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A CRACK IN AN ANISOTROPIC LAYERED MATERIAL -

D.L.CLE M ENTS (KENTUCKY)(*)

The problem of determmmg the stress and dlsplacement ﬁelds lound a crack inan amsotloplc
!ayered material is considered. The problem is reduced to ‘a system of three simultanéous Fredholm
integral equations which-ate solved numerlcally in certain -¢ases. Tn particular, the case When the’
material containing the crack is “strongly anisotropic™ is examined in some- detail.

1. INTRODUCTION

In a recent paper (CLEMENTS [17) the aithor considered the problem of determining
the stress field round a crack in an anisotropic ¢lastic slab. The problem was reduced
t6 three simultaneous Fredholm integi'al' 'equations'iifhjch were solved hurri‘erically
in‘order'to determine the crack energy for somie part;cular anisotropic materials.

In the present paper we use a similar analysis to consider the problem of a crack
111 an’ amsotroplc ]ayer sandwwhed between amsotroplc half-spaces (F1g 1) The

: e
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Fic. 1. A crack in a layer betweent two half-spaces.

(*) On leave from the Univet‘sity-*of Adelaide, -Australia.
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important case when the central Iayer of the composite is “‘strongly anisotropic™
(or, more particularly, almost inextensible in a certain direction) is examined in
some detail. Numerical values for the crack energy are obtained for several different
values of the layer width and also for a number of combinations of different aniso-
tropic materials. The results reveal that under normal loading the stability of the crack
in the layer is not greatly affected by the nature of the material in the half-spaces,
provided the layer width is approximately five times greater than the crack length.
However, if the layer width is less than three times the ‘crack length, then the effect
of the surrounding material is considerable. Also, the results show that if the layer
width is al least five times the crack length “then, even if the material contamm g
the crack is “strongly anisotropic”, the dlfference between the energies of a crack
in an infinite homogeneous material and. the- cor_respondmg crack in a layer of the
same material sandwiched between two half-spaces is generally small.

2. STATEMENT OF PROBLEM AND BASIC EQUATIONS .

Take the - Cartesian coordmates X1, Xa, x3 m a layered amsotroprc matenal
The regions X, <—h, —h<x2<h and x,># are occupied by different anisotropic
materials. In the plane %, =0 there emsts a crack in the region lel <@, —0 LX< WD
(Fig. 1), The crack is opened by equal and opposrte tractions on each. srde of the
crack. It is required to find the stress and displacement fields throughout the material.

It is assumed that the stress and displacement are indepeadent of the Cartesian
coordinate x, so that the basic equations for the displacements u, and stresses d;;
may be written m the form (see CLEMENTS- 14 ) R

@.1) S uwzngAkm(zu)
2.2) o _2@2‘15”“;(1(2“.‘

where # denotes the real part of a complex number the x, (z,) (o'—l 2, 3} are
analytic functions of the complex variable z,=x, + 1, X, and primes denote deriva-

tives with respect to the argument in question. Also, in Eq. (2.1) the Ay satlsfy the
equations

2.3) - (Cum + Ta Y] + Ta ci'.’.kl + Ty C:z:.z) Aka == 0

where the convention' of summing over a repeated Latin suffix is used and the 1,
are the roots with a pos1t1ve imaginary part of the sextic equation

(2.49)| ) lcztk1+’wuk2+7¢';2m+7 szkvl—

where the ¢;;, are the eIastrc constants Fmally, the Li j« occurring in Eq. (2.2) are
related to the A, by the equation

2.3) Lyja=(CigaF TeCrinz) At -
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In order to distinguish between the equations for the three regions xj< —#,
—h<x,<h and x,>h, the superscripts L and R will be used to denote the regions
x> and. x;< —h, respectively. Thus. the basic-equatio_ns.for,-x2.>hr are:

uk~2@2 Aka X (ZL)a '2%2 Lijaxat (ZL)

with the same expressions With'the Supefscnpt L replaced by Rfor the region x, < —h,

