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PARAMETRIC OPTIMIZATION OF VISCOPLASTIC BA'RSKUNDER
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The paper formulates the problem of the parametric optimal design of a viscoplastic bat
under the impact of axial force, Eq. (4.4), and gives some solutions. The dual approach to the
problem has been applied, the minimal vesidual deflection being the design objective, under the
constraint of a constant volume of the bar. The governing equation (2.4) has been derived under
the assumption of a power physical law and arbitrarily variable cross section; however, effective
calcalations have been performed for the linear law (5=1) and for bars of truncated cone shape.
Two parameters describe the cross section of this bar, Eq. (3.1), but one of them can be determin-
ed from the condition of constant volume of the bar, Hence the parameter of tapering of the
cone (A) remains the only design variable in this case. The influence of various parameters which
describe the shape of the force impulse (Fig. 2) on the paramcter A, has been investigated
(Figs. 3, 4 and 5).

1. INTRODUCTION .

The literature devoted to optimization of structures under impact loadings
is rather scarce. D. WALLACE and A. SEIREG [16] discussed parametric optimization
_of plastic bars with piecéwise constant cross section under longitudinal impact.
Optimization of beams and frames in the range of elastic-plastic deformation was
discussed by L M. Rapmovitcs [10]. An approximated approach to rigid-plastic
beams based on Martin’s variational principle was suggested by M. 1 REYTMAN
[11]. Optimization of viscoplastic structures subjected to impact loading has not
been treated in the literature though such problems were mentioned in the general
paper by M. Zvczxowsky [17].

In the present paper we formulate and give some solutions to the problem of
~ parametric optimal design of a viscoplasiic bar under axial impact with a certain
. prescribed function of force in time, P=P (f), 0<t<T, P=0 for <0 and ¢>T. In
-~ principle, thé minimal volume of the bar is regarded as the design objective under
-~ the constraint of a given residual deflection (shortening of the bar). However, it
~is more convenienit to use dual formulation and to look for minimal residual
deflection under a prescribed volume of the bar, We confine the shape of the bar
to truncated cones (or pyramids) and the parameter of tapering of the cone Wl11
be the only design variable. Due to inertia forces, a prismatic bar is not optlmal
in the case. under consideration. The material of the bar will be assumed to be rigid-
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-viscoplastic described by a nonlinear (power) constitutive equations of visco-
plasticity; however, effective solutions will be given for a linearly viscoplastic
material only,

Viscoplastic bars under dynamic axial loading were first discussed by V. V. So-
KOLOVSKY {12] and 1. E. MALVERN [8]. Relatively simple rigid-viscoplastic solutions
were given by P.S. Symonps and T.C.T. Ting for a linear [15] and a power
law of Viscoplasticity [13], [14]. An elastic/viscoplastic solution for a nonhomo-
geneous bar was presented by V. N. Kukupznaanov and L. V. Nikimin [7); Kuku-
dzanov studied aiso unloading waves [6]. An impact of a bar on a rigid wall was
discussed by G.1. BAReNBLAT and A. Yuv. Isaunsky [5], T.C.T. Ting [14],
T. Havasur, H. Fukvuoka and H. Toba [5] (allowing for linear hardening of the
material). More extensive surveys are given by N. Cristescu [4] and R. J. CrirroN [3].

in the present paper we derive the equations of p\ropagation of viscoplastic
longitudinal waves in an arbitratily non-prismatic bar and-then apply these equa-
tions to the shape optimization of the bar. Numerical mtegratmn and numerical
optimization will, be employed.

2. GOVERNING EQUATIONS

Consider first an active, viscoplastic zone of the bar, The material is assumed
to be described by the following uniaxial power law (P. PrrzyNa [9]):

p F
S L S
: dy . s .

where o, denotes the yield-point stress, y and & are constants, and.a dot denotes
differentiation with respect to time. z. Inverting (2.1) to find the stress o,

: $\178
(2.2)- | : o=0, [1 +(—:-) ]

and substituting (2.2) into the equation of uniaxial motion of a nonprismatic bar
we get
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whete F=F (x) denotes the cross- -sectional area, p s mass dens;ty, and u=u (x 1)
~denotes axial displacement. Bearing in mind e=du/dx we obtain
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“This third-order partial differential equation may easily be reduced to a second-
-order equation by the substitution du/dt=70, where 9 denotes axial velocity. Moreo-
ver, introducing dimensionless variables

