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VIBRATION AND BENDING OF A CRACKED PLATE

B.D. AGGARWALA and P.D, ARIEL (CALGARY)

The vibration and bending of a square plate with four cracks emanating from the centre of
the plate or the midpoints of the edges is considered. Dual series equations which result from the
mixed boundary conditions along the lines of the cracks are derived. By isolating the singular part
of the solution, the problem is reduced to a Fredholm integral equation which is solved nutneri

. cally. For the vibrating plate the frequencies of the first two symmetric modes are obtained and
the displacement and the strain epergy are determined for the case of bending of the plate. Also
in both cases, siress intensity factors are ca]culated

NOMENCLATURE

a length of side of the p]ate

A, Bn constants occurring in the solution of Egs. (1 3) and (1.29
crack-length,

¢ 12a—c,

D ERI2(1—v2),

E Young's Modulus,

Ey

H,

constants defined by Egs. (1.9} and (2.6),
m - Constants occurring in the integral equations,
S computed frequency,
Ju true value of the frequency, :
JiJ2, ... appropriate constanis given by Eqi (1.36),
" By, Gy, Hyy, Ry, defined by Eqs. (1.29) and (2.17),
I plate thickness,
h(p) defined by Egs. (2.12) and (2.21),
K{p,r» Kernel of integral equations,
(u/D)'2,
M,, M, edge moment,
P gat/Dn*,
g load appliec to the plate in the z-direction,
R, defined by Eqs. (2.8),
¥, parameters in the interval [0, 1),
ri, r2 defined by Egs. (1.6),
U strain energy,
U, strain energy when cracks emanate from the edges
U, strain energy when cracks emanate from the centre,
Vi, ¥, transverse shear force,
w  displacement of the plate in the z-direction,
Wwo1 central deflection when cracks emanate from the edges,
wo, central deflection when cracks emanate from the centre,

F; Gy




B. D. AGGARWALA AND P. D. ARIEL

coordinates in the plane of the undisturbed plate,
coordinate in the transverse direction,
1/2 mm,

A—w)G+w),

defined by Egs. (1.11),

unknown function related to E,,
stress intensity facter,

mass per IlIllt aea, .o i
Poisson’s ratio,

frequency of vibration,

INTRODUCTION

Using the classical equations of plate theory [1], a nuniber of research workers
have analysed the bending and/or vibration of plates with internal cracks or internal
support. YANG [2] considered the bending of a finite plate with an internal support
symmetrically placed’ with respect to parallel boundaries. The author made use
of Green’s function approach to formulate the problem in terms of singular integral
equations. Related problems occur when there are cracks in the plate. A large
number of such problems have been considered by Sneppon [3].

In ordet to solve such problems, it is necessary to make the proper assumptions
regarding the nature of singularity at the crack-tip. WiLLiams [4] considered the
bending of an infinite plate contaiding a semi-infinite crack and be deduced that
there is 2 moment singularity at the crack tip which varies as the inverse square
root of the distance from the tip of the crack.

y | ‘ : vh

| '
M

X

0l ar X 0l i -
Fic, 1. Geometry of the plate with cracks "~ FrIa, 2, Geometry of the plate with cracks
: emanating from the edges. emanating from the centre.

Using Green’s function approach, the vibration of a plate was considered by
Lyrn and KumBasar {5] who obtained a. Fredholm integral equation of the first
kind. There have also been attempts at numerical solutions, a survey of which
has been made by Lr1ssa ef al. [6] who concluded that without taking into account
the appropriate singularities the solutions were poorly approximated.
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The bending of a rectangular plate with one or two cracks was investigated
by Keer and Sve [7] who obtained various physical quantities such as the strain
energy and stress intensity factor. The investigation of the vibrations of a rectan-
gular plate with one crack emanating from the edge or through the centre was
undertaken by STAHL and Kerw [8] who gave the frequencies of vibrations.

In the present problem we have considered the vibrations and bending of a rec-
tangular plate which has four symmetrical cracks parallel to edges either emanating
from the edges or from the centre, cf. Figs. 1 and 2. It has been shown that the
solution is reduced to solving a pair of dual series equations which in turn leads
to a Fredholm integral equation of the second kind. The solution of this integral
equation is found numerically and various physmal quantities relevant to the problem
are determined.

