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MIXED FINITE ELEMENT SOLUTION OF QUASL-STATIC PROBLEMS
" OF VISCOPLASTIC PLATES ()

-
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The paper is concerned with the numcucal analysis of rigid, viscoplastic and elastic viscoplastic
plates subjected to static loading. The small deflection theory of thin plates is employed. The con-
stitutive equations of viscoplasticity are takéli’'in the form proposed by Perzyna. A numerical solu-
tion scheme is formulated by using the mixed element method in which the nodal values of bend-
ing moments and of deflection are the unknown discrete parameters to be determined. Both the
triangular elements presented by Hellan and Herrmann and the rectangular element proposed by
Biicklund have been used. Two methads have been considered for solving the resalting system of
ordinary first-order differential equations with noninear coefficients. Sample problems which
have been solved include simplysupported circular plates subjected to uniform load and to concen-
trated load at the the center and simply-supported reciangular plate under uniform load. The vis-
coplastic algorithm has also been used for the defermination of Limit loads of civeular and rectan-
gular rigid plastic plates,

1. INTRODUCTION

In certain loading and theimal conditions the time dependent properties of
structural materials have a practical significance in the design procedure. The strain
rate sensitivity of the material is important in impact or impulsive loading and, in
quasi-static loading, creep can be dominant at normal or elevated temperatures,
depending on the material considered.

The viscoplastic constitutive model, introduced by BmngHaM [1] and HouE-
NEMSER and PRAGER [2] and developed later by Perzyna [3], is capable of taking
into account the time dependent behaviour of materials. Some problems of rigid
viscoplastic plates based on Perzyna’s model were soived by AppLEBY and PRAGER
[4] and by WierzBICK1 [S]. Afterwards, several studies on viscoplastic plates in-
cluding also dynamic effects were published; here only [6] and [7] are mentioned.
Perzyna’s viscoplastic model has been widely applied, particularly in numerical
computations with- the finite element method, e.g. [8-11].

In this paper a numerical solution for rigid viscoplastic and elastic viscoplastic
plates is presented. The mixed formulation of the finite element method is nsed in
the application to the small deflection theory of thin plates. The mixed method for
elastic plates was introduced by HERRMANN [12] and HELLAN [13]. Hellan extended

(*) Presented at the 20th Polish Solid Mechanics Conference, September 1978,
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his solution also to stationary and {ransient creep analyses of plates using Norton’s
creep model [14, 15]. BackLunp applied the mixed formulation to the solution
of elastic plastic plates [16, 17]. Here the finite elements developed by Herrmann,
Hellan, and Backlund are made use of in the analysis of viscoplastic plates. The
resulting system of first-order differential equations with nonlinear co=flicients has
been solved by using two methods, the Euler forward integration and a secant
flexibility method. The numerical stability of both methods has been-studied exper-
imentally. Some problems of rigid viscoplastic and elastic viscoplastic plates have
been solved and the results have been compared with those obtained by previous
investigators. The viscoplastic aigorithm has also been used for the determination
of the limit loads of rigid plastic plates. '

2. CONSTITUTIVE EQUATIONS

The constitutive equations of an elastic viscoplastic solid, proposed by PERZYNA
'[3], are presented in the following form:
§ =447,
¢ =D"1¢d,
2.1) oF
=y <® (F)>5—s

where D is the elasticity matrix, y the fluidity coefficient, and F the yield function
in static vielding. The function & is chosen to meet the actual material properties.
The symbol <@ > is defined as follows:

' 0 if @<0,

(2.2)_ | ‘ | <‘D>={¢ i @0,
The actual yield function used in this study is the Huber-Mises yield function .
2.3) . F=YJ,/k—1,

where J,=s,; 5,,/2 denotes the second invariant of the stress deviator and k is the
yield stress in simple shear. For @ the power function
(2.4) ’ @ (F)=sign F|F"
‘
is used. ' '

