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A MODE SOLUTION FOR THE FINITE DEFLECTIONS OF A CIRCULAR
~PLATE LOADED IMPULSIVELY

C. GUEDES SOARES (LISBOA)

The mode approximation technique as originally presented by MaRrTIN and SYMONDS [Mis
applicable to rigid-plastic structures undergoing infinitesimal deflections. The extension of the
mede approach to the finite-deflection range can be done by considering a series of instantaneous
modes [5-7], or by assuming a permanent mode shape [9, 16], The method proposed in [9] is further
developed here and applied to the study of a circular plate loaded impulsively. The final deflection
is obtained using a method developed by Jones for beams and non-axisymmetric plates [10].
Comparison with experiments and other theoretical treatments show good correlation.

1. INTRODUCTION

The solution of problems of dynamic response of structures to intense Ioading
is rather complicated when parts of it enter the plastic range. However, in some
‘cases the plastic strains associated W1th the response are-so large that one can
neglect the elastic strains without SIgmﬁcant loss in accuracy. This rigid-plastic
idealization of material behaviour is therefore a useful simplification that has
allowed some of these problems to become tractable.

Within this theory several exact solutions have been obtained [1, 2]. However,
even with this idealization problems were often difficult to solve and consequently
some approximate methods were developed. Among these, special relevance has
been gained by the bounding theorems [3] and by the mode approximate solutions
~ introduced by MARTIN and Symonps: [4].

These approximate methods have been developed for the case of small deflections
but, sometimes, when considering the effects of intense loading, the nonlinearities
due to large deflections must be taken into account. In these cases an exact solution
is often out of the question and even approximate ones are sometimes difficult,

SyMonDs and CHON [5-7] proposed an extension of the original mode approxi-
mation solutions so as to account for finite deflections but, in doing so, they had
to resort to a series of instantaneous mode shapes throughout the response, what
implied the use of numerical methods. As a consequence, the simplicity and the
analytical character of the mode solutions would be lost.

When applying the same procedure to the case of a beam, 1t was noticed [8]
that the shape of the modes ‘was not changing significantly during the response. The
same could be observed in the results of Cron and SyMonDs 6] on a circular plate.
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This gave the indication [9] that the use of a permanent mode shape might
be a reasonable approximation with an ungquestionable simplification of the ana-’
1ysis. Indeed, it is believed that when exact solutions cannot be obtained, the approx-
imate methods which are developed should be a compromise between the difficulty
- of treatment and the accuracy of 1esults. ,

The procedure proposed in Ref. [9] is applied here to study the behaviour of
a circular rigid-plastic plate under impulsive loading, and it is shown how the mode
approximation technique could be extended to the case of finite deflections, retaining
jts original simplicity. :

The solution is obtained using the methodology developed by Jonges, which
has already been applied to beams [10-12], non-axisymmetric plates [10] and shells
of revoluiion [13].

The results are compared with experiments and with other theoretical studies,
including a discussion of the relevant differences between the approaches.

2. BASIC APPROACH

.The solution of a problem of a rigid-plasti¢ siructure subjected to a given pre~
scribed dynamic load involves the determination of a velocity and a stress field such
that: 1) the stress field is in dynamic equilibrivm with the applied load; 2) the veloc-
ity field is zero whenever the yield condition is not satisfied; 3) when the yield
condition is Verified, the velocity and stress ficlds are related by the associated flow
“law; 4) the yield condition is mever violated. _

. However, a complete sclution to such a problem can also be obtained using
the concepts of limit analysis [14]. Indeed, when the upper and lower bounds are -
coincident, they are the exact solution. — '

Therefore, one can depart from a kinematically admissible velocity field, and
obtain the equations of motion from the satisfaction of equilibrium, initial condi-
tions, yield condition and associated flow law. Then, if the yield condition is not
violated everywhere, the stress field is dynamically admISSIble and the solution
exact

These principles are also applicable to the mode solutions. The ongmal formu-
Iation of MARTIN and SymoNDs {4], which is appropriated to infinitesimal deflections,
is based on the choice of a kinematically admissible mode shape which has a con-
stant shape but changes its amplitude with time:

2.5 W (r, t)“-mT(t) p(r).

When the mode shape can be associated with an equilibrium stress field such that
the yield condition is satisfied everywhere and when the initial conditions are also
satisfied, then the mode solution is an exact one. However, in general, the mode
solution will not satisfy the initial conditions being theréfore only an approximation,
even in the small deflections range.




