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LYAPUNOV FUNCTIONAL FOR LATERAL BUCKLING OF I BEAMS
SUBJECTED TO PURE BENDING

T.A. AKEJU (LAGOS)

Lateral buckling of 1 beams subjected to pure bending is investigated by the direct method
of Laypunov. A metric space and an energy type Lyapunov functional are proposed for the solution
of the problem. These readily yield familiar expressions for the buckling loads of simply supported
and fixed ended beams.

NOTATION

E Young’s modulus of elasticity,
G shear modulus,
I, I, second moments of area of cross section about x and y axes,
J torsion constant of cross section,
M, bending moment about x axis,
I span of beam,
T,t time,
u lateral displacement in the x direction,
V¥V Lyapunov functional,
v vertical displacement in the y direction,
x,y principal axes of cross section of beam,
z longitudinal centroidal axis of beam,
B rotation about z axis
I warping constant of cross section,
& ¢ state variables, i.e. displacement, velocity, stress component or tem-
petrature,
p metric.

1. INTRODUCTION

For several decades engineers and mathematicians have successfully employed
the energy criterion to investigate stability characteristics of both discrete and
continuous systems. As an alternative to this approach, the direct method of Lyapu-
nov constitutes a potentially useful tool to obtain stability information from even
more complex problems. The main advantage of Lyapunov’s method lies in the fact
that it avoids explicit solutions of the governing differential equations. Sufficient
conditions for stability or instability of a system are obtained by investigating the
behaviour of certain constructed functions known as Lyapunov functions for dis-
crete systems and Lyapunov functionals for continuous systems.
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The approach has, Hovever, a serious weakness; there is no known universal
method for constructing the Lyapunov functions or functionals. It has been ob-
served that the stability information obtained by a particular investigator con-
fronted with a specific problem depends to a large extent on his sharpness and
ingenuity. For this reason the method may be considered as an art.

Whilst some innovative techniques for the construction of Lyapunov functions
are known to have been proposed, still fewer such methods exist for continuous
dynamical systems. In this case the problem is more complicated since a state which
may be stable with respect to one metric may be unstable with respect to another
metric,

In this paper the stability of lateral buckling of I beams subjected to pure bending
is investigated by means of Lypunov’s direct method. It is considered pertinent
to state the essential factors of Lyapunov’s theorem before applying it to the prob-
lem of interest.

The functional used is fairly simple and has a direct relationship to the energy
- functionals. In spite of the simple nature of the functional, it yields valuable in-
formation on the stability characteristics of the problem.

2. DEFINITION AND THEOREM OF LYAPUNOV’S FUNCTIONAL

This represents, with minor modifications, a brief discussion of the fundamental
concepts of Lyapunov’s method for the continuous system following the expo-
sition of Zusov [1].

It is useful to begin by introducing some notation. The physical system under
consideration will be specified by a set @ such that & ‘e &. Also assume that the
time ¢ € 7, a finite or infinite time interval and consequently the state of the dynamical
system is specified by (£, 1) i=1, 2 siss Bl hE variables £; represent displacement
or velocity components, stress components, temperature ete. It will also be neces-
sary to assume that @ is a metric space with a metric p (&, &) satisfying the well-
<known properties: ;

L. p(&,&)>0,

2. p(1,&)=0 if and only if ¢, =¢,,

3' p (61’ 62) =p (625 61)9

4. p(, &) +p (&, ¢)>p (&1, &) -

With this the ground is set for stating a stability theorem due to Zusov [1]
which is a generalization of Lyapunov’s theorem for discrete systems. Zusov’s
theorem [2] :

For the solution £=0 of the boundary value problem to be stable with respect
to p, it is necessary and sufficient that in a sufficiently small neighbourhood S ©, d)
of £=0 there exists a functional V having the following properties when & € S (0, d):

1.V is positive definite with respect to p.
2., V admits an infinitely small upper bound with respect to p.
3 Vol &%) is non-increasing for >0 whenever %€ S(0,d).
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If in addition there exists a d!, 0<d!<d, such that
4. V(&(1,&°)—0 as t—+o00, whenever £ e S(0,d"),

then £=0 is asymptotically stable with respect to p.
Satisfaction of the conditions stipulated in the theorem can be shown through
the following three steps:

Lo W)= ap? (§, 0) where o is a positive constant.