-Assuming the state of plane stress, as is customary in the treatment of plates
the stress and strain veetors and the elasticity matrix are ’ ‘

o={0, 0, T s

2.5)
( . ee=(8y & yxy)T:
v O
! ' E vl 0O
2. =
(2.6) D fp— e
00

2
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The rate of viscoplastic strain is

@.7) =

P ]/—<GD(F)>P00',
where
2—1.0
(2.8) Po={ -1 2 0].
0 0 6

According to Eq. (2.1) the stress rate can Vbe expressed in the form
=D (§—&7).
The rate of moment is defined by inte_ération throvgh the plate thickness -
M= f&zdz: f D (¢ —&"")zdz= f Dz* dzrc— f Déer zdz

assuming that the Kirchhoff hypothesis 8= hoids for the piate The solutlon for
% yields :

2.9) it=CM +x*»,
where |
1 —v 0
(2.10) ‘ C_Ji_ ~ 1 o |,
B o 0 20+
- v i [ oy y <@ (F)>
2.11) K ”—Cng Pzdz:Pof o ]/Jz ozdz .

For the spe01a1 case of a rigid VlSCOplaSUC plate obeying the Huber-Mises yield
condition -

F:]/afl—au T2t J§2+30f2/]/§- 1=0

and @ according fo Eq. (2.4), the following constitutive equation can be derived:

B (M,/ My~ :
(2.12) PP = ( f;é oD Py M, when My>M,,
ell

wheie
B=(y/}/3kh) [(2m++ 1)/2m]", .
Moye=V M2~ M, M,+M>+3M?,,
M= ]/3kh2/4 s

SUD (2P f0p ~o\T _f 0 wP__ 8 0P 0y VAT
RV =R Ry R = (= W, )0 — W 00— Qi 10)T,

(2.13)
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3. HrrLINGER-REISSNER PRINCIPLE

The Hellinger-Reissner functional for elastic plates was presented by HERRMANN
[12]in a form suitable for mixed finite element formulation

_
(3.1) nR=ff[HEMT CM 4 (AM)T Vw—pw] dxdy= [ My w,, ds—
A ' 5

— fV,,wdS— fM,, W, ds,
where ’ ;

i Mﬂ(Mx_MyKMxy)T:
8 0‘3
ox _6y-
a @ .
0)__ - —
(3.2) _ 7 - ay dx 3. N

_ V= (‘5_\.— “5; s
ow
KJ

>

W =

M,, M, are the internal bending and twisting moments at the boundary. #,, V.,
W, W, are the prescribed external forces and displacements on the paris S, and §,
of the boundary, respectively. In the expression (3.1) thé bending moment and-
the deflection satisfy the bounda.ry conditions M,=M, on S, and w=w on S,
The stationary condition of zg is '

(3.3)  Jdng= f f1- OMT re+( 40 M) Y-+ (AM)T Vow—pdw) dx dy+

_f ((SM,,S w S+.M,,s ow ) ds— f v, dw ds- r M, W, ds=
5u
where '

(3.4) re=(re, ey 105,) N =( '-—w =W, 2W )T

equals xk==CM for elastic plates. The condition (3.3) provides the equation for
finding the solution of the plate problem. The stationary condition holds also in
rate form where the quantities are replaced by their respective rates: WeWw, KOK,
MM, ctc.

4. THD MIXED FINITE ELEMENT FORMULATION

In the mixed method the deflection and. the moments are approximated by poely-
nomials inside, the elements '

(4.1) . w=Ng, M=Lr.
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N and L are matrices of the shape functions, and ¢ and r vectors of nodal deflections
and moments, respectively. The values of internal moments on element bounclarles
or on the bo"nda.ry of the plate can be presented in the form

(4 2) ’ ' ‘. MI_L v, Mrrs“Lns Fs

where I, and L, depend on the orientation of the boundary and on the shape func-
tions. Inserting the expressions (4.1), (4.2) and (2.9) into the condition (3.3) in rate
form, the following system of first-order differential equations results:

o e

where
H=— ffLT CL dx dy,
A

G= fA f (AL)* (VN) dx dy — Sf LT N s,

(4.4) Be fL: ];_)," ds,
3

szfNTﬁdxdy-l— fNT Vods.
A Sq

The quantity[ Rvr

P

(4.5) ko= | [ L7 dx dy

is interpreted as the rate of a pseudo-load. The system of equations (4.3), including
all elements of the plate, provides the solution of the plate problem.