-

A MODE SOLUTION FOHR THE FINITE DEFLECTIONS OF A CIRCULAR PLATE 101

It has been shown that in the case of small deflections, the shape of the deform-
ed structure will converge to a unique mode shape which will remain  constant
during the latter stages of motion [15].

" However, as in general, this mode shape will not coincide with the shape of the
loading it becomes necessary to match the mode solution with the actual response.
MARTIN and SYMONDS [4] originally proposed to obtain the initial value of the am-
plitude of the mode solution from the minimization of the functional 4 which
represents a measure of the difference in kinetic energy between the mode solutlon
and the actual response:

1
2.2 A=f§,u(wi-cw) (W —op) dA .
) A

Minimizing 4 by setting d4/d« equal to zero will yield the value of «:

[ up; da
2.3 - =A@ ,
(2.3} fﬂ‘/’z gy
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it happens that for small deflections the mode solutions are, in general, exact except
for the initial conditions.. However, for large deflections no exact solutions can
be cbtained since the stress filds whlch are originated during the motion will include
yield violations.

To extend the mode approximation technique to the ﬁmte deflection range,
two main procedures have been adopted.

The first one, due to SymonDs and CHon [5-7], consists in avoiding the yield
violations by considering the response to be made of a sequence of instantaneous
mode shapes such that, at each moment, the resulting stress field will not violate
yield anywhere.

The second one, due to the author [9] and also adopted by Symoxps and Wierz-
BICKI [16], is based on the postulation of a permanent mode shape throughout
the structural response. However, while the author advocates the use of the same
mode shape as in the small deflection range, i.e. the mode in which the structure
_collapses under the impulsive loading; Symonds and Wierzbicki neglect the effect
of bending moments and choose the shape of the final stage of motion when there
is only membrane action. - '

One of the main features of the mode approximation technique is the choice
of a mode shape. that satisfies all the. field equations and constraint conditions.
The other one is the matching procedure resulting from having the initial conditions
not satisfied. Matching the mode solution to the actual response ensures that two
configurations approach cach other during the early phases of motion.

These two considerations are maintained in the procedure proposed in Ref.
[9] and applied now to solve a specific problem. The difference between small [4]
and large-deflection will be reflected only in the field equations which include one
more. term accounting for the additional effect of the membrane forces that are
developed because of axial restraint. '
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These mode solutions maintain the basic features of the original mode approach,
they are easy to apply since they do not need the resort to numerical methods and,
finally, comparisons with expenments have shown that they give qulte satxsfactory
results [9].

Although not explicitly associating his approximate method with this general
formulation, Jongs {10] has developed a procedure to estimate the finite deflections
of structures, which consists in choosing the collapse velocity field of the structure
and assuming its shape to remain constant during the response.

The method has been originally developed for beams and nonaxisymmetric
plates. Here we will use it in the case of axisymmetric plates and, within the formalism,
~of the mode approximation technique, we will apply it to the case of a rigid-
~plastic circular plate subjected to an impulsive load.

3. APPLICATION TO AXI-SYMMETRIC PLATES

This formulation, as developed by Jones [10], departs from the principle of
virtual velocities: |
(3.1) b=D,,
which equates the total internal and external energy dissipation rat_és.

The rate of external energy dissipation is given by

(3.2 : Dy= [{(Pi— putt) i+ (Ps— i) W}dA,  i=1,2,
A .

where the ‘summation convention is implied. The area A4 extends over the entire
deformed mid-plane of the plate and may be taken as the original arca for moderate
deflections.