2. |V (©|<yp? &, 0) where y is a positive constant.
av (& @ ¢°

(éd( 3 )) —<0 for £>0.

3. GOVERNING EQUATIONS

An I beam, subject to a uniform bending moment, is shown in Fig. 1. The x
and y coordinates are taken along the principal axes of the cross section and the
z axis coincides with the longitudinal centroidal axis of the member. Deformation
of the member at any section can be broken down into three distinct components,
a lateral displacement  in the x direction, a vertical displacement v in the y direction
and a rotation g about the z axis.

s DR

Fic. 1. Lateral buckling of I-beam.

The governing differential equation of the problem are [3, 4]

2

G.1) L i,
d2

(.2) El,—+ M, =0,

2 g d*p du

3.3) GJ—(TZ— Bl i M, dz—O.
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Fic. 1. Lateral buckling of I-beam.

The governing differential equation of the problem are [3, 4]

: d*v
3.1 EI, —— = +M.=0,
ol s
(3.2) 7 o = + M, =0,
%9 dp d3 B du_'
(3:3) GJ_d? B 7 Mx72—~0'
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The variable v which occurs in the first equation alone describe bending in the
vertical plane and can therefore be solved independently of the other two. The
second and third equations describe lateral bending and twisting and have to be
solved simultaneously because they are coupled. In the third equation, the first
term represents the resistance of the section to twist whilst the second term represents
the resistance to warping.

4. LYAPUNOV FUNCTIONAL
Since the use of metric space is indispensable in the Lyapunov stability approach

for continuous systems, it is necessary to choose a metric p (¢;, £,) for measuring
».distances” between any two states ¢, and &, in the form
3
dz} s

B a 2 s1af, -ép
@D P &)= {f 2[ o [ |-
(1]
Therefore, for the investigation of the equilibrium state £=0 and the deformed
state ¢=¢, this metric reduces to

P a ot
“2) P& 0= { f 2( ) @ +f (5) e

where the state vector ¢ is given by

B
43) ¢={0p1-
: ot
The Lyapunov functional is given by

02

@4 vEe- EIf(az)dz GJf

dz+

+Erof( ﬁ)dz 2Mfa apdz+ f( )dz.

Equation (4.4) represents twice the total kinetic energy and the total potential
energy minus four times the potential energy of the external load M.

By substituting for Eqs. (3.2) and (3.3) and considering the warping stiffness
to be negligible, Eq. (4.4) reduces to

4.5) V(

1 1 aﬂ 2
# 4 s Al
] dz+3GJof(az) o

1,92 L1 oB\2
+ET | (aazf)z dz+Mf(7’j) dz.

EI,
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The chosen Lyapunov functional must also admit an infinitely small upper
bound in the neighbourhood of the equilibrium state £{=0. In qualitative terms,
this implies
@“e - V<w (0,

where y is a positive constant. By simple comprison of Egs. (4.2) and (4.5), the
inequality (4.6) is satisfied if

{ M?2]
4.7) y=max\1, TE-I_,—} .

5. SIMPLE SUPPORT

The flexural and torsional boundary conditions corresponding to simple sup-
ports are

d*u
(5.1 u=— =0 at z=0,1,
2 = dzﬁ—O 0,1
(5.2) A= e -at z=0,1.

2

dz2

The condition
supports.

The set of boundary conditions (5.1) and (5.2) leads to the following eigenvalue
inequalities [5, 6]:

=0 indicates that the section is free to warp at the

du
5.3 : dz W dz,
(5.3 of(d ) > ¥ f /4

op
5.4 dz>n* | p*dz,
(5.4 of(dz) > fﬂ
(.5 f(‘:z) P fl(z:)"dz,

(5.6) f(%) dz>n? f( )

With the aid of the inequalities (5. 4) and (5.6), Eq. (4.5) can be manipulated
into the following form:

M? !
e 2 2 4 2
(5.7 V(¢')>[ B, +GPen?+EMc* m ] of B2 dz+

+c;J(3-c)of(aa ) dz+El (1- c)f( ﬁ) dz+Mf( ) dz.
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Choosing c¢=1//*> the inequality (5.7) can be written as
(58 V(=ap® (£, 0),
where « is a positive constant given by

i - M2+Gth2+EI‘7z4 5
(5.9) 0= L, P2 = >0.