1. VIBRATIONS OF A SQUARE PLATE

We shall follow TiMosHENKO and WoOINOWSKY—KRIEGER [1] who, using the
classical plate theory, obtained the following partial differential eauation for
Wwo (x, y, t), the free tiansverse displacement at the point (x, y) at time 7V

(1.1} ‘ V4 wo+ﬂ=0.
‘ . Do ‘
Assuming
(1.2 Wo (%, », )=w (x, y) exp (ir),
we eliminate the time dependence to obtain
(1.3) ' Véw— e w=

In the follwing we shall restrict ourselves to symmetric-symmetric vibrations
of a plate which is simply supported at the edges x=0, y==0, x=g and y=mn. Con-
sequently, in view of the boundary conditions

(I 0 Fw ot w .
-4) w={}, —6;:?___0’ x=0, x=m, w=0, —a)-)z—-—{), y=0, y=nxn
we choose
(L5  wi(x, y) (A sinh r; y+B, sinh r, y) sin mx +
m=1,3

+ 2 (4., sinh r; x4+ B, sinh r, x) sin my,

m=1,3

(Y In Egs. (1.1) and (2.1) x and y have been non—dlmensmnahsed as x=xnla, y=y'nfa where
x” and y* are the dimensional coordingte.
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where .
(1.6) r=(m kY2, = —kQ)'?,  ke=(u/D)"/%.

U 7
Equation (1.5) gives the value of w only in the region (0<x<5)u (0< y<w2~). Tn

the rest of the plate w must be calculated by symmetry,

1.1. Cracks from outside

In this section we consider a cracked plate in which there are four symmetrical
cracks along the central lines emanating from the midpoints of the edges. Let ¢
be the length of each crack. - :

The other boundary conditions to be satisfied in the present case are

0 [62w+ 5 62w]_0 B
V =D— ap? (hv)ExT_ » y=

T
2
dld*w 6‘2w v 7
V.=D—|—=—+2- v) =0, X=2 Oéy\‘-’«_?‘

ox | 0x* ’
s
( ) 0, y:'?: O<x<e;
(1.7)
. n . .
Mx_D( )‘_'0, me, O<y<e;
N ™
= <
ay P PTg eSxSy
aw 0 T n
———— E L
ax 0 KT eUs3

Using the boundary conditions (1 Ty or (1.7)2,5 or (1.7)s and (1.7); or (1.7,
we arrive at the following relations between A, and By:

i . i
ry(r2—vm®) A, cosh—i—ri 1, (r—vm?) B, cosh CRE m=0,

1 1 7
2 A, ry cosh CRe! n-+B,r, (:0331—2~~r2 n) sinmx=0, e<x<—7;

2
(18) m=1,3

id 1 1
Z [(rf ~wn?) 4, sinh K +(#2—vm?) B, sinh ERE 7:] sin mx+

m=1,3

. mn
+ [(w?—m?) A, sinh i, x+(vrs —m®) By, sinh r, x] sin T} =0, 0Ogx<c.

From the relation (1.8), we have

1
ry A cosh—z— r«m Fy B, cosh—rx

2 Em
(1.9) - z 3 = 2 2 = .
r{—vm ‘ Py Vi - 2k
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Substituting for 4,, and B, from Eqg. (1.9) in Eqs (1.8), 3, we obtain the fol-
lowing pair of dual series equations:

& 7
2 E, sin mx=0, c<x<—2—,
(L "7
Z E,mQ-+Fysinmx+r, G,sinhr, x+r, H,sinhx, x]=0, 0<x<c,
m=1,3 . .
where
I 1 T l ¥, T
F,= ~;—(vm —rl)ztanh #r—(vmz—r'j)ztallh 2 /A,,,H—l,
G 1 . s s 2 nE o MR e
QO T Ormont = ryseh i T 4,

‘ i
n,= el (v —m? (vm —rd) sech—— sin—— / A,

Ap=mk2 (3 ) (1—y).