. X _ To
2.
( S8 ( 1 dF
v= ]"[ =v 637:)5 Q_F d¢—¢(é),
" where I denotes the length of the bar, Eq. (2.4) can be reduced to a much simpler _
form '
' ' -4 1 -
(2.6) v 0 9 +pd(l+078)—9=0.
In this equation prime and dot denote respectively differentiation with respect.
to ¢, and 7. - _
The dimensionless form of the Eq. (2.2) is
2.7) ‘ s=1+0"1/%,

where s=d/a,. ‘
In what follows, we confine effectlve calculations to the physically linear case
g=1 and lntegrate ‘the paxabohc equation

(2.8) T v+ p (140")~2=0.

In the case of a prismatic bar, p=1, we obtain an equation analogous to that
describing the conduction, and hence the velocity of propagation is infinitely large;
this propagation starts when s==1, since that is the condition of the validity of (2.1).
By contrast, in a nonprismatic bar the v1scop1ast1c—r1g1d interface described by s=1
moves along the bar and the velocity of propagation is finite.

‘Within the rigid zones (plastically passive) we have obviously .

(2.9) w=y (t)=const (£}, wv=v (r)=const (£).

Equation of motion (2.3) expressed in terms of dimensionless quantities (2.5) takes
the form - ,

2.100 8+ ps—o=0.

Since v=const (£), we may integrate Eq. (2.10) with respect to & and obtain

@.11) € =) (&) de
. SE D=
F@ F (éf) f ’
where the function C(7) is to be found from the boundary conditions.
We consider here a compressive impact, and hence it is reasonable to understand
the compressive strains & and stresses ¢ as positive. - In the present formulation
possible buckling of the bar will not be analysed. ‘
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The boundary conditions are as follows (Fig. 1). At the left hand end, £=0,
we have v=0, At the opposite end, £=1, we may describe the impact by P=P (2,
or v=v (1), or fIP (7), v (1)]=0. We consider here only the case P=P (z). If the
adjacent zone is rigid, then from the condition s (I, 1}=P(1)/6, F,, where Fy=F (1),
we may determine C (7) in Eq. (2.11). If the zone is viscoplastic, then Eq. (2.7) gives

P(z)
Fio

(2.12) _ o' (I, 7)= —1.

At the 11g1d—v1scop}astlc interface {=¢,; we require the continuity of stresses’s
and velocity #; on the other hand, acceleration @ may be discontinuous (V. N. Ku-
‘KunzHANGY [7]). In general, we admit several such interfaces $=lpy, i=1,2,.

Rigid

Rigid Viscaplastic

We assume that the function P=P (1) is increasing monotonically from zero; _
in this case the initial condition » (¢, 0)=0 is justified.

3. NUMERICAL INTEGRATION AND OPYIMIZATION

As we mentioned before, we look for optimal truncated cones, and hence we
substitute into Eq. (2.8) |

24

(3.D : F=rin(1+40? ¢= 1342

The radius r (0)=r, may be found from the condition of the constant volume V:

' 3V
2[(A2+3A+3) Fo:]/mm,

and hence the parameter A is the only design variable.

Nurerical integration of Eq. (2.8) with substitution of Eq. (3.1) was performed
using'the computer CYBER 72. Spatial derivatives were replaced by fourth-order
finite difference formulae of the type

(3.2) B

u|;q

1 1 1
3.3 + 2., S PM TR N 4
(3.3) Vyps =0, Fh v, b= hﬂfsh 241:@
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where A, denotes the space mesh size; higher derivatives were calculated dircéﬂy
from Eq. (2.8). The time derivatives were calculated from a simple Euler formula

(34) : U+ 1=Vt O, -

where 4, is the time step. In gerieral in the case of parabolic equations a careful
analysis of numerical stability of the procedure must be performed to ensure ne-
gligible errors after a longer time (W. F. Amgs [1]). However in the problem under
consideration one observes full rigidification of the bar after a relatively short
time close to T and hence the discussion of longer times is not necessary at all
In any case, it has been checked that the condition of stability quoted by Ames

1
- (3.9) | YRy

resulted in smaller numerical errors.

