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SOME RESULTS IN THE NUMERICAL ANALYSIS OF STRUCTURAL
INSTABILITIES

PART II. DYNAMICS

M. KLEIBER (WARSZAWA)

The paper is a direct continuation of the first part, [1], in which the application of the finite
element technique to static stability problems was described and illustrated by a number of numer-
ical examples. In this part of the paper some indications on how impulsive loading problems can
be numerically analyzed with respect to the stability characteristics of motion are given. A step-
-by-step algorithm for the time integration of the nonlinear equations of motion is described and
applied to different buckling prone structures subjected to uniform step loading of infinite duration.

1. DYNAMIC BUCKLING PROBLEM

The dynamic stability problem can be classified with respect to the loading
conditions as follows:

i) Impulsive loading problems—in this class the dynamic stability of structures
subjected to step (or other impulsive) loadings of finite or infinite duration is con-
sidered.

ii) Parametric resonance problems—a typical example in this class is the initially
straight prismatic column whose two ends are simply supported and upon which
a periodic axial compressive load is acting. Such a column is known to develop
lateral oscillations if its straight-line equilibrium is disturbed. Depending upon
the magnitude and the frequency of the pulsating axial load, the linear Hill or Mathieu
equation defining the lateral displacement of the column may yield bounded or
unbounded values for these displacements.

iii) Circulatory loading problems—this class consists of problems of buckling
under stationary circulatory loads, that is, loads not derivable from a potential
and not explicitly dependent on time. The dynamic criterion of buckling is useful
in the nonconservative static stability analysis of such problems since the com-
monly static methods of determining critical load can give incorrect results.

iv) Aeroelastic problems—in this class the interaction between the nonconser-
vative aerodynamic forces and the elastic structures is analysed.

The above classification is not fundamental in any sense of the word and simply
groups problems that are treated by similar mathematical tools.

The following considerations will be devoted exclusively to impulsive loading
problems. Even for such problems only, however, the picture drawn in the previous
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part, [1] becomes far more complicated. We accept in the sequel the following
definition of the dynamic buckling load, [2].

Consider a structure under time-dependent loading R=Af(f) R, where the
time variation f(#) is normalized so that its maximum value is unity. Dynamic
buckling for a given f(¢) and R, is studied by considering the set of structural re-
sponses associated with the set of loading histories R =A1f(¢) R, generated by various
values of 4. The critical value of A that corresponds to dynamic buckling (as defined
later) wili be called the dynamic buckling load and will be denoted by 4.

It is important to realize that, similarly as in statics, after a structure buckles
dynamically it often takes on a stable configuration again, although it cannot be
serviceable any longer.

Such a definition of the dynamic buckling load is of no use unless we can mean-
ingfully formulate an effective buckling criterion (as this was the singularity
of the tangent stiffness matrix in the static case). Unfortunately, the definition
of a reasonable buckling criterion is still a challenging problem. In the case of rota-
tionally symmetric spherical shells subjected to axisymmetric dynamic loading
it is useful to differentiate (in analogy to statics!) two different types of buckling:

a) Axisymmetric dynamic buckling

This type of snap-through buckling is possible when the dynamic response in
the whole time range of interest is constrained to be axisymmetric and thus any
contribution from circumferentially asymmetric modes is precluded. Obviously,
for certain shell geometries and loads a purely axisymmetric response can occur
naturally without any need for artificial constraints. Unfortunately, the buckling
criteria even for such situations are not as well defined as for static buckling and
require an evaluation of the transient response of the shell for various load levels.
Then, as a practical criterion, it is often assumed that an axisymmetric structure
undergoing an axisymmetric deformation becomes unstable when a slight increase in
the magnitude of the load produces a sharp increase in the (axisymmetric) response.
Thus the criterion in most common use is based on the plot of the peak (local maxi-

a : : £=4(r)

FiG. 1. Dynamic buckling behaviour of a spherical cap.
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mum) apex displacement u,(!) in the whole time interval versus the load amplitude A.
For practical reasons the peak displacement is normally determined on the basis
of the structural response within a certain limited time interval [0, *]. It must
therefore be emphasized that even if the applied load is not sufficient to cause snap-
-through on the first cycle of the response, it can do it later so that in general even
the first several displacement peaks do not have to be necessarily representative of
the critical behaviour investigations.