3. SOLUTION OF THE PROBLEM

In order to satisfy the boundary conditions on the crack and the continuity
conditions at the material -interfaces, it is- convenient to choosé representations for
the displacement and stress as follows. :

In the region x,>#k we substitute

(31 s xf:(za)*gg f D5 (p) exp (ipz,) dp
[H
into Eqgs. (2.1) and (2.2} to obtain
‘L | 1 T L L 7-
32) up=—at [ 3 ALDEp) explipz)do,
o] o
(3.3) ;— f Z L”, DL(P)IPGXP(’PZa)dPr

where the functions D"(p) ‘will be- détermined by the continuity conditions on
Xa=h. Slmllarly, in x2< —h the expresswns for the dlsplacement and stress are

G4 uf ~<% f E AL DR (Dexp(—ipz)dp,
G35 —wefz f Z LU.,D;*(p):;vexp(——z;pza)dE,~

where the D¥(p) will be _determmed by the continuity conditions on x,=.—A.
For —h<x,<h we consider the regions —h<x,<0 and 0<x,<h separately.
Guided by the analys1s in [I] we obtam the foIlowmg expresswns for the chspIace-
ment and stress-in these two regions. . P e
In O0<x, < IR

(3.6) ﬁ;——ge f Z‘ AP+ Moy (P G+ o) exp ()

1
(3~7) Oy z?‘%IZLUa {[Ea (P) + Mai Wy (P)] CcXp (ipzar)'"Fu (P) €Xp ('“ iPZa)} ip dp .
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In —h<x,<0: _

08 w=—a f 'Z}f,;;{ﬂa’(é) exp (p22)+ Ml () B0 30 (= 020}
0 i R . . . .

(3.9 q_;jé%@ fw Z Lija{;éo_,_(p)exp(;‘p_z,,_)fIMa;lFic(g.)_..J‘q,Fm(p)}_ezp(_—r?za_)}.ip dp ,
J , :

where the M,; are d::ﬁned by

(3 10) . 2 L:Za Mu.i J *

In Eqs (3. 6) (3. 9) the E (p) and F (p) wxll be dctermmed by the contmulty COIldl-
tions on x, = & while the y,; (p} will be determmed by the contmuxty and boundary
conditions on x,=0. S 2 -

It is apparent from Egs. (3.7) and (3. 9) that the stress is contmuous across
x,=0. The difference in the displacement across the plane x,=0 is, from Eqgs. (3.6)
and (3.8),

l - ©0 honli: - Lot
(3.11) Ay =— R (B~ By;) f w,-(p).exp(fpx,)dp,
where '
(3.12) ZA,W .

Now Au, must be zero outsuie the crack and this condition together with the stress
boundary conditions on the. crack face yield, using. Egs. (3.11),: 3. 7) and (3.10),

(3.13) : @(Bh Bkj)fy/,(p)exp(szl)dp 'for lx[|>a,. “

1
(3.14) —%
i

s

[% »+ 2 (L (p)+LmF (p)}] ipesp () dp= P15

for |x,|<a
where the P;(x,) are the given sutface tractions.

-The displacements u; and stresses J;, must beé continuous across %,=4:h. From
Eqs (3 2-(3. 10) 1t follows that thls requlrcment w;ll be satlsﬁed i

(3 ]5) | Z [Liza{E (P)+M«Jw.r(p)}cxp(lptmh)'i'LJZaF (p)exp(iptah)]— |

a

= Z L5, DE(pexp (zpr RE

316 [Lone (P exp(— rpramum{f* (p)+M,,,%@)} exp (~ipta ] =

=

= 2 LmDR(p) exp (i B),
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G173 {0+ M, PO} R+ A (2)exp it =

= 2 A Dy (p) CXP(IPTL h)

G183 uEDexp(=ipt ) + A (Fu(D)+ Moy, (D} exp (= ip )=
- = 3 @) exp ot .
It is now convement to put