At the beginning of the process the entire bar is ngld and Eq. (2.10) was used.
If, at any node, s exceeds unity, then Eqs. (2.8) and (2.7) are employed. Conversely, -
if after some time we find that s<1 then Egs. (2.10) or (2.11) are used. The guan-
tity » (1) after full rigidification was calculated for various values of A, and the
smallest value of u (1) served as the design objective.

4, DisCusSION OF THE RESULTS

The optimal shape of the bar depends, in the case under consideration, on the
shape of the impulse, i.¢. on the function P=P (7). Triangular or quasi-triangular
(curvilinear) impulses were only discussed. Since

» VI |
@n i =ron (WA == T
the stress at the end £=1 equals

P()-1 3+34+47

3VO'0 ) (1+A)2 !

4.2) ‘ L =

We introduce the dimensionless force p (7)

@3) ‘p(r)%%ao;v @)
and. consider the following impulse shapes
| 0 for <0 and =7,
’ A"
p@= (uT) Poax for , OsT<dl,

T— "
[W] Pmax for pT<e<T.
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These impulse shapes are characterized by four dimensionless parameters: #, i, Pu,
and T (Fig. 2). In the case m=1 we obtain usual triangles, if m#1 — curvilinea,
triangles. Substituting pg=1/2 we have symmetric impulses (e.g. an isosceles triangl
in the case m=1). The parameter p.,, determines the maximum force; it shoule
be larger than unity; since pr,=1 gives sym,, =1 for 4=0, and no deformatiod
process takes place at all. Finally, the parameter 7" characterizes the duration on
the impulse: in fact, bedring in mind the definition of the dimensionless time 7,{
Eq. (2.5), we see that T comprises also several other parameters, namely, for a given

-physical duration of the impulse, 7"incteases with ¢, and decreases with p, », and /.

p(r) k

10

Fia, 2.

In all cases the process was examined until full rigidification and the residual
displacement u (1) was calculated and minimized. The profit z was defined as

def 74, By— mn_l
s 5 Ot )

where u, (1) denotes the residual displacement of a prismatic bar, A==0.

Figures 3-5 show the results of optimization of the parameter 4 for various
forms of loading impulses. The presented curves show the influence of the dimen-
sionless duration of Impulses T as well as of the parameters m and p (Flg 2) on
the optnnal value of 4.

The common assumption in all calculations was that the area under the curve
P=P (1) (t —being the dimensional quantity) was the same.

The dotted line shows “‘the profit” z which amounted on the average to about
12 per cent. The maximum calculated value of z has reached 32 per cent for
T=0.0629. :

Figure 6 points out the difference between residual sirains g, in the prismatic

- 1009,

. and optimal bars calculated for the fellowing values of parameters: T=0.251,

#=20.5, m=1. Figures 7 and 8 show curves of the stress s plotted against { and 7,
respectively and the Fig. 9 curves of the acceleration of the end of the bar @ (1)
against 7 for the same value of the parameters 7, p and m.

~

.



-2 L a 1 2 3 InT
R

ot 02 as 10 20 50 100 200 T

Fia. 3.

A bzl

. ~
. 05 .o o 15. 20 m
0 T em amw T ayr 4T Pa
Fic. 4.
L33]

Rozprawy Iniynlerskle — 3




06 -

4 7 (%]
e 113
— e
// "‘-.__‘\.‘“-‘
02 T e~ 1%
\\
Y
! L i
o ’ 025 0.5 a7 10
FiG. 5.
& B
[#%e]
N ’ e A=}
\ ——— A;ppt=ﬂ524
A,
20 |-
il o
o 1 i 1 1
B ¥4 o4 ! 05 0a 10
Fia. 6,

[24]




I 5

— A=O
——— Agpt=0524

7=02013=08T

z.0

—

1.0
-
~
T=0.322=128T, S~
. —~—
. -
I ! L P e
0z 04 a5 08 10 g

FiG, 1.

amesvrmirsss Ao (I

weene Aot 0524

v i T s
™

-
okl

£=0

]

i
I
!
|
H
'

s
n
=¥




36 E. CEGIELSKI AND M. ZYCZKOWSK!
viljh

40600 -

—_— A=(}

30000 | T At =0524

T

20000

0000

-

~Hi00 [~

20000 [~

“Fe. 9.