For a circular plate the consistent dynamic equilibrium equations for finite
“deflections are given by [17]

~@N) — P vy =0, i=1,2,
(3.3 _ —-(rM,.)"+M'+(rN w')’+rP3—rm31};—-0,,
=—(rM) +My .
Substituting Eqs. (3.3),,, in Eq. (3.2) one obtains

2 ' T:Ii ' - ~ne W
(3.4 D= Af {[Ng-(rN,) 1+ —M;.—(rN., w) ]—r—} dA
Integrating by parts all but the first ierm of this expfessidn results in

(3.3 De-—"f(—l:iaﬁm i) dd = [ N, _dIFIQ»vdszAr,. W’ dl+
o4 i I t :

-i-f(M_r—Nr W) w dl+f(M,—N,w)W”dA+f(—ﬁ;ri —N;w—i\:iw) W dd,
i A 4
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where use of Eq. (3.3); has been made to obtain the third term of Eq. (3.5) and the
line integrals are performed along circumferential lines.

When the load acts only in the transverse direction (P;=0), it is reasonable
to neglect »; and #;, compared to w and w. Introducing these simplifications in Eqs.
(3.2) and (3.5) and equating them, one obtains

(3.6) J‘(Ps—,ui&) ;édA=-f{(Q+-M W) Wt (M, — N, w) W'} dl+
N A ! .

+ f {(M,, =N, Wy w" +(My—rN, w—N, w) -‘{;f-} dd.
A

The velocity fields to be postulated will hold throughout the structural response
not allowing therefore the existence of travelling hinge circles. In this case w and
W must be continuous throughout, but w’ may be discontinuous across a stattonary
hinge circle. - :

Therefore the first term of the line integral of Eq. (3 33 Vamshes and the equation
is finally reduced fto

G [ (Pam i) wdd=— [ di+ [ (M~ w) 0"+
A : ] 1

wr
+(My—+¢N, w—N, w) T} da,
1
where now the line integral is performed along a hinge circle. _
Incidentally, it can be shown that this equation could also be obtained from
the equation of a shell of revolution [13] by using the general coordinates appro-
~ priate to a circular plate,

4. YIELD CONDITION

In a circular plate undergoing finite deflections the state of stress is defined by
four stress’ resultants: N,, Ny, M, and M. Similarly the state of strain has four
components. These quantities are related by the equilibrium equations and by the
yield condition and associated flow law.

The plastic yield condition may be represented as a surface in a Cartesian space
whose coordinaies are the generalized stresses. The associated flow rule defines
then the generalized strain rate vector as the normal to the surface. Therefore,
if the yield surface consists of plane facets, as long as the stress point remains on
a given plane, the yield vector remains in the same direction and the yield mechanism
does not change. This is why in analytical work preference is often given to the
Tresca yield condition although the Huber-Mises condition might give a slightly
better description of the behaviour- of metal structures.

The use of the exact yield surface is very complicated when considering finite
deflections since it becomes a four-dimensional suiface in the stress space [18].
Therefore approximate yield conditions must developed. Moreover, it has been
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__shown that by suitably linearizing the yield ‘condition not only the equations are
made linear but also the stress and velocity equations are uncoupled [19].

In the linearization process two main approaches have been used. One consists
in approximating the exact yield surface by a polyhedron [20, 21] and the other
consists in using an approximate description of the structure itself [19, 6],

Hodge suggested that the exact yield condition for an ideal sandwich shell.
could be used as an approximation to the uniform shell case [19].

The rational behind his proposal derives from the theory of limit analysis and
states that if a yield condition 4 is wholly interior to another condition B, then

- the collapse load computed according to 4 is not greater than the collapse load
computed relative to B, Indeed this would be applicable since the sandwich surface
is interior to the exact ome.

"Drucker and SHIELD [20], on the other hand, proposed a simple approxima-
tion to the yield condition of shells of revolution based on the argument that in
most rotationally symmetric sheli problems the moments are generafly small,
compared ‘with direct stresses. ’

Therefore they ignored the hoop moment M, and neglected the interaction
between the radial moment and the direct stresses. This is referred to as the one-
-moment limited interaction surface. .