The above definition of axisymmetric dynamic snap-through buckling was first
suggested in [2] and then used for the analysis of elastic shells by other investigators,
cf. [3-9], for instance.

b) Asymetric dynamic buckling

The second type of buckling, referred to as the asymmetric dynamic buckling,
arises when the dynamic response is not constrained or inclined to be symmetric.
If the load amplitude reaches some critical value, the shell response can be charac-
terized by a significant growth of the asymmetric displacements which ultimately
reach proportions that must be considered as buckling instability. As discussed
in [6] for instance, there is at present no well understood and generally accepted
criterion available for the asymmetric dynamic buckling of shells. The existing
numerical results, although very few, are not in good agreement as compared to
each other and, also, to the available experimental results [6] .The way out would
be, of course, to consider nonaxisymmetric imperfections and to pursue bifurcation
analysis similar to that widely used in static stability problems. However, this means
carrying out many times a complete transient analysis with different imperfection
patterns corresponding to different Fourier harmonics and can turn out to be very
time consuming. !

It is commonly hypothesized that bifurcation pressure will not necessarily lead
to immediate (asymmetric!) snap-through buckling. However, oscillations cor-
responding to the secondary, bifurcated asymmetric motion may significantly
influence (e.g. accelerate) the occurrence of the snap-through. The shell will then
jump over asymmetrically to the reversed position implying further small oscilla-
tions of presambly axisymmetric character. In this sense the critical dynamic bi-
furcation load can be treated as a lower bound to the asymmetric dynamic snap-
through load.

All the above hypothetical considerations can be assembled in one diagram as
presented in Fig. 2. The figure has a symbolic character and is hypothetized to play
a similar role in structural dynamics as Fig. 3 of [1] does in structural statics. The
most limiting factor in interpreting the dynamic structural behaviour in accordance

(1) Sometimes the nondimensional average displacement u,, was used being defined as
a a
u‘w=f rwdr| frfdr,
0 0

where ¢, r, w and a are defined in Fig 1. The numerator is here the volume generated by the shell

deformation while the denominator is the constant volume under the cap in the initial position.
3 =
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with Fig. 2 is the one-degree-of-freedom description of the shell motion—for the
description of asymmetric bifurcation modes the use of other displacement-type
parameters may appear mandatory.

JFrom Fig. 2 it is seen that the inclusion of time as the additional variable results
in the replacement of: i) the static primary (fundamental) equilibrium path by
a primary (fundamental) dynamic equilibrium surface S;, ii) the static secondary
(asymmetric) equilibrium path by a secondary (asymmetric) dynamic equilibrium
surface Sj, iii) the static bifurcation point by a dynamic bifurcation curve P, P=
=S; N S,. We emphasize that Fig. 2 describes the ideal structure behaviour under
step loading of infinite duraction. In the case of an imperfect structure the shell
dynamic behaviour can be described in general terms in analogy to the known
static concepts.
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Fi1g. 2. Dynamic buckling of a cap.

All the numerical calculations to be presented below have been carried out by
using a step-by-step algorithm applied to the incremental matrix equation of the
nonlinear structural dynamics in the form

(1.1) M 4r+K, Ar=4R,

where M is the mass matrix, K, is the stiffness matrix at time # (consisting of the
constitutive, the initial stress and the initial displacement stiffness matrices) and
4r is the vector of nodal incremental accelerations. In Eq. (1.1) we did not include
damping effects but this can be done easily providing the damping matrix can be
constructed. Equation (1.1) is usually applied in a slightly modified form to read

(1 9 AL SO O ]
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where T:4 4 is the vector of nodal accelerations corresponding to time #+ 4¢, R, 4
is the vector of nodal external loads at time 74 A¢t, F, is the generalized internal
nodal force vector corresponding to time 7, e.g.

(1.3) F,=R,—Mr,
and the following relation was used:
(1.4 Ar=F; s 1:=F:.

Various explicit ‘and implicit time integration methods are presently applied.
We used the latter approach in the form of the trapezoidal rule based upon the
assumptions

- ket ) 3 4t :
(1.5) rt+At=rl‘+—2—(rt+At+rt)’ l't+41=rt+—2_("r+m+l't)-

Using Egs. (1.5) and the relation

(1.6) Ar=r 4 40— 1,
Eq. (1.2) gives

4 Ghieaan
(1.7) K,+U;)—2—M Ar=R,, ,—F,+M ]Tr,+r, :

Equation (1.7) is solved recursively for all time steps. As Egs. (1.2) and (1.7) are
derived here by linearizing the response about the configuration at time 7, the
Newton-Raphson iteration scheme was used to reduce the linearization error.