The elements which were used in computations are the triangular element (Fig.
ta) by HeLLAN [13] and HERRMANN [12] and the rectangular element (Fig. 1b)
by Backlund [17]. In the Hellan-Herrmann element ‘the state of stress is uniform
and the moment parameters are the values of bending moment M,, M,, M, on the
sides of the triangle. The deflection is a linear function of position with nodal vatues
as parameters. In the Backlund element the bending moment M, varies linearly
with respect to x but does hot depend on p, and the bending moment M, lmearly
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Fr. 1. a) Triangular element by Heiflan and Herrmapn, b) Rectangular. eléement by Backlund.
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with respect to y but does not depend on x. The shape functions for the twisting w
moment contain the term xy in addition to the linear terms. The nodal values
M., ..., M, are the parameters. The deflection is approximatéd in the same way
as the twisting moment. For defails the reference is made to the papers mentioned

above.
5. SOLUTION METHODS

For elastic viscoplastic plates the plate is divided into layers through thickness,
and the state of stress is evaluated at the middle surface of each layer. Division to
10 layers was used in the computation of numerical examples. Division is not needed
for rigid viscoplastic plates.

5.1. Euler procedure

The Buler procedure for the solution is as follows:
3] Assume that the solution w, M, ¢ is known at time #.
2) BEvaluate Ae"?=¢" At in each layer using Eq. @ 7).
" 3) Evaluate Ax*® and AR™ using Eq. (2.11) and (4.5), respectively.
4) Evaluate AR=RAt and AQ=04t.
'5) Solve Ar and Aq from Eq. (4.3).
6) Bvaluate Aw=NAq and AM=LAr. :
7) Bvalvate Ak=CAM + Ax", Ae=z4x, A= As — Ae'?, Aa=DAs".
8) Evaluate the solution at time 7+ Atow+Adw, M+ AM, 6+ do.
9) Goto2). - - .
“ In the case of rigid viscoplastic plate the steps 2) and 7) are dropped and Ax"”
in step 3) is computed using Bq. (2.12).

5.2, Secant flexibility method

Assume that for an clastic viscoplastic plate the -relationship between curvature
. and moment vectors can be expressed in the form '

51y " k=CM-+PM, I

where PM represents the viscoplastic part of the curvature and P is a matrix depen-
ding on the current configuration. The variational principle (3.3) then results in the
system of equations

- TH, G1{¢] IR
5.2 d =
= & o] lo-lol
" where H, is a secant flexibility matrix

(5.3) . H=H+H"T
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with H, according to Eq. (4.4),, and

(5.4) Her=— [ {17 PLax dy.
A '

The way of constructing the relationship k" =PM is sontewhat artificial. The formula
(2.11) can be written in the form

(5.5) e
where _

: . MM, — MM, 0
(5.5) P=|—M/M, oMM, 0

0 0 6 MM,
with
y <P (F)>

Vp o= —————
Gn M= ) TR dz .
Integration with respect to time yields

' . te ‘ k k
(5.8) K2 ()= [ i demucie= D'k, At = D P M, At
0 i=1 t=1

The quantities P, and M; are determined at the onset of the time interval t;. The
approximation of the matrix P is found as follows:

1oni M, 0 0]
(5.9 Pty P = 0 - w3Z/M, 0
0 0 Kooond My

For rigid viscoplastic plate the relationship follows directly from the formula 2.12)
The solution of the Eq. (5.2) provides the values of w and M at time ¢,, but the
construction of the matrix P requires the use of an incremental procedure.