However, HopGe [21] noted that in dynamic problems it might not be justified
to disregard M, because it may become important in regions near the axis of
symmetry., Therefore he proposed a two-moment limited interaction surface in
which all interaction between moments and between membrane forces are main-
tained. It recognizes though, that in most problems the moments and the membrane
forces will not be of simultaneous importance so that the relations between
moment and force are neglected (Fig. 1).

me, Ky b Nr, € |

me,Ka - ng, v

Frc. 1. Two-moment limited interaction yield surface.

Hodge studied then the problem of a spherical cap, using the exact yield surface
[18] and the different approximations. He obtained comparable results but in the
case studied the two-moment limited interaction gave better predictions than the
sandwich approximation and, furthermore, it simplified the analysis.

This concept of limited interaction yield surfaces has also been adopted by Joxes
and co-workers in problems of beams [10-12], non-axisymmetric plates [10] and
shells of revolution [13]. Also, as already stated in [9], extensive comparisons
with experimental work have shown the results to be satisfactory.
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Therefore the two-moment hmrwd interaction surface will be adopted in the
present study.

5. -MODE SOLUTION

We will now seek a solution for the case of a simply supported circular plate
subjected to a uniform impulsive axi-symmetric load over a central region of radius
a (Fig.2) defined by:

5.1
G w,=0, r>a,
I P W; 7-
e wi r /7?9};7

{_ﬁ S

FiG. 2. Impulsively loaded, simply supported circular plate,

We will assume a modal velocity field of the form of Eq. (2.1) where, as defined by
MARTIN and SYMONDS [4], the parameter « is given by Eq. (2.3).

The mode shape chosen will be equal to the final mode shape of the correspon-
ding infinitesimal deflections dynamic problem [22). It has been shown [22] that
for moderate loads the dlsplacement field will have the following permanent mode

- shape:
5) = (1 ——”—).
. R/
For large loads the initial dlsplacement field will have a shape of a truncated cone:!
g (n=1, 0<rgé;
(5.3) —r .,
o ({F)= R E<r<R.

This response shape is not a permanent one since the hinge located at r=¢& will
travel towards the center of the plate until, at later stages of the response, the plate
will take the conical mode shape [Eq. (5.2)] and maintain it until it comes to
rest. Indeed, MARTIN [15] showed that the response of a structure in the small
deflection range will tend towards a mode-form solution,

Following an earlier proposal [9], in the present analysis, which is valid for
finite deflections, the corresponding mode shape will therefore be given by Eq.
(5.2). This mode shape is common for displacement, velomty and acceleration
fields,

Substituting Eqgs. (5.1) and (5.2) in Eq. (2.3} will resuit in

aZ

. . 4]
(54) v o= VO F(6 '_4}?)511.{/.3
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and t'hercfor_c;

[N W= W(r)(h%),‘

where W{t)=nV, T (2).
The consistent strain rates [17] take the form

(5.6)

for the velocity field of Eq. (5.5).
- By using Hodge’s two-moment limited interaction yield surface (Fig. 1) and
- the associated flow rule, we then have for K,=0 and K,<0

(5.7 My=-M, and —M,<M<O0,

where Mo=0, Hf4 is the fully plastic moment.
For £,=0 and >0 we must have
(5.9  N.=N, and O<N,<N,,

where
No'=U'o H=4M0/H. .
Following Jones® approach [10] we will substitut.e' Egs. (5.5) and (5.7) in Eq.

(3.7). As no hinges are allowed in this mode shape (5.2), the line integral of Eqg.
(3.7) vanishes. Noting also that for impulsive loading P;=0, the result will be

5.9 i -2\ w w(1—-- AW

(5.9) !,uW(l—E) WdA—J{ Mo —N, ( -j{—)}(_m) A

Performing the integrations, one can obtain the equation of motion:
240, 1204,

5.10 ‘ 7 = .
(510 W+-,uR2H W HR?