In order to solve Eqs. (1.10), we assume
(1.12) . E,= f 1D () J, (me) dr,
4}

where the [unction @ (¢) is to be determined.
- With the choice of E, given by Eq. (1.12) it can be seen in view of the identity
(1.13) né:s.li‘(mt) sin mx=—2;(t2»—x2)‘”’~ H(t—x), x+t<m;
that Eq. (1.10), is automatically satisfizd.
Integrating Eq (1.10), with respect to x, we obtain

: (1.14)' Z E,[(1+F,)cos mxw-G,,, coshry x—H,coshr, x]=a 0O<x<c,
m=1,3
where @ is an appropriate constant,
Substituting for E, from Eq. (1.12) in Eq. (1.13) and making use of the identity

o0

i 2
{1.15) 2 Jy (m,)cosmx—*é?'“——(x — 2y~ Y2 H(x—1£)+

m=1,3
< 4y (I5) cosh sx J
f e @8, xti<m

4]

we can express Eq. (1.13) in the form of Abel’s equation

—h),

¥ B
(1.16) fﬁ%dr
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where

21¢ 1 i C
(1.17) h(x)“:? ft@ (t) §?+ Z (F,, ccs mx -~ G,, cosh ry x— H,, cosh r; x}x
[¢]

m=1,3 .
P ' , m{lj (t5) cosh sx sl }
x l(mt,-i-of . 1+e"f s | df— oy

The solution for D (¢} is
2 d
(1.18) @ ()=~ E{f]/,?zi;;z' .

Evaluating the integrals and making use of some well-known identities (GRADESH-
YN and Ryzuyk [9]), we finally arrive at the following homogeneous integral
equation: '

o1 .
'(1.19) _ 8(p)+fK(9,r)9(r)drmO, 0<p<l,
]
where

(120)  K(p, ry=2c? "{ Z [mFy Jy (mpc)+ry Gy I (7 pO) 15 Hy 1y (r2 pO)lx

m=1,3

e Sfl (CI'S‘) Ii_ (C]JS) }
xJ (mijc) - Of o ds

and

(1.21) 8 {p)=2(pd).

Stress intensity factor. By substituting for A, and B,, from Eq. (1.9) in Eq. (1.7)s,
it can be shown that the behaviour of the moment at the crack-tip (x—c+) is given by

(1.22) M,= —%D(3+v)'(1—v)9(1) (x? =P,

which shows that near the crack-tip the moment varies inversely as the square
root of the distance from the crack-tip which is consistent with the results derived
by WiLLiams [4] and StawpL and Keer [8].

One of the physical quantities of importance for workers in fracture mechan-
‘nics is the stress intensity factor. In the problem of vibration, one can define the
stress intensity factor x as follows:

e — (M)x—bc—}-

(1.23) 5 e



VFBRATION AND BENDING OF A CRACKED DPLATE 104

where s is the non-diemensional distance of a point on the central line from the
crack-tip and Wo is the central deﬂectlon With this definition we have

= 3y1/2
(1.24) x= (3 +9) (1—v) kR /Z” {(2c ) f & (1) J1 (mrc) dr},
where o
{25 5 _[r%——vmz‘t Rl rZ—vm? ry 7:] . mn
{1.25) n = —rz“*— anh 5 T tanh 2 sm—i-.

1.2, Cracks from inside

We now consider a cracked plate in which there are four symmetrical cracks
along the central lines starting from the centre of the plate,
Let

(1.26) c'=?—c.

For this case the boundary conditions (1. Th, » still hold. The other boundary con-
ditions, howevet, change to-

2w & w i b
Zw 9% w 7 i
. M,,ED(a 5y P =0, x= c’<y$?;
{(1.27)
' dw T
?y“= s ¥E Ogx<e’;
dw A :
*5:0,.‘ 'x=-2—, O<y<e’,

For the present case the dual series equations are

= 7
Z E cos mE=0, c<£€—2~;

m=1,3

(1.28) Z w | (L+E,) cos mé+r, G, sinh r, (;_ é)

m=1,3
T . _
+r, Hm sinh r, (?— é)'=0, 0<é<e,
where :
- ' : 1. , 1
(129  E =E,cosec—-mn, G =G, cosec— mn, H ==H, cosec— mr
m 2 2 " . 2
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Integrating Eq. (1.28), with respect to &, we obtain

feid)

1 1
(1.30) Z | E, {(1 +F) sip m§+G;,l [cosh?rl _n—_cosh i (7 n— é’)] +

m=1,3
i 1 1
+H, cosh-z—rz n—cosh r; —2—::—(5 =0, 0<é<e.
In order to solve Eqgs. (1.28), we assume
(1.31) -E,’,,_-:f & (1) Jo (mt) di
0

and make use of the identities

o«

: .
pX Jo(miycos mE= o (=) M H =), LHi<m

m=1,3
1.3 & o ® J, (sf) sinh &
, 1 e 212 FE— 1) - — e
2 3J0 (me) sin m& 3 (&2~ 12 H(E 1)+6f et 5

Edt<m.