&

3.3. Starting procedure

In the case of an elastic viscoplastic plate the elastic solution is determined at
time =0, and the time integration is started with this initial condifion. In the case
of a rigid viscoplastic plate an elastic solution is first determined assuming certain
elastic properties. Using the solution procedure of an elastic viscoplastic plate,
a steady state of stress is sought, i.e. a state in which the moments do not change.
In fact, this is the state of plastic yield. This state is used as the initial condition at .
=0 for the time integration of a rigid viscoplastic plate.

Rozprawy Inzynierskie — 1@
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6. TIME STEP SELECTION AND NUMERICAL STABILITY

ZiNKIEWICZ and COrMEAU [8] performed numerical experiments in order to
find the largest feasible time interval in the displacement method. CorMEAU [18]
derived theoretically explicit stability criteria for certain viscoplastic flow rules. .
More recently Hugaes and TayLOR [19] have considered the stability of some
algorithms for elasto/viscoplastic finite element analysis. :

In this study the stability limit is presented in the form:

for the Buler procedure

ek Ae <<y [l

for the secant flexibility procedure

Al Az <z Tkl

where thé Nnorms are ,

| Wel=V/iE 4 RE+ RS,
el (22 + ()P + (52,

A=V KA

The norms were evaluated in the element in which max Y®l] occurred. 7; and 75 .
are experimental coeflicients of which the valves varied 7,=0.05, ..., 0.5 and ©,=
=0.05, ..., 0.3. For répid changes of stress a small value of 7, and 7, was necessary
while for nearly stationary state a larger value could be used. Since [«f| is larger
than {x?}, larger time steps could be used in the secant flexibility method. However,
the computer time spent at each time step of the secant flexibility method was about
four times as compared to the Euler method. The experimental time step Timit
cannat be considered to be satisfactory, but the subjec"c should be studied more
thoroughly. :

7. NUMERICAL EXAMPLES

7.1. Rigid viscoplastic circular plate

A tigid viscoplastic circular plate, simply supported at the edge, subjected to .
uniform step load is considered first. The bending moments and the rate of deflec-
tion are presented in Fig. 2 and compared with those obtained by Wierzbicki [5]
numerically from a nonlinear system: of differential equations: Goed agreement
between Wierzbicki’s results and the present ones can be observed. The finite element
solution was calculated using both the Euler procedure and the secant flexibility
_ method which gave identical results. ' ' '

The second example is a similar plate subjected to a concentrated load at the
center. The distributions of bending moments and rate of deflection are shown in
Fig. 3. ‘ :

In these two examples the triangular element was nsed.

-
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FIG 2. Simply supported circular plate under uniform load. a) Element dmsmn b) Bending mo-
ments, ¢) Rate of deﬂectlon

b
/M .
[Mp/My  —sc division n=4
@k, o——o diviston n=8
) l{Q—TQ

0 02 04 06 08 1orfa
T i

g 09 7E 05 oa 10 pfa

" Fic. 3. Sfmp}y supported circular plate under concentrated load. a) Element division, b Bending
moments. ¢} Rate of deflection. .

77.2.\ Rigid viscoplastic square plate

A rigid viscoplastic square plate, simply supported at the edges and subjected
to uniform step load, was analysed using both triangular and rectangular elements.
The bending moments and the rate of deflection are plotted in Fig. 4. The agreement
of bending moments is satisfactory but the rate of deflection ‘based 6n triangular
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glements exceeds that based on rectangular elements by about 257 For elastic
plates the rectangular elements give more accurate deflection than the triangular
ones, 50 there is reason to consider it more accurate for viscoplastic plates, 100.
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FIG. 4. Square plate under uniform load. a) Element divisions. b) Bending moment M, on line A-A.
¢) Bending moment M, on line 4-4. d) Twisting moment M,, on support line C-C. ¢) Raté of
) deflection on center line B-B. '