One can easily see that the time of viscoplastic flow of the optimal bar is about
20 per cent longer than the flow time of the prismatic bar. The profit z amounts
to.12.39% in this case. It should be noted that the distribution of residual stiams
is guite different when compared with a prismatic bar.
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STRESZCZENIE

PARAMETRYCZNA OPTYMALIZACJA LEPKOPLASTYCZNEGO PRETA PRZY
DYNAMICZNYM OBCIAZENIU OSIOWYM

. W pracy rozpatrywano problem opitymalizacji parametrycznej sztywno-lepkoplastycznego
preta przy dynamicznym obcigzenin osiowym sila zmienng w czasie (4.4). Problem sformutowano
i rozwiazano W ujeciu dualnym; poszukiwano minimalnego przemieszezenia resztkowego kofica
preta (skrocenia b wydluzenia) przy danej stalej objetodei preta. Rownanie ruchu (2.4) wypro-
wadzono dia potegowego prawa fizycznego (2.1) i dowolnic zmiennego przekroju, jednakze dalsze
rozwiazania podano dla prawa liniowego (§=1) oraz preta w postaci stozka $cigtego. Sposrod
dwoch parametrow opisjacych zmiane przekroju takiego preta (3.1) jeden mona latwo wyzna-
czyé 7 warunku stalej objetodei (3.2). Jedyng zmienng ksztaltowania pozostaje weedy parametr 4
(reprezentujgcy zbieznof¢ stozka). Rownanie ruchu catkowano numeryeznie. Zbadano wplyw
ksztabtu impulsu obeigZenia (rys. 2) na warto$é poszukiwanezo parametru A,, (rys. 3,4; 5).

PesmoMme

TAPAMETPHYECKASL OTITHMHU3ALTAA BAIKOIUTACTHUECKCIO
CTEPXKH3 IIPY JUHAMKPYECKOM OCEBOM HAIPYXEHWIL

B pabore paccmorpera mpobieMa NMapamerpuyeckolf ORTHMASALRM KECTKO-BASKOIIACTH-
MECKOro CTEPIKHS NPY ANHAMUYECKOM HATPYMKEHHE OCEBOH CHION mepeMennoll B0 Bpevenn (4.4).
TIpoGiema chopMymHpoBaHa W PENICHA B OyaNbHOM NOAXOAE; HIHETCA MAEEMANBHOE 0CTATOYHOS
TiepeMeIleHIe KOHIA CTepxad (COKPAINCHHe HilH YIIRHEHUE) TIPA 3aMaHHoM MOCToHAEOM 005eMe
crepixna. VY papreHue nerkernd (2.4) BrBeneHo nux crenenHoro husuueckoro 3axoxa (2,1) B opomus-
BOABHO MEHAIOMIEroCs CEHeHHS, ONHAXO AanbHCHNe DCIUCHEA UPHBENeHs! And Jmuedmoro 3a-
Kona (=1}, a Tawke XIT CTePHI B BHAC yCeueHHOTo KoHyca. Cpeam IByx riapaM&Tpon, OHH-
CHIBATOINMX H3IMEHERRE CEICHUM TAKoTo crepxus (3.1), OfUH MOXHO JETRO OUPENenTh ¥3 YCIOBHS
nocroaproro obGveMa (3.2). Enmncreensiol mepeMensoi q;bpmuponaxmsl 0CTAETCA 10THa Napa~
MeTp A (MperCTaBATIOUINE CXOMAMOCTE KORyca), YPABHEHAS IRMIKCHHUS Hm'erpnporsano YRCIEHHO,
Hceacnorano sumsame GOpPMEI AMIYILCH HATPYXKERRS (puc. 2) Ha 3HAYEHHE HCKOMOI'O, TapaMeTpi
Aonr (puc. 3, 4, 5). :

TECHNICAL UNIVERSITY OF CRACOW _
INSTITUTE OF MECHANICS AND MACHINE DESIGN

Received February 15, 1980,





