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ELECT ROMECHANICAL ANALOGIES FOR THE THEORY OF
CONSOLIDATION

R, UKLEJEWSKI (POZNAN) and M. KRAKOWSKI (LODZ)

The electromechanical analogies between one-dimensional systems with distributed parameters
are examined, applying Firestone’s system of electromechanical analogies, by means of dimensional
analysis. The existence of such analogies for the theore of consolidation is provede: it constitutes
the basis to the application of somé methods and concepts from electrotechnics in this theory.
As an example of such application, an algorithm of the method of determination of elastic co-
efficients of a porous medium is presented.

1. INTRODUCTION

The existence of analogies, i.¢. similarities of mathematical models of various
physical phenomena, makes possible to transfer methods, concepts and completed
formulas from one research branch to another. In this way electromechanical anal-
ogies contribute to the development of the general theory of vibration.

This paper deals with the electromechanical analogles for the M. A. Blot theory
of consohdatlon [1, 6].

2. ELECTROMECHANICAL ANALOGIES FOR ONE-DIMENSIONAL SYSTEMS WITH DISTRIBUTED
PARAMETERS

2.1. Definitions of system_of electromechanical analogies

The concept of dimensional space II over the reals was introduced by S. DRoBOT
in [8]. The dimensions of all physical quantities are the elements of space I1. It is
proved in [8] that each dimensional space IT is isomorphic with a certain vector
space. For this reason the dimensions can be considered as vectors. The other con-
cepts concerning space IT such as the system of fundamental dimensions. the di-
mensional independence of elements and the dimensional combination of the di-
mensions correspond respectively to the following concepts from the vector space
theory, namely: the basis of the vector space, the linear independence of vectors
and the linear combination of vectors [8]. : v > 2

Let IT,, be the set of dimensions of all the mechanic quantities, whereas I7,—the
set of all the electric quantities in the dimensional space I7. It is easy to show that
the sets II,, and 1, are the subspaces of the dimensional space I7.
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DEFINITION. Each isomorphism of the dimensional space of the mechanic quan-
tities IT,, in the dimensional space of the electric quantities IT, will be called the system
of electromechanical analogies.

Likewise as in the vector space theory, the following theorem holds true [11]:

THEOREM. The dimensional spaces IT,, and I1, are isomorphic if and only if their
systems of fundamental dimensions contain the same (finite) number of elements.

2.2. Firestone’s systems of electromechanical analogies for onedimensional systems
with distributed parameters

In the case of systems with lumped parameters we have the following systems
of fundamental dimensions:

in the dimensional space IT,,:

[m]=[mass], [/]=[displacement], [¢t]=][time],
in space IT,:
[u]l=[voltage], [i]=[current], [¢]=[time],

where the dimensions are denoted by the square brackets. By virtue of the Theorem,
the dimensional spaces IT,, and II, are in this case isomorphic.

In the case of one-dimensional systems with distributed parameters, the following
four dimensions constitute the system of fundamental dimensions in space I1,
(transmission lines):

[«], [, [1], [&£]=[distance].

The dimensional space IT,, will be in this case isomorphic with the dimensional space
1T, if, for example, the dimensions [displacement] and [distance] will be considered
conventionally to be independent in the space IT,, [16], [10]. Thus we assume the
following system of fundamental dimensions in the dimensional space IT,,:

[ml, [, [, [Z]=[distance].

Firestone’s system of analogy [17] for one-dimensional systems with distributed
parameters is obtained by the imposition of the following four correspondences:

[time],—[time],,

[distance]«+[distance],,
2.1)

[power] <> [power],,

[force] .« [current],.

It is easy to show that the dimensions appearing on the same side in the correspond-
ences (2.1) are independent. Therefore the correspondences (2.1) determine an
isomorphism of the dimensional spaces IT, and II,. The remaining correspondences
between mechanic and electric dimensions (as well as quantities)—see Table 1—are
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the consequence of the correspondences (2.1) and they result from the solution
of the suitable dimensional equations [13]. A likewise treatment is apphed by J. WEHR
in [16] to another system of electromechanical analogies.

Table 1.

Firestone’s system of analogies for one-dimensional systems with distributed parameters
(transmission lines)

Electric quantities and dimensions

Mechanic quantities and dimensions

voltage [u]

current [i]

magnetic flux [uf]

electric charge [ir]

inductance per unit length [ut/i.Z#]
capacitance per unit'length [it/u#]

characteristic impedance [u/i]

current density [i/.£?]
magnetic flux per unit length [uz/.%]

velocity of displacement [//f]

force [ml/t?] ;

displacement [/]

momentum [ml/t]

deformability per unit length [¢2/mZ]
mass per unit length [m/.Z]

velocity of displacement
[t/m]

force
stress [mi/t2.%?]

strain [I//.%]

etc.