7.3. Elastic viscoplastic circular plate

The circular, simply-supported plate subjected to uniform step load was alse
analysed assuming elastic viscoplastic material. The distribution of bending mo-
ments in stationary state is presented in Fig. 5a. It can be seen that the bending
moments of elastic viscoplastic and rigid viscoplastic plates are practically identical.
The rate of deflection as function of time is plotted-in Fig. 5b. It approaches very,
rapidiy the tate of deflection of the rigid viscoplastic plate.
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The same plate was studied under uniform load decreasing as a function of
time (Fig. 6a). In Fig. 6b we can sec the bending moments at the instant of zero load.
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FiG, 5. Elastic viscoplastic circular plate under uniform, Io_ad.' a) Bending moments n stationary state
b) Rate of deflection
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Fig. 6. ElﬂSth viscoplastic circular plate under uniform time dependent load. a) Load Inten31ty
- as function of time b) Bendmg moments at instant yr=0.8 -

7.4. Limit loads of rfgrd plastic plates

An ﬁstlmate of the limit load of a rigid plastic plate can be determined consid-
ering the plate as viscoplastic. The limit Ioad is the largest load under which the
viscoplastic plate has a zero tate of deflection.. The estimate of the limit load was
calculated in the following steps:

I} The plate is first solved as elastic under arbitrary prithary Ioad do.

2) The smallest value of the ratio v==M,/M,; is sought. The primary 161d is
multiplied by a factor which slightly exceeds v and the corresponding elastic solution
is determined, o
* 3) The viscoplastic solution of the plate subjected to the above load is determined.
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4) I the rate of deflection is smaller than a prescribed small value, an increment
of load is added and a new cycle of computation is performed. If the rate of de-
flection exceeds the prescribed value, the limit load has been exceeded and the
compntation is terminated. ' :

‘The load increment was 2%, of the load vgo. The Huber-Mises yield condition
was employed. Simply-supported circular, square and rectangular plates were ana-
lysed using triangular elements. The element div_is‘iéns are shown in Fig. 7.

b c

bl

; af?

YNNI A

! a2

it . p

. Ja/4 747“30/4 i

Fig, 7. Limit loads of rigid plastic plates. Element di_visions "

The limit load found for a circular plate was 6.59 M,/a?. According to SAWCZUK
and JAEGER [20] the limit load is 6.52 M,/a® for the Huber-Mises yield condition.
The vield line theory with the square yield condition gives 6 Moy/a®.

For a square plate the value 24.5 M,/a® for limit load was obtained. BACKLUND
[17] found a lower bound 24.9 M,/a® and an wpper bound 25.1 My/a?. The yield
line theory gives the value 24 M,/a”. :

/V_G b

Fic. 8. Spread of piastic zones of square plate. a) Just before collapse, b) At collapse

For a rectangular plate with a span ratio bja= 3/2 the the value or limit load
was 17.5 M,/a®, while the vield lines theory gives 17.0 My/a*. '

In Fig. 8 the patterns of plastic yield just before and after the collapse are shown
for a square plate. '

8. DISCUSSION

The computed examples indicate that rigid or elastic viscoplastic circular plates
can be analysed with fair accuracy using the mixed finite element method with
a triangular Hellan-Terrmann element.

For reciangular plates, differences have been noticed between triangular and
rectangular elements, in particular in the rate of deflection. Comparison with elastic
plates suggests that the rectangular element is more accurate.
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An experimental stability criterion can be used in the time integration, but it

by Cormeau [I8] could be possible and preferred.