The solution of this equation will give the time history of W and coﬂsequex}tly the
velocity fields as defined in Eq. (5.5).
In terms of the following nondimensional variables,

. WH w HVER?
(511) W, = ——I}-—i-’ w*z_— I,!V=____D____‘
' o

H’ M, H
The equation of motion becomes '
24 12

(5.12) | it W=
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and its solution is

‘ 24 24 1
{5.13) W= 17 —~s1n] t+ cos T’_z’

where the constants have been obtained from the initial conditions -

(5.14) S ati=0 w,=0, =1

*
- The motion stops at ¢=#, when w,=0. Therefore, difi‘efcnﬁatiﬁg Eq. (5.13) with

respect to time and equating to zero at #=t, will yield the expression for the duration
_ of the Tesponse:

(5.15) _ tan tf n V

from what the following results-

» % VE
(..) 6+A2’ COSE o b= S

The final deflection which occurs at r=1, is cbtained by substituting Eq. (5.16)
-in Eq. (5.13):

(5.17) ' , w*f=_§('§/1 6

In the special case of having the impulsive load uniformly distributed over the
~ entire surface of the plate, @ will be equal to R and, from Eq. (5.4), it regults that
n=2. Therefore the duration of the response and the final deflection amplitude

will ‘be given by
s 22
‘tanB/TIIZE ERE

w&,f:-l—(]//z-!-—z—l—l).

In this case a plot of final deflection amplltude versus the nond:mensmnal measure -
of kinetic energy is shown in Fig. 3. _

1t shouid be noted that although this solution (5.17) has been developed for
- the case of uniformly disiributed impulsive load (5.1), it remains valid for any
other kind of impulsive load. The variation of the load distribution will only imply
a mnew value of the parameter # which was obtained from Eq. (2.3) by using
Eq. (3.2} and the shape of the load distribution.

(5.18)

6. COMPARISON WITH OTHER STUDIES

There is a vast literature on the dynainic plastic behaviour of circular plates
and therefore we will not attempt to look at all.the solution methods that have
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F16. 3. Estimates of final deflection for a simply supported plate: 1-—present solution, 2—

present solution (inscribing yield surface), 3—Jowes [26], 4—Jongs (inscribing yield surface),

[26], 5—Wirznickr [28], 6—Kauiszky [29], 7—Symonps and WIERZBICKI [16]; @ — FLORENCE
. experiments [27]. :

been adopted Only some treatments which are considered to be related with the
present work will be discussed.

The mode approximation technique has been orlgma]ly developed for rigid-
-plastic structures which undergo small deflections when subjected to impulsive
loading [4]. It has been applied mostly in infinitesimal deflection situations and
a review of its capabilities has been given by MaRTIN [23] and by SyMonDs and
Cnow [24]. In the latter, various mode solutions for circular plates are presented
and it is shown that they are the same as the ones developed in the early works
such as for edample [2]. , |

WaNG [22] considers a simply supported circular plate under impulsive loading,
- whereas Hopkins and PRAGER [2] had considered pressure loading. As mentioned
-previously, we adopted here a mode shape equal to the one used by Wang.

The first studies of the finite deflection problems are by FLORENCE [25}'who
looked at an annular plate and by JoNEs [26] who considered a simply supported circu-
lar plate under impulsive load, i.e. exactly the same case that has been considered here.

Florence used an interaction betwéen M, and N, only, while Jones adopted
the limited interaction concept of Hopag [21] (Fig. 1). Jones used the same defor-
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mation mechanism as WANG [22] and a more accurate theory to obtain the final
deflection. He considered two stages of motion, having in the first one a hinge circle
travelling towards the centre of the plate, and retaining during this stage the
effect of both moment and membrane forces,

The second stage occurs after the travelling hinge circle has reached the center.
Since Jones cousidered only the effect of membrane forces, he obtained a defos-
mation shape in terms of a Bessel function of the first kind of zero order. Com-
parison of his results with the experiments of FLorencE [27] showed an excellent
agreement

The attempts to extend the mode approximation technique to the finite deflec-
tion range began with Symonps and CHON [5, 6]. The mode technique, although
being an approximate procedure, cannot be applied to the finite deflection case
without further generalizations or assumptions.