2. NUMERICAL ANALYSIS OF DYNAMIC INSTABILITIES

The aim of calculations reported in the present section was to carry out the
dynamic analysis of some complex structures and to investigate their behaviour
under critical loading conditions. With these results we also hope to be able, at
least partially, to substantiate our fundamental hypothesis concerning dynamical
structural behaviour laid down in the previous section.

We have so far discussed the critical dynamic behaviour of structures which
possess a certain degree of symmetry so that one can talk of the bifurcation phen-
omena. We start by describing numerical results obtained for the elastic and the
elastic-plastic cap problem.

The analysis here followed exactly the pattern described in [1] for the case of
statics. The broken and solid lines shown in Fig. 3 are taken as “weighted averages”
of the results reported in [2-9]. We analysed the same shell configurations and
the similar concept of imperfection analysis was taken advantage of. The only
differences were now the inclusion of inertia effects and the necessity of performing
in each case a whole series of numerical computations as described in the previous
section. The fact that the numerical analysis for each run was confined to a certain
time interval only (3 to 4 response peaks on the average) imposes certain limitations
on the accuracy of the results.
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The way the results are presented in the same as in [1], cf. Fig. 7 of [1]. The
reduction of the critical loads in the case of elastic-plastic shells is clearly seen.
The bifurcation loads obtained in both elastic and inelastic analyses were obviously
somewhat lower than the asymmetric dynamic snap-through buckling loads. For.
a more detailed analysis of this research project the reader is referred to forthcoming
papers.

As a next example we take the space truss structure discussed in [1]. We shall
discuss first the dynamic behaviour of the ideal elastic truss. The structure is sub-
jected to uniform step loading of infinite duration in the form of a concentrated
force applied to the node 1.

Uniform exfernal pressure p ()

e 2:2[3(1_1}2)] W(H/t)'/z

;[12'(1_v2)] 4 a
Elastic, n=0 (rt)"?
06 ~ st B j {axisymmetric) & ot 5°

/"\0 . .
/. °~_ Dynamic loading
04 - : ¢ 2 (elastic shell) pd
El-plastic, n=5 3

(n=4,5,6.7) 2 ,» : SRS e
02 - El-plastic,n=0 El-plastic,n=7
El-plastic, n=0 (axisymmetric) Mn: 6,7,8)
(axisymmelric) _— i 0 T
| i | 1 {

0 2 4 § 8 10 17 1 2
r ; | (shell parameter)

Buckling pressure .
Classical static buckling pressure (closed elastic shell)
N
i

Fig. 3. Dynamic buckling pressures for elastic clamped shallow spherical shells,

The magnitude of the load is varied and the response (the node 1 vertical dis-
placement as a function of time) is observed. In Fig. 4 a few responses as this are
shown in a certain time interval for different load magnitudes. It is noticed that
at some load level (between 500 kG and 600 kG) the response increases dramatically
with a relatively small increase in load. The more detailed investigations show,
Fig. 5, that the dynamic snap-through load value is about 513.00 kG. It is seen,
however, that had we eonfined ourselves to the time interval [0, 10 ms], the buckling
load would have been identified as 513.25 kG. This is so because the significant
growth of the response under the load 513.00 kG is induced after more than 50 ms.
This illustrates the general rule formulated before that the first several displacement
peaks do not have to be necessarily representative of the critical behaviour in-
vestigations. The plot of maximum displacements (independent of time at which

s
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FiG. 5. Dynamic snap-through buckling of the elastic truss.
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FiG. 7. Elasto-plastic truss. Dynamics under step-type loading.

they occurred) against the load magnitudes given in Fig. 6 confirms the previous
result and indicates the violent character of buckling behaviour in this case.
Similar calculations can be carried out in the case of an elasto-plastic material
of the truss, Fig. 7. In this figure the response curves and the development of plastic
zones are shown. The critical snap-through loading is found to be about 409 kG
and, again, the analysis in the time interval, say, [0, 10 ms] vould not have been
sufficient to discover this value. We also note that in each case analysed the truss
shaked-down to the dynamic load applied in the sense that from a certain moment