2.3. One-dimensional state of strain of porous medium in comparison with electric
transmission lines

On the left-hand side in Table 2, the equations of the consolidation theory
describing the one-dimensional quasi-static state of strain of porous medium are
presented. The corresponding equations due to the system of two electric trans-
mission lines with the magnetic and conductance coupling (Fig. 1) are given on
the right-hand side of the table. -

Basic denotations used in the paper are:

mechanic quantities:

0,; — normal component of the stress tensor of the skeleton of a porous medium
in the direction x,,

o — stress in the fluid (perfect liquid),

w; — component of the displacement vector of the porous skeleton in the
direction x,

W, — component of the displacement vector of the fluid in the direction x,,

N, 4, Q, R—Biot-Willis elastic coefficients,

C — permeability constant of the porous medium
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i, (J)—current (current density) in the line 2,
S—cross-section of the line 1 (line 2),
¥, ¥,—magnetic flux associated with the line 1 or 2,
uy, u;—line voltage of the line 1 or 2,
¥
u=a—t—relationship between voltage and magnetic flux,
L,, L,—self-inductance of the lines 1 and 2 per unit length.
M, —mutual inductance between lines 1 and 2 per unit length
G—conductance between lines 1 or 2 per unit length.
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Fi1G. 1. The element of two electrical lines with magnetic and conductance coupling.

It follows from Tables 2 and 1 that an analogy between the one-dimensional
quasi-static state of strain of a porous medium and the system of two coupled trans-
mission lines exists. The analogy belongs to Firestone’s system of electromechanical
analogies.

It may be shown [13] that the analogy discussed can be extended to dynamlc
problems in the same system of electromechanical analogies. Then the forces of
inertia [2.7] appear in the equations. Since in Forestone’s system of analogles
(Table 1) we have

[mass],«>[capacitance],

the electric scheme from Fig. 1 involving suitable capaéitances constitutes the electric
analogon for dynamical problems of the consolidation theory (Fig. 2).
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F1G. 2. The electric analogon for one—diinensioﬁal dynamic'prob]ems of the theory of consolidation.




T ———

322 : R. UKLEJEWSKI AND M. KRAKOWSKI

3. SOLUTION OF THE COUPLED TRANSMISSION LINES EQUATIONS

Consider the system from Fig. 1 with the sinusoidal current excitation. The
instantaneous values of the voltages and currents in both lines are given by

@3.) u (x, )=Im (U (x) &™),
: ik (x’ t) =Im (Ik (x) e]ﬂt), k=l, 2’

where U, (x) and I, (x) are the complex voltage and current respectively, j=l/:
and o is the angular frequency.

The matrix equation of two coupled transmission lines takes the form [4]

i e GeE e S i h
d |U,]|_ 0 0 -Zy -2, U,
) o e e R
L Yu =Y 0 0 ]]5
where
(3.3) Z,=jwL,, Z,=jwL,,

Zy=—joM,, Yy=G

are the impedances and admittance.

Equation (3.2) is called the homogeneous state equation and can be written in
the form
3.4 iid AS
3.4 N,
where S (x) is the state vector, A—the matrix of the system. The state vector S (x)
possesses n=4 components [U,, U,, I, I,] in the considered case. Thus the constant
square matrix A is of the order n=4.

The solution of Eq. (3.4) is given by

3.5) S (x)=€A* S (0),

where eA* is the transmission matrix [4,12], S (0)—the state vector on the input
of the system.

The matrix e** can be determined by means of the Cayley-Hamilton theorem
[4] and as the result we obtain

= sh (yx)—yx P ch (wzc)—l

3.6) A 3 A*+Ax+1,

The quantity

3.7 Y=V Yo (Z1— Zp) +(Z2— Z0)]
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is the propagation constant [4]; the characteristic impedance of the system is defined
by the formula :

P o~ ‘/ (Z,—Zw) ; (Z:=Zw)

M

4. SOME APPLICATIONS OF THE ANALOGIES

Using the analogies derived in Sects. 2, 3 we can, for example, propose the
procedure for determining the elastic coefficients of the consolidation theory, ie.
the Biot-Willis constants: N, 4, O, R. This problem is discussed in detail in [14].
We present here the model of the loading test for the determination of the elastic
coefficients and the important definitions and results only.

From the four elastic coefficients N, 4, Q, R, only the coefficient N—shear modulus
of the porous medivm—can be determined independently of the remaining coef-
ficients [3], and for this reason (just as in [3]) N will be taken as known. In order
to determine the coefficients 4, Q, R, we carry out the loading test as in Fig. 3.
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Fi1G. 3. One-dimensional state of strain of porous medium by P (t)=P, sin ot
1 —sample of porous medium (cylinder), 2 — impermeable surface, 3 — porous plate, 4 — gas
reservoir, 5 — elastic membrane.

