite element isoparametric discretization for displacement in-
crements, we have '

(312) . “(x y)—_H(x .V)U

: e(x, ) =B, »U,
where U denotes the increment in nodal displacements, H is an isopara-
metric interpolation matrix, B is the strain matrix. The finite element
discretization leads to a form

(3A13) j Ong CEP éBL OdVU"I' j (;B;L éS éBNL OdVU =
oy 0y

— r+ArR j‘ BL tS SCTH) OdV

where the subscripts L and NL denote the linear and nonlinear parts
of the strain matrix, respectively, ¢S is the 2nd Piola—Kirchhoff stress
‘matrix, &8 is the 2nd Piola-Kirchhoff stress vector, "*“R. is the vector
of external loads. ' ‘

Equation (3.13) can be solved with or without iterations. To solve it
without iterations (reforming the nonlinear stiffness matrix every time step)
we have to consider. Eq. (3.7) in our solution scheme. Hence, Eq. (3.13) can
be written as follows:
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(314 ((KET+ (KED U = "R —F

where (KEF is the first and (KE is the second integral of Eq.(3.14).
By using the Newton Raphson iteration method for the implicit time
integration scheme (Eq. (3.8)) we have

(3.15 (SKEP 1 IKEP U = AR _HARE-1)
where in the iteration process the incremental equations are in the form -
(316) . r+A:U(i) —_ r+dsU(i—1) +‘Uﬁ).

As an alternative to forms of Newton iteration, the BFGS method has
been developed by MartHies and STRANG [15] and implemented by BATHE
[8, 16] and this method appears to be the most effective.

As can be scen from the above equations, ADINA is an excellent
- program for the nonlinear creep buckling analysis of columns with arbitrary
cross section areas. Let us take the same columns as before with rectangular
cross sections. The columns were modelled with six and eight, eight-node
elements respectively, for a plain stress analysis. In all cases we used 4 x4
Gauss integration points.
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Numerical results shown in Fig. 6 and 7 refer to the finite element
mesh. It has been apprehended that the nonlinear stress distribution along
the thickness of the column may cause some perturbations in the analysis.
As it turned out, it is enough to model the transversal dimension of the
column by one eight-node element with 4x4 Gauss points(!). Figure '8
represents solutions for column number 1 and Fig. 9 for column number 2.

Figures 10 and 11 present comparisons of these results and those
obtained from the numerical solution. Additionally, there one of SAMUBLSON'S
solutions [4] is presented. The minor differences are due to varied assumptions,
but in general the agreement is good and the clue is the fact that in
the above solutions the finite critical time exists. In using Eq. (3.13) to
solve the problem, at:least one of the pivot elements in the nonlinear
stiffness matrix becomes nonpositive at time ¢ = ¢,, what means that the
_stiffpess matrix is nonpositive definite and this in turn means that the
column becomes unstable at the final time equal to t,. This is the same
when the Newton—Raphson or the BFGS 1terat10n methods are.used; one
can never go beyond the critical time.
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(") All calculations were performed on a IBM 370 machine in Stalowa Wela.
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4, APPROXIMATE EVALUATION OF CRITICAL STATES

The dissipatéd -energy criterion has been used effectively in the creep
failure analysis of rotating discs [5—6]. The form of a dissipative barrier
may be written as follows {6]:

41 Ef
(1) f(oe,Ed)zuglefT:Czconst.

Hence we can evaluate the critical time integrating the equation

"
ey

1
(4.2) B | ol gy =,

0

where C and f are material constants, which for a chromium‘molybdenuni—
~-silicon steet at 540 degrees centigrade, are found to be [6]

@3) B =0665, C=100127-10"%.

Equation (4.2) is convenient to use in the case of constant stresses.
In creep buckling analysis, however, this is not the case, and the response
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of the column is unknown at the beginning of the solution process; therefore
we are-not able to use this criterion efficiently. We can use it in a reduced
form to estimate the range of the critical time for a certain value of the
effective stress which we might call a representative stress. '

The representative stress ¢, may be chosen in two ways:
a) as a mean stress: Co '

' P
(4.4) 0,y = 0o+ Onad/2 = (00 + ‘Wf)/z >
b) as a reasonable maximum)‘ stress
P
“.35) Oy = 00+~ﬁj-["9

where o, denotes the initial compressive stress, P—applied external load,
W-—section modulus and f—assumed maximum deflection of the column.
One way to find f may be as follows: :

' A h

4.6 : =,

@6)  S=3

where 4, is a limiting slenderness ratio, h—transversal dimension of the

column. In our example A = 554.2, o = 880, h= 2.0, hence f= 6.3.
The representative stresses are found to be

@7 0,4 = 6270,
(4.8) 0,, = 11340.