When studying the circular plate problem Cron and Symonps {6] decided to
consider the response to be made of a series of instantaneous modes. Each mode
was found by an iterative procedure and therefore their approach implied the use
of numerical methods with the consequent loss of one of the basic features of the
mode technique: its simplicity. Tn a further study [7] they obtained better corre-
lation with experiments but the numerical procedure became even more complicated
since finite elements were used. :

A different and simpler approach suggested in [9] and used here consists in
maintaining the basic procedure used in the small deflections range [4]. Therefore
the permanent mode shape appropriate for the infinitesimal deflection case is main-
tained on the large deflection range. This is very similar to what has been done
by Jonas [10], Wierzsrcky [28] and Kariszky [29] Whoadopted one collapse mech-
apism for the whole structural response.

It should. be noted that the method developed by Jowes [10] can also be derived
from variational formulations [30]. It had not been applied previously to circular
plates; it has been adopted here to obtain the mode solution in the finite deflection
range. It is a solution which includes both bending ard membrane effects, while
SYMONDS and WierzBICKI [16] consider only the membrane behaviour.

They followed the same idea of estimating the response with a permanent mode.
shape. However, instead of choosing the shape of the initial phases of motion they
chose the shape appropriate to the stage where only membrane effects exist. There-
fore they obtained a mode shape in terms of Bessel functions as Jones [26] did for
the second phase of his solution. Frorence [25] also used a membrane solution
which gave worse results thav his limited interaction approximation. However,
he used an approximate. linear profile as the. velocity field.

As Symonds and Wierzbicki have given no account for bending, their solution
- is valid for both simply supported and clamped conditions. Their equation of mo-
tion is equivalent to Egs. (5.10) and (5.18) without the right hand side which is
the term accounting for the flexural effects.

. As can be seen in Fig. 3, their predictions underestimate the ﬁnal deffection of
the plates. i is expected, however, that their results will improve for much larger
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deflections, when -the energy dissipated in membrane eﬁ'ects becomes more impor-
tant.

In Fig. 3, bes;des the different theoretical formulations, the experimental re-
sults of FLORENCE [27) on 6061-T6 aluminium plates are also shown.

For the present approach and for JONES® solotion [26]} two curves are shown.
They both use the limited interaction yield surface of HopGE [21]. As originally
suggested, another inscribing yield surface 0.618 times smaller can also be used,
giving a sort of “upper bound” to the maximum deflection.

With the present approach an approximate solution could also be obtained
very easily for the case of clamped boundary conditions, If the same mode shape
is used, it becomes necessary to account only for the extra work that is dissipated
in the plastic hinge circle that develops at the support: This implies minor changes
in the formulation as can be seen in the Appendix. Results of this procedure are
plotted in Fig. 4 and compared with other studies.
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Fic. 4. Estimate of final deflection for a clamped plate: 1—present solution, 2—present solution
(inscribing yield surface), 3—CHON and SymMonps [6], 4—SyMoNDs and WieRzBICKI [16].

However, it should be kept in mind that this is not the solution that would
be obtained by following what is proposed in [9] and here, If that were done, then
a logarithmic mode shape would have to be used, since this would be the appro-
priate one for a clamped circular plate subjected to impulsive loading [31].
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7. CONCLUDING REMARKS

One possible extension of the mode approximation technique to the finite -
deflections range has been presented. It foliows a previous suggestion [9] and it
allows for very simple solutions; this is therefore in the spirit of the original infi-
‘nitesimal solutions of MarTIN and Symonps [4].

It provides an alternative to the approach of SymonDs and Cron [5-7], being
simpler and of comparable accuracy. It is of a complexity similar to that of the
recently proposed method of SyMoNDs and WIBRZBICKI [16], providing, however,
better estimates for modelately large deflections.

‘The final deflection of the plate was obtained using a method developed by
Jones {10] which has previously been applied to beams {10-12], non- ax1symmetnc
plates [10] and shelis of revolution [13].

This method has the great advantage of its analytical character and also of
its applicability to non-axisymmettic plates which are relevant engineering struc-
tures that might be difficult to study by means of other methods.

8. APPENDIX. APPROXIMATE SOLUTION FOR A CLAMPED PLATE

To obtain a mode solution to a clamped plate 1mpuls1vely loaded the same
general procedure should be followed using, however, as 4 mode shape instead .
of Eq. (5.2), a logarithmic profile [31].