The load P (t)=P, sin wt acts uniformly on the impermeable top-surface of the
sample of the porous medium. The side-surface of the sample is impermeable for
a fluid and underformable. The fluid can flow out only into the gas reservoir 4,
through the underfomable porous plate 3. The gas pressure under the elastic membrane
5 can be regulated. This is a model of a non-resonance vibroisolator [5, 15].

The presented problem can be described mathematically as the one-dimensional
state of strain by the homogeneous state equation

v, o> 0 “zr=Z=][v
L e Ao TR
@1 a0 o -z -zp|n]
dx 0'11 _YM YM 0 0 611

o y<==y* 0 0 }]le
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where v, and V; are the complex velocities of the skeleton and the fluid, ¢;, and
o—the complex stresses in the skeleton and the fluid respectively, and by the following
boundary conditions:
e 011 (X, =h)=0,

vy (x; =h)=0,

" oy (6, =0)=V,; (v, =0),
011 (x;=0)+0 (x; =0)=p,,
where
Bo —S- )

S—area of cross-section of the sample, #—height of the sample.
The quantities

1
M
ZiTIo N
1 0? ]
m —— R R SO
% J“’[R R’(M+2N)
4.3) : |
m — :__.__—
Zu= "I UR(2N)°
i

according to the analogy of Eq. (3.3), w1lI be called the mechanical impedances
and admittance.
Using Eqs. (4.3) we can define: the propagation constant (cf. (3.7))

4.4 =V Y5 (ZY -Z@)+(Z5 - Zp),
and the characteristic impendance of the mechanic system (cf. Eq. (3.8))

" (Zr=ZD)+(ZP<ZR)
Zr= 7 :

4.5)

The solution of the state equation (4.1) can be derived on the basis of Egs. (3.5)
and (3.6), using the boundary conditions (4.2). This solution permits to derive
the following procedure for the determmatlon to the coefficients 4, Q, R [13]. One
should then:

a) solve the nonlinear equation with respect to the real x

Yy hl V(b)) chx—cos x .
V2le (0)] ch x+cos x’

b) calculate |¢| from
2"

lfl’fw,
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where
§=p"+q", IlI=lp™+Ig"];
c) calculate |[p"| from the formula

_l |a ()] ]/ ch? x—sin? x

ch x—cos x

d) calculate

lg™| =I¢|—|p™

and

Iflvx ©)—1[p™ Vi (B

' Poh :

It should be noted that the following quantities must be measured:
2; (0)=lo, (0)] e”¥:+(® —the complex velocity of the skeleton for x; =0;
Vi (B)=|V, (h)]| e’*® —the complex velocity of the fluid for x,=h;

km

o (0)=|o (0)] ’2(®  _the complex fluid pressure for x; =0;
=|po| &’° —the load amplitude per unit area;
Y3=F; c —the permeabicity constant of the porous medium.
The coefficients 4, Q, R can be found from
4 =
S pE R
47 i
( b ) Q [‘2 ( 5 + K)’
48 K
o wr(0+xk)’
where
. T e

w—angular frequency.

It follows from the experimental results given in [5] that the presented formulas
for the coefficients 4, Q, R include the measurable quantities.
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STRESZCZENIE

ANALOGIE ELEKTROMECHANICZNE W TEORII KONSOLIDACII

Rozpatrzono analogie elektromechaniczne pomigdzy jednowymiarowymi ukladami o para-
metrach rozlozonych poshizono si¢ systemem analogii Firestone’a oraz analiza wymiarowa. Wy-
kazano istnienie takich analogii dla teorii konsolidacji, co stanowi podstawg do stosowania w tej
teorii pewnych metod i pojeé z elektrotechniki. Jako przyklad takiego zastosowania przedstawiono
algorytm metody wyznaczania stalych materialowych o§rodka porowatego.

Pesmome

DJIEKTPOMEXAHUYECKUE AHAJIOTM B TEOPMMU KOHCOJMIAII

PaccMOTpEHBI JIEKTPOMEXAHHYECKHE aHAIOTHH MEXIY OJHOMEPHBIMU CHACTEMaMH C pacrpe-
JICTIEHHBIMA TapaAMETPaMHE ; MOCIY)KATACH CHCTEMOM anasioruii ®aecToyHa H pa3MEepHBIM aHAA30M.
TToxa3aHO CyIIECTBOBAHME TAKHX AHAJIOTHI U1 TEOPHM KOHCOJMAALUM, YTO COCTABIIACT OCHOBY
U IPUMEHEHRs B 5TOM TEOPHH HEKOTOPHIX Me10/0B ¥ IIOHATHI B3 dMekTporexnukd. Kak npamep
TAKOro NPUMEHEHWs IPEICTaBlIed aJTOPUTM METOJA ONpPEHEICHAs MATEPHAIBHBIX TOC:OSHHBIX
IOPHUCTOM Cpeapl.
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