Taking into account Eq. (42) one can find the range of the 7.critica]
time. For our investigated column number 2 the critical time should be

(4.9) 8152.3 < 1, < 227480.

As can be seen from Figs. 5 and 9 this estimation is excellent. With
no computational effort we evaluated the upper and lower bound of the
life time of the column. The method is simple; it actually confirms the
fact that the dissipation energy may play a major role in the creep
buckling process.

5. Discussion

The problem of existence of creep buckling time-~is naturally very
important and often leads to misunderstandings of creep buckling behaviour,
espectally of columns. As the presented analyses reveal, in any case of the
applied external load larger than zero and smaller than the instantaneous
buckling load, the finite critical time as defined at the beginning of the
paper is likely to appear due to the large.deflection ‘analysis. The above
idea is in good agreement with experimental observations but diverges '
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with Zyczkowski’s and Huang’s studies on that problem. This fact leads
to the doubt whether or not different solution methods or definitions
of critical time lead fo discrepancies. It is characteristic to note that
Zyczkowski as well as Huang used in their papers the collocation method,
while Samuelson’s solution and the one presented in the paper are based
on three different approaches with one of them, the finite element method,
‘based on a different philosophy. The existing solution convergence of
these methods allows us to draw some conclusions.

The critical time can exist due to geometric nonlinearity, independently
of plastic strains in the constitutive equations. In the presented solutions
the plastic strains have been included only in the case of columns number 1
in the ADINA solution.

The idealisation of cross sections by the Samuelson model is good
and simple and may be applied to any cross section with one symmetry
axis. Using the theoretical I-section the basic problem is to find. the
correlation between the real and theoretical sections.

The presented approximate method to find the upper and lower bounds
of the critical time is very useful. The dissipated ‘barrier is simple and
convenient to use but has one basic disadvantage—two more material
constants, This is not a problem, however, when we deal with a known
material, ie. for which the creep curves are known. Since it is a creep
failure criterion, the creep buckling behaviour is likely to occur prior to
creep failure of columas, in general, for materials obeying the Norton
creep law. This arises from the fact that the representative stress ¢,, which
is actually responsible for he creep failure of the column gives a critical
time larger than the time to buckle As is shown by WaLczak [6], the
dissipated barrier lowers the results more than other rupture theories.
From the physical point of view, the obtained critical time based on this
criterion is a transition time into the third stage of creep.
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STRESZCZENI1E

NUMERYCZNA INTERPRETACIA ZAGADNIENIA WYBOCZENIA
REQLOGICZNEGO PRETOW

" Przedstawiono analizg zagadnienia stateczno$ci w sensie reologicznym pretéw ciskanych.
Przedstawiono numeryczne rozwigzanie linii ugiecia preta w zakresie duzych deformacji
oraz rozwiazanie na podstawie metody elementdw skoficzonych, wykorzystujge system progra-
mowy ADINA. Szczegdlnie zwrécono uwage na problem istmienia skoficzonej wartodci
czasu krytycznego oraz sposobu modelowania przekroju poprzecznego preta. Przedstawiono
rowniez przyblizonay metodg oszacowania krytyczmego czasu pracy opierajac sig na kryterium
bariery dysypacji. W pracy przedstawiono istotne wnioski dotyczace tego zagadnienia.

PE310ME

‘-IIfICJ'IEHHA_H. WHTEPITPETALKASE [IPOBJIEMbI PEOJIOTHYECKOMN
: YCTOMUUBOCTH CXUMAEMBIX CTEPXKHEN

B pabote npeacTaBlien AHAMM3 PEONIOTHYECKOH YCTOHYHBOCTH CHMMACMBIX CTEPIXKHCH

OBYMSA METOHAME: METONOM YHCICHHOTO DEIHEHUH L(PE(I)EIJCIJEHLRHEUIBHOFO YPaBHCHUA CONLIINX




NUMERICAL INTERPRETATIONS OF CREEP BUCKLUNG BEHAVIOR OF COLUMNS 19
neopmanui 1 3axona Hoprona-T'yka, MeTozom KOHETHRIX 3JICMCHTOB [ (JM3MYECKH H Teo-
METPMYECKH HenuHelHblx npobaem. Ilpedctasned Tome npubimKenublt METOR OHPSACISHMT
KpPUTHHECKOIO BpeMeHH paboTsr KOHCTpYKIMK (CTepokHs), TUPH WCHONL3OBAHHH SHEPTETH-
ueckoro kpurtepusn. lupoknil anann3 npubejeHHbH B paboTe IKCMOHMpPYET IPHHIUNIUANLHLIE
PAsHANLL B CYHIECTBYHOIMX PEINEHBiX.
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