We will not seek here the mode solution but just an approximation based on
the use of the same mode shape. .

As this mode shape does not satisfy the clamped boundary condition ¢'=0,
we must have a hinge circle developing at the supports. This will be the dlﬂ'erence
‘ rclatlve to the simply supported solution.

Therefore, when introducing Eqs. (5.5) and (5.7) in Eq. (3. 7), one must account
also for the contribution of the line mtegral which should be performed around
the hinge circle.

~ If that is done, the resulting equatmn of motion will be, in nondimensional
form,

. 24 24
Wy +7 W, = —T

24 24
]/_ sin ]/ t+cos ]/—1— t—1

for the following initial conditions:

and its solution is

at =0, w*=0: 'H'f*=ﬂ,

where # is given by Eq. (5.4).
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Following exactly the same procedure as for the simply supported case, we will
obtain the final response time and deflection amplitude

VS
tan 7 =1 94’

A ~
Wap= ]/1+% 1.

This can be used in the case of loading over the entire surface of the plate giving

w7 -
tan T tfm': '_6_, :
. )
W$f= 1+‘€‘ '_1,

what can be seen in Fig. 4.
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STRESZCZENIE

ROZWIAZANIE MODALNE DLA DUZYCH UGIEC IMPULSOWO OBCIAZONBJ PLYTY
KOLOWE)

¥

Metod@ rozdzielenia zmiennych w formie zaproponowaneJ przez MARTINA I SYMONDSA [4}
stosuje si¢ do konstrukeji sztywno-plastycznych w zakresie nieskoficzenie malych ugieé. Uogdl-
nienie tej metody do probleméw duzych ugigé dokanywane bylo badz poprzez rozpatrzenie sek-
wenaii chwilowych postaci ruchu [5-7], bad? tez przyjmujac staly ksztalt pola predkosci [9, 161
Metoda zaproponowana w [9] jest dalej rozwinigta w obecnej pracy i zastosowana do zagadnienia
impulsowo obeiaZonej plyty kotowe. Koficowe ugiecia obliczone sa na podstawie metody opraco-
'wane_j przez Jonesa dla belek i dowolnych plyt [10]. Poréwnanie uzyskanych wynikow z doswiad-
czeniami oraz inpymi rozwigzaniami teoretycznymi wskazuje na dobra ich zgodnosé,
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PeswMe

MOJAJBLHOE PEMIEHHUE OJIA BOJLIMX ITPOI'MBOB KPYTOBOW TIITUTEI
‘ HATPYXEHHOH UMIIVALCHEIM OBPA3OM ‘
1

Meton pasu.elleEd NepeMeEHHX,R dopMe npemmoxennod Maprurom w Camonmcom [4],
TPFMCHACTCH 1A HCCTHO-TUIACTHYCCKHY KORCTPYKIMH B oG/acTH OeckoHeYHO MalEix mporuos,
O6obineHue 3TOF0 MeToAa K IpobaeManM BOJbIINK UPOTHOOB NPOBONWIOCE WIIM IMyTEM DAcCMO-
TPEHAA TOCTEMAOBATEICHOCTeH MTHOBCHHEBIX BUAOR JBMKeHNA [5-7], HiH e uprmynMas HOCTOSHEYIO
dopmy mons cropocreit [9, 16]. Meron upennosennsii B [9] gampme passur B macTommel pabore
M OpHMEREH. K HpoOreMe XpYroBOH IUIMTHE HATPYKEHHOW UMNynbCEEIM o6pasom. OCTaTovymsie
HpOTHGH PACCIRTARE B OCHORE MeToa paspaoransoro JHKOHCOM IIf GalOKH IEOUIBOALHBIX
et [10]. CpasHerrEe TOBIONYYCHHBIX PE3YILTA ¢ DXCIICPAMEHTAMH, 4 TAIOKEe C APYLHME TEOPETH-
YECKEME PeHISHHAMH YKA3hIBAET HA XOpoluce COBNAZEHHE,
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