Proceeding as in the preceding section we arrive at the _foILowing integral equation:
1
(1.33) - G+ f K(p,r)8()dr=0, 0<p<l,
0 -

where

1
K(p,r)=2r {27 [mFm Jo (mpe)+ 1y G, (sinh T Iy (ry pO)—

1 , 1
—¢osh—r; o (1 pc)) +r, H, (sinh—— o who (13 po)+
(1.34) 2 2

i : ® sl (crs) 1o (cps)
r "'008_1'1—2"” Vs of (1‘2 pc))]-!— Of -——T:i-?;—“dé‘ N

0 ()= (pc)(pe) -

Stress intensity factor. It can again be demonstrated that the moment near
the crack-tip varies inversely as the sguare root of the distance. The stress inten-
sity factor as defined by Eq. (1.23) can be shown to be

1 . o 1 48 .
(1.35) = “T(B-H) (I—v) k.Q/mﬁj;’a by {(253)1&! %%Jo (mrc) dr},

where b, it given by Eq. (1.25).
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Numerical results and discussion. Equations (1.19) and (1.33) cannot be solved
by a mumerical procedure. By discretizing, these equations are reduced to a system
of linear algebraic equations, The Gauss quadrature formula has been used, which,
as a rule, is more accurate than the Simpson’s quadrature formula. From these
equations the first two frequencics have been computed for dlﬂ‘erent crack-lengths
and they are presented in Table 1

Table 1. Illustrating the variation of frequency ( = k2) of vibra-
tion of a square plate with the length of the crack

2c Cracks from outside Cracks from inside
first mode |second mode| first mode !second mode

0.0 2.0 18.0 2.0 18.0
0.1 1.99992 17.996 1.9771 17.871
0.2 1.99388 17.946 1.9129 17.603
0.3 1.99448 17.773 1.8205 17421
0.4 1.98312 17,450 1.7172 17.379
0.5 1.96069 - 17.074 1.6164 17.369
0.6 1.92338 16,783 1.5281 17.277
0.7 1.86846 16.661 1.4570 17.023
0.8 179414 16.647 1.4055 16.650
0.9 1.69611 16.612 1.3578 16.395
16! 15187 16421 | 13649 16.279

The most interesting observation one can make from Table 1 is that for full
crack-length the frequéncies of vibration are different for the two cases, i.e. when
the cracks are from outside and when the cracks are from inside. The {requency
when the cracks start from inside turns out to be exactly the same as when the
problem is treated as the vibrations of a square plate of length of size 1/27x with
two adjacent sides simply supported and the other two free (WARBURTUN [10]).
‘Whereas when the cracks start from outside, the frequency appears to be higher.
The reason for this apparent discrepancy is as follows: when the cracks start from
outside, then in the limiting case when they reach the centre, on account of sym-
metry, the condition dw/dx=0 must be satisfied at the centre, which is not appli-
cable when the cracks start from the centre. This additional constraint, therefore,
pushes up the fraquency. For the verification of this number, using the point match-
Ing technique under the conmstraint 6w/6x-—~0 at the centre, frequency was com-
puted for a square plate with two adjacent edges simply supported and other two
free. The numbers turned out to be 1.6075, and 1.5695 for n=10, 15, 20, Tespectively,
where # is the number of points matched 6n each side. Assummg the error to be of
the order of 1/n, we write :

(1.36) k€= f_ﬁ)+f~+£2—+«f9— ,

The true value of frequency £, is calculated by substltuting the values of com-
puted frequencies and it was found that it was 1.5177 which is m substantial agr-
eement with that calculated in the other manner.
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In Table 2 the stress intensity factors are given for the first mode of vibration
which are calculated according to Eqs. (1.24) and (1.35). It is interesting to note
that the stress intensity factor keeps on increasing with the crack-length when the
cracks are from outside; however, when the cracks are from inside it has a maximum
value when ¢ is approximately 0.157. '

Table 2. Illustrating the variation of stress intensity
factor for first mode of vibration with the crack-

-length
2c : ‘

y Cracks frqm outside | Cracks from inside
0.1 0.02875 0.35569

0.2 0.07988 0.45794.