(3.19) DL(p) ME exp( fpth)¢J(p), N
@20) 7 DRp=MEexp(ptho,(p),

where the g; and @; are to be determined and

(3.21) Z L, MY =0,
(¢2) ZL{‘MMR =3,

Use of Egs. (3.190(3.22) in Egs. (3.15)=(3.18) gives rise to the equations

(3.23) NE+RF=—-NM¥+ &,
(3.24) o RE+NF=-NM¥+8,
@25 UE+Vi-—UMW+B®,
(320  VE+UF=-UM¥+B'Q,
where

N= (Lisekp(ptsh],  R=[Liexp(~ ipreh),
Us[dexp(ipt. M), Vi=[4i,exp (=~ l.prah)],
®=lp), Q=lo), ¥T=lyl,

- E=[El, F=[F], M=[M,; -

p=| X ), == 3 4 )
Elimination of ® and £ from Eqgs. (3.23)-(3.26) yields

(3 27) [N (BL) 1U}E+[R (BL) IV]F f— NM+(B") 1UM]‘1’
628  Re@9 VIE+[N—(BY O] F=[-NM-+ B9~ OMIE.
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Elimination of F.now yields o

(3.29) _ . E=Q¥,

where. & ‘

(330) Q={[R—(BY V]~ [N~(B") ' U]-[N-(B) ' U] [R~ (B") VIETX

X{[R (BY~ 1V]“l[ NM+(BL) 1UM]+M}

.Snmlar expressmns for F, ® and £ (in terms of '¥) may now be obtained by back

substitution into Egs. (3.27), (3.23) and (3.24). T
For simplicity we now restrict our attention to the case when the materlal in

x< —h is the same as the material in x, >/ so that B®=BR. Also, if we require the

applied tractions P; (x;) to be even functlons of xl, then it is sufficient to take the

functions y; (p) in the form

(330 vip)=1 [ 7, OJo(pr)dt,

where the r; (¢) are real functions to be determined and J, is the Besse!l function of
order zero. Tt is apparent that this choice of the w; (p) automatically satisfies the
condition (3.13). Also, Egs. (3.27) and (3.28) may now be readily used to show that

(3-32) : TR : E=-F

Use of Egs. (3.31) and (3.32) in Eq. (3.14) yields -

(3.33) fcos (pxl)pdpf.rj(t)Jo (pt)dt+fTJk(p)cos(pxl)pdpf fk(t)Jo(pt)dt_

o =nP;(x;) for 0<x1<a,
where T, (p) is the real matrix defined by o

(3:34) Ta(p)= D LineQu o)+ D] LpnaBu(p)

with the matrix [Q,] given by Eq.. (3.30). Proceeding as in [1] we may reduce Eq.
(3.33) to the form '

. t '
s (u)du
(3.35) rj(:)+zf1gk(s, 1) (s)ds = 2:f»»———~(t2 (u)z)m. for  O<t<a,

where
Ky (s, I)-_“f Tu (P o (ps)To(pt)pdp ... .~

Equations (3 35) constitute three sxmultaneous Fredholm mtegral equatlons for the
r(@,j=1,23. B o -
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4. 'THE CRACK ENERGY
The energy of the crack is given by the integral
: I
@ U= f P Gx) dudy

Where the mcrement in relatwe dlsplacement Au, between the two smles of the crack
iIs given by Eq (3.20). Using Egs. (3. 40), (3.20) in Eq. (4.1) it follows that

42  Adu=in=t (BB f cos (pr) dp f 1O (o) di=

= in=1(By—Byy) f (e ds f Jo'(p.f)cos@xl):d? -

r(t) dt '
“1(By;— Bru)fm for O<x;<a.