further response was purely elastic.
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In order to try to substantiate our hypothesis on the dynamic bifurcation be-
haviour of structures, we consider the truss with some imperfections and kinematic
constraints as described in Fig. 8. The load applied to the truss is clearly greater
than the snap-through load found before; however, this structure admits a second
snap-through instability, Fig. 14 of [1] (for much higher load level through) and
a similar behaviour can also be expected in the dynamical case. Figure 8 illustrates
both the perfect and the imperfect truss behaviour under the step load of 9000 kG.
It is clearly seen that the imperfect truss geometry leads to an ‘“‘unstable” snap-
-through behaviour while the apex displacement for the perfect truss remains within
the limits established at the first cycle. From Fig. 8 it is also seen that identification
of the bifurcation point along the fundamental response curve is not an easy task.
However, this is (perhaps mainly) due to the one-degree-of-freedom picture shown
in Fig. 8. If we look at Fig. 9 here two other vertical displacements of the truss
nods 2 and 3 are plotted as functions of time, we shall see that the identification
of the bifurcation moment turns out to be easier. We present a threshold value for
the displacement difference as 0.2 mm and start to draw three lines instead of one
when such a difference is achieved between the displacement components w, and
ws. The bifurcation time of about 5.4 ms was found and this value approximately
coincides with the value derived in Fig. 8.
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Fi1G. 13. Dynamic elongation of a cylinder.
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As the last example we present the results obtained in the course of the dynamic
analysis of the cylindrical specimen given in Fig. 20 of [1]. The aim of the calcu-
lations was to check whether the necking-type behaviour visible under static load
conditions can also be observed during dynamic analysis. The specimen was loaded
by prescribing the constant velocity of 75 m/s in the z-direction at the boundary
points 145-149, Fig. 20 of [1]. The development of plastic zones is shown in Fig. 10, 11
the typical pattern known from statics is here to some extent reproduced with plasti-
city gradually spreading out over the whole specimen, fully plastic behaviour over
the long time interval and initiation of unloading in some limited parts of the spec-
imen afterwards. However, in contrary to the static behaviour no instability effects
can be attributed to such an unloading. Figures 11, 12 and 13 show clearly that the
continuing deformation process is stable and no necking phenomenon appears.

CONCLUSIONS

From the analysis of this and the first part [1] of the study it is seen that an
approach to structural stability analysis which could be called “direct” may yield
a lot of interesting informations concerning the critical behaviour of structures.
However, most of the methods developed so far may be used effectively only if
we have some a priori information about the nature of the singular points.

In practical engineering we often need to analyse more complicated structural
configurations, with a much larger number of degrees of freedom, over a longer
time interval. As computer time grows rapidly and engineering intuition declines
with the scope of the problem, it will be sometimes beyond our capabilities to obtain
solutions of acceptable occuracy at a reasonable cost. Presently this gap is filled
by the application of engineering skill in modelling the structure and interpreting
numerical results. Even at best this procedure introduces some uncertainty in. the
design process. It is important, therefore, to pursue the possibilities of finding
methods that can give results of acceptable accuracy with less effort. The develop-
ment of these must be based upon better understanding of the buckling phenomena.
It is hoped that the results presented in the paper will contribute to such a better
understanding.
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STRESZCZENIE

PRZYKEADY NUMERYCZNEJ ANALIZY NIESTATECZNOSCI KONSTRUKCII
CZESC II. DYNAMIKA

W pracy podano szereg przykladow zastosowania metody elementoéw skoriczonych do analizy
utraty statecznoéci sprezystych i niesprezystych ukladow konstrukcyjnych poddanych obcigzeniom
dynamicznym. Opisano algorytm catkowania dyskretyzowanych roéwnan ruchu i zastosowano go
do oceny dynamicznych obcigzeni krytycznych szeregu konstrukcji. Sformulowano hipoteze doty-
czaca bifurkacyjnego zachowania si¢ uktadow poddanych.obciazeniom dynamicznym.

PeszwomMme

TIPUMEPBI YHCJIEHHOTO AHAJIM3A HEYCTOMYMBOCTY KOHCTPYKLIAI
Y. II. AMHAMUKA

B pa60Te IPUBEICH I INPUMEPOB MPUMCHEHNS MCETOHA KOHCYHBIX JJIEMEHTOB IS aHa/IM3a

TOTepH YCTOWYMBOCTH YIPYTHX M HEYIPYTHX KOHCTPYKIMOHHBIX CHCTEM, IIOJBEPTHYTHIX DHHAMIE-

4eCKHM Harpyskam. OmMCaH alrOpUTM HHTETPUPOBAHUS JUCKDETH3MPOBAHHBIX YPABHEHHI IBU-
JKeHAA X OH NPUMEHEH /IS OLEHKH JHHAMHYECKMX KPHTAYECKHX HATPY30K psla KOHCTDYKIMIA.
CdopmymmpoBaHa THIIOTE3a, Kacaromasics 6nd)yp1caunom{oro [OBE/ICHUS] CHCTEM, IMOABEPTHYTHIX
JIWHAMHAYECKAM HArpy3kaM. ‘
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