Equation (5.9) yields the familiar expression for the lateral buckling load of
a simply supported beam under uniform bendmg as

n
(5.10) M. =—VEI, (GJ+El?]) .
I y

.6. FIXE END

In the case of a member whose ends are free to rotate about the horizontal
axis but fully restrained against all other displacements, the boundary conditions
are as follows:

; ‘ d*v i
6.1) : v=— =0 -at  7=01
6.2 3u_ /
(6.2) g at z=0,/,
6.3 = 3,6’_0 | OII
(6.3) —az— at - z=0, 1/,

The set of boundary conditions (6.2) and (6. 3) lead to the following eigenvalue
inequalities [5, 6]:

(6.4) 3

(6.5) : f

(6.6) f

6.7 f ( 2 f )z_dz>4n2 f (ﬁ)z S




LYAPUNOV FUNCTIONAL FOR LATERAL BUCKLING OF I BEAMS 403

With the aid of the inequalities (6.5) and (6.7), Eq. (4.5) can be easily manipulated
into the following form: .

M7}
2 2 i 2
6.8) V(f);[GJcn 4+Elc? EI,] Of B2 dz+

1 bl ﬂ 2 1 32 ﬁ 2 1 a ﬁ 2
-2 [ > + iy
+GJ(3 c_)of(az) dz+EIl (1-c /4)0 ( = ) dz Mof( 3t) dz.
By choosing ¢=4/I*> and using a method similar to the one employed for the
- simple supports, the positivity of V' (£) with respect to p (&, 0) leads to the familiar
expression for the critical moment as

6.9) M =2x/lV EL, (GJ+4El'n*|I%).

7. CONCLUSION

A simple Lyapunov functional has been proposed for the lateral buckling of
I beams subjected to uniform bending. The functional has effectively produced
familiar expressions for the critical buckling moments for simple supports and
fixed ends. As it is well known, these two boundary conditions represent a set of
limits which most practical restraints imply. :

The solution presented has demonstrated once more that whilst no universally
accepted suggestions for constructing Lyapunov functionals have yet been proposed,
there is evidence that they bear some relations to the energy functionals.
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STRESZCZENIE

FUNCJONAL LAPUNOWA DLA WYBOCZENIA POPRZECZNEGO BELEK DWUTEO-
WYCH PODDANYCH CZYSTEMU ZGINANIU.

- Problem wyboczenia poprzecznego belek dwuteowych poddanych czystemu zginaniu zbadano
bezposrednia metoda Lapunova. Dla rozwiazania zagadnienia zaproponowano odpowiednia prze-
strzefi metryczng'i energetyczny funkcjonal Lapunowa. W ten sposob otrzymuje sie bezposrednio
znane wzory dla obcigzen krytycznych belek o konicach swobodnie podpartych lub utwierdzonych.
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Pesome

®VHKIIMOHAJI JISAIIYHOBA IJIs TIOTIEPEYHOI'O M3TrMBA
JBVTABPOBBIX BAJIOK IIOABEPTHVYTBIX YHMCTOMY M3IUBY

TIpo6ema 100EPeYHOro W3ruba JBYTABPOBBIX GANOK, IOMBEPIHYTEIX YHCTOMY H3rHOY, HCCie-
JIOBaHA HENOCPEACTBSHHBLIM MeTo0M JIsmyHroBa. J{yst pemenus ONpoOieMsl IPEIOKeHb! COOTBET=
CTRYIOIIEE METPHUIECKOE NPOCTPARCTBO | 3HepreTuyeckuil hyrxmronan Jlamydopa. Taxam o6paszoM
TOJIYYAIOTCA HEMOCPEACTBEHHO H3BECTHBIE (hOPMYIIBI /111 KPATHYECKHX HArpy30K 6ajiok co cBo6oaHo
TIOZIEPTHIME AN 3aKPENPEHHBIMA KOHIAMH,
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