The limit Joads of rigid plastic plates can be satisfactorily determined using the

viscoplastic method.
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STRESZCZENIE

ROZWIAZANIA QUASI-STATYCZNYCH ZAGADNIEN PLYT LEPKOSPREZYSTYCH
ZA POMOCA MIESZANYCH ELEMENTOW SKONCZONYCH

W pracy zajeto sig analizg numeryczna plyt sztywno-plastycznych, sprezystych i sprezysto-lep-
koplastycznych poddanych obcinzenion statycznyml Zastosowano icorie malych ugieé plyt cien-
kich. Konstyiutywne rownania lepkosprezysiosci przyjgto w postaci zaproponowanej przez Perzyng.
Schemat obliczeniowy oparte na metodzie ‘mieszanych elementéw skoticzonych, w ktorych dys-
kretny uklad niewiadomych stanowia wartodci momentéw Zginajacych 1 ugiet w punktach wezlo-
wych. Zastosowano zaréwno elementy trojkatne Zaproponowane przez Hellana i Herrmanna jak
i elementy prostokatne Bicklunda. Zastosowano rowniez dwie metody rozwigzania otrzymanych
roéwnaf rozniczkowych zwyczajnych pierwszego rzedu o nieliniowych wspolezynnikach. Spodrod
rozwiazauych przykiadéw wymieni¢ mozna swebodnie podparte plyty kolowe pod dzialaniem ob-
cigzenia réwnomiernego oraz sily skupionej dziatajacej w frodku a takze réwnomiernie obcigzong
plyte prostokatng. Zastosowano rowniez algorstm lepkosprezysty do wyznaczenia obciazef gra-
nicznyeh sztywno-plastyczaych piyt kolowych i prostokatnych. '

PeswwmMe

PEIMEHILA KBA3PICTATI/I‘IECKHX lBAJIALI BAKOVIIPYTHUX AT
ITPH TIOMOITA CMETIAHHBIX KOHEYHBIX 3NEMEHTOB

. B paboTte 3aEAMAIOTCH YACICHHLM AHARNIOM HECTRO-IVEACTHYECKHX, BASKOYIPYIAX ¥ YHPYIO-
“BHSKOTNACTHIECKHX [OHT TOEBEPrHEYILIX CTATHICCKHM HATPY3KAM. TIpuMeHEeHA TEODHS MAIBIX
nporEGoB TOHKAX VAT, Onpeierptronue ypauheHes BALOYNPYrOCTH IPHHATEL B BR/S HPEHIO-
scenmiom TT, Texmaa, PacderHas cxeMa OIMPASTCH Ha MCETOA CMATIATHEIX KOHEYHBIX JJIEMEHTOR,
B ROTOPOM JHCKPETEYE) CHCTEMY HOM3IBECTHBIX COCTZBINIIOT 3EANSHNA H3THOHEIX MOMEHTOB # IPO-
THGOR B YAHOBEIX TOHYKAX, TTPHMEHCHS! TAK TPEYTONLHBIC HICMEHTLL npenoReEREe XeaIaHoM
‘i XeppMaHoM, Ealk TpAMOYrONBHEE NIeMEeRTE BeknyHna. ITpaMenens] TOXe JBA METOIA PETICHES

- HOMYYeHALX OOLIKHOBEHHEIX maddepe M aTbHbIx ypaBHEHAH iepBOTO NMOPHAIKA ¢ HeNRHCHHBIMA
xo3ddmumerrramu. Cpefi PelNeHERX HPHMEPOB MOKHO yEa3Th CBOGOAHG IOFIPEeTEe KPYTOBLIE
MUMTH 0T ZelCTRIeM paBiOMepPROH HATPYSKE H COCPEIOTOUCHHRONH CHITH HefcTayioilell B MEHTPE,
a Taxie PABHOMEPHO HATPYXOHHAYIO LPAMOYIOJIBHYIO mmty. IIpEMeHer TOXE BAIKOYIPYIHH
ANTOPHTM IS OIPETEISHIs DpeAeNLHBIX HATPY30K JKCCTKO-TIACTHICCRAX KPYTOBRIX H HPiAMO-
YrONBMEIX IDTHET,
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