Hence Eq. (4.1) ylelds

5. NUMERICAL RESULTS

In the case of a constant applied normal tl"lCthI’l P, and zero shear tractions
(P, =P;=0), Eq. (3.47) yields

1 . .
(5.1) [a=1 Py ri(at) I+t f K, 1) la~t Py r (as))ds' =nt' 6,5,
Soenn . Sl Sk . Lo .

where t=at’, s=a§_’,p_:p’/a and

Gy Jk(s )= f 7o S (o' 20 (' 0" '

Also, in. ﬂus case Eq (4 3) reduces 1o
1. . 1 _ .
63 -U:?i_(sz—EZJ)Pﬁ a? j [a= P71ty (at)]dt"

- In the remainder of this-section the behaviour: of Eq. (5.3) for various combma«
tions of particular anisotropic .materials . is examined: :

-In the following 'we shall consider anisotropic materials which are transverse]y
‘isotropic. Such materials may be: characterized by five elastic constants which we
will denote by 4, N, F, C and L. If the x;-axis is normal to the transverse plane,

Rozprawy Iniynierskie — 12
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then the non-zero ¢ it are given in terms of the constant 4, N, F, C and L by the
relations
Cr111=Ca22=A  C€1122=N; €3133=Ca23a=F,

C1331="C2332=1L, _01212=‘1/2 (A—N), e333:=C.

The general orientation of the Cartesian axes within the material may be conveniently
described in terms of two angles « and 0 as follows. Suppose that initiafly (that is,
when «=0=0) the x,-axis'is normal to the transverse plane so- ‘that the x;-axis
and x2~ax15 lie'in' the transverse plane The x,-axis is kept fixed and the x,-axis
and x,-axis are rotated through an angle o«. The x;-axis is then kept fixed in its
new position at angle « to the transveifse--plane and the x,-axis and xz-axis are rofated
through an angle @. Both of these rotations are in the positive direction. Referred
to the rotated frame the elastlc constants (denoted by ¢ J“) are given by

Ciﬂu = alp am Ay Qs cpq'rs
where

coso: .0 C—sing
[A”]— schosof cosé sin 8 cos &
cosfsinee —sine cosfcosa

We consider a composite _Jhade up of transversely isotropic materials. For: one
of the materials (referred to subsequently as material I) we use the constants 4=
=596, N=2.57, F=2.14, C=6.14 and L=1.64 while for the second material (ma-~
terial IT) we use the constants 4=16.2, N=9.2, F=6.9, C=18.1 and L=4.67. If each
of these numerical values is multiplied by 10'*, then the units for the constants are
dynes/cm?. These are the values of the elastic constants for crystals of magnesium
and titanium, respectively, although they are chosen here merely for. illustrative
purposes,

Using Eqgs. (5.1)-(. 3) the variation in UJU, (where U, denotes the energy of
the correspondmg crack in an infinite homogeneous material with the same constants
as the material in —h<x,<#) was calculated for «=0, #=7/2 (so that the crack
lies in the transverse plane) and various values of hja. The results obtained ate
shown in Table I. Case I in the table refers to a eomposite with material 1 in the

‘Table 1. Variation of crack energy with layer width for o= 0 and 0“73,"2

hla P T R R T Y
UjU, (Case 1y 0.74 | 0.89 | 0.94 | 0.96 | 0.98 | 0.99 | 1.00
UfUp (Case II} 138 | 113 [~1.06 | 203 |°1:02 | 1.01 | 1.00

region —h<x,<h and material II in the regions x, <-—# and x,> k. Case II refers
to a composite with material II in the region —h<x,<#h and material I in the
regions x, < —# and x,>A4. The results in Table 1 show that, provided #/a is greater
than five, the crack erergy in the composite is practically the same as the energy of
the corresponding crack in an infinite homogeneous material..
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If hfa is less than three, then the difference between the materials in the haif-
-spaces and the layer begins to influence apprcmably the energy -of the crack. When
the material in the half-spaces is sironger than the material in the laycr (Case I)
then the energy of the crack in the composite decreases as hia becomes. small Hence,
according to the GRIFF[TH 3] theory of fracturo the crack becomes more stable
as hla becomes small since less, energy. is. avallable for the formation of the new.
surface which is mherent in_any crack extensmn Converseiy, if the matena] in
the half-spaces is weaker than the matenal in the layer (Case II), then the energy.
of the crack increases as hla becomes small so. that the crack becomes less stable.

Similar. results. to those shown in Table 1 were obtamed for the angles a.= z/6,
f=n/4 and m—n/3 0= 7:/4 Hence it is reasouable to predlct that this pattern would
be repeated for all combmat:ons of o and 6. .

It is-of interest to examine the case when the layer is. strongly amsotroplc since
this ‘case will be relevant to certain types of remforced materials. In partlcular it
is of interest to consider a layer of material which is almost inextensible in a partic-
ular direction. Hence we suppose that the layer —#h<x, </ consists of a material
with the same values of 4, N, ¥ and L as for material I but with a larger value of C.
As C becomes large, the 1nextenszb:hty of the material in a direction normal to
the transverse plano increases. The varlatlon of U/U, with C for a ]ayer of such
a material sandwiched between two half-spaces of material I is shown in Tables 2,

3 and 4 Also, the variation of U/U, (where U, is the value of the energy .of the

Table 2, Variation of crack energy with C for o=0, #=7/2 and hfa=5

c 10 | 20 | 30 | 40 | 50 | 60 | 70 | 8 | 90 | 100
U,’Uo 097 | 098 | 099 100 | 1.01 | 1.03 | 104 106 | 1.07 | L0O9
U/Ul' 0.72 | 0.49 039 ] 034 | 031 ] 028 | 026 | 0.25 | 024 | 0.23
’ Table 3. Variation of crack ene.rgy _with' C for oc#n,fﬁ, G=nf4 énd”h,'a_=5' )
C 10 20 30 40 50 60 70 80 90 100
U/U i 098 | 098 | 098 | 099 |1 099 | 099 | 099 | 099 | 0.9% ! 0.99
Ufu,| 094 | 0.86 | 0.82 | 0,807 0787 | 0.77 | 0.76 | 0.75 | 0.75 | 0.74

Table 4. Variation'

of crack energy with C for &—n/3, O=m/4 and hja=5

20,

. 50

60

¢ |10 13 | a0 | : ) |80 | 90 | 100
Ul | 098 | 099 | 099 | 099 [ 099 | 099} 1.00 | 1,00 | 1.00 | 1.00 |
U, | 088 | 0.74 | 0.69 | 0.65 | 0.63 | 0.61 | 0.60 | 0.59 | 059 | 058 |

corresponding crack in an infinite region conta.mmg the homogeneous material 1
with =0 and #===/2) is shown in these three tables. It should be noted that the
angles above each table refer only to the material in the region —~h<x,<h. For
the materials in x, < —h and x,> A the values of the angles were taken to be =0
and §=n/2,
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‘For the range of values of C considered it is clear from the numerical results
that there is little difference between the energies of the crack in the composite and
the corresponding crack in an infinite homogeneous material with the same constants
as the material in —h<x, <h. Thus, the stability of a crack in an almost inextensible
layer of a composite would seem to be almost identical to the stability of the corres-
ponding crack in an infinite material with the same constants as those of the layet.
This observation is, of course, dependent on the crack being sufficiently removed
from the material interfaces ‘of the composite. If the crack is close to an interface
between the layer and the surrounding weaker material, then the results in Table 1
indicate that the crack would be less stable than the corresponding crack in an
infinite ‘material with the same constants as those of the layer. '

The values of U/U, in Tables 2, 3 and 4 show that an increase in C causes
a decrease in the crack energy, This decrease in energy is’ most marked when the
crack in the transverse plane (so that =0 and 0= 7:/2) : o
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STR:_;SZ(;ZE&IE
' SZCZELINA W ANIZOTROPOWYM MATERTALE WARSTWOWYM
Rozpatrzono zagadnienie okreélenja. pola naprezen i brzemieszczeﬁ' wokol szczeliny .‘w" anizo-
tropowym materiale warstwowym. Zagadnienie sprowadzono do ukladu trzech réwnan catkowych

Fredholma, kiére dla pewnych przypadkow rozwigzano numerycznie. Szczegélnq uwage poSwigco-
no przypadkowl materialu «silnie anizotropowego».
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