0.3 0.14421 0.48426

0.4 0.21572 0.44740

05 028874 0.40421

0.6 0.35696 0.34978

0.7 0.41455 [ 0.29337

0.8 0.45861 0.23507

0.9 0.49917 0.13953

2. BENDING OF A SQUARE PLATE

We consider a square plate simply suppoxted at the edges x=0, y=0, x==
and y=n, which is unstressed in its plane. A constant load q is applied in the
zdirection which produces a displacement w(x, ). The differential equation for w is

ot w Mw . P*w

oxt e dy* +. ay*
We choose w in the form

2.2) ' w=w; +Wa,

=P.

(2.1)

where w, is given by (Sziarp [11])

’3 . 1{ 1m:'c[ ) (n )+my_ (ﬂ )
2.3) wz——n-Z' e 1—-sec1—27 coshm\— ¥ -ﬁ,z-smhm 2 ¥

hm=1,3

mi T .
————sech? ——sinh my]} sin mx
4 2 :
and w, is to be dctermlned with the help of appropriate boundary conditions. It
may be temarked here that w, satisfies the following boundary conditions at the
edges: _
& w ’
w=_0, P =0, x=0, x=zn, O<y<n;

9w

2

ay

(2.4)
=0, yp=0, y==, 0O<x<7
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We now assume that in the region 0<x< n/2, 0 y<nf2, w, is given by

2.5 Wy = Z (Ap sinh ay + By, ¥ cos hmy) sin mx -

m=1,3

+ Z {4, sin fmx+ B, x cos hmx) sin my .

m==1,3

In the rest of the plate, w must be obtained by symmetry considerations.

2.1. Cracks from outside

In this section we consider the bending of a cracked plate in which there are
four symmetrical cracks along the central line starting from the edges. The length
of ecach crack is c. :

. The additional boundary conditions to be satisfied are Eqgs. (1.7).

The boundary condition (1.7), or (1.7), leads to the following relation between

A, and B,:

26) (A hl *'-IB'hl ) B osh~ E
(2.6) T4y \Ancoshgrmat—-nBysinh- ma)=-—"- cosh—-mn=E,(say)....

Making use of the other two pairs of boundary conditions and substituting for 4,
and B,, we obtain the pair of dual series equations

Com
ZE, sin mx=0, c<x€—2~;

¢ ZmE,,, {{i +F,) sin mx+G,, %{x sinh, mx)-- H,, sinh mx} =ZXR,, sinmx,
O<x<e,

where '

F,=tanh S+ yfsech? f—1,

G,=—7ysin fsech f,

H,=7yf tanh fsech #sin f,
{2.8) 4pr

Ry == G -9) [2v (1 —sech g)+(1 —v) ftanh fsech f],

1
ﬁ = "‘j" mr.

Integrating Eq. (2.7)2 with respect to x, we obtain
(2.9} ZE, {(1+F,) cos mx—mG,, x sinh mx~ H,cosh mx}="
'RH! .
=E-1— cosmxto., O<x<e,

where o is a suitable constant.
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Consistent with the desired nature of moment singularity, we choose

o (2.10) E,,,==f td (D) Jy () dt.
0

Substituting for £, in (2.9) and proceeding in a manner similar to that in Sect.
1.1, we arrive at the following integral equation:

@iy 0O+ [K@no@d=h), 0<p<l,
0
where _
(2.12y K(p, ry=2c*r {Z‘ [Fo, Jy (mpe)+meG,, Iy (mpc)+ Hy 1, l(mpc)] Jy (mre)+

> sl {spe} I; (src)
f - 14¢ :s dé’ 2 h (p)=22-Rm Jy (mPC)a
0 (ﬂ)—¢(p0)-
Physical quantities. The strain energy U is the work done by the applied load
through the plate displacement and is given by

£

1
(2.13) U=- [ qwdd.
. ' -2 4
The moment at the crack-tip has a singularity varying inversely as the square
root of the distance. The stress intensity factor x is defined by the relation
' M, =
gat s’

Substituting for M, we obtain the expression for x as

(2.14)

3+ (1—v) (e/2)2 0 (1).

(2.15) | K= 4P

2.2. Cracks from inside

We now consider the bending of a cracked plate in which there are four sym-
metrical cracks along the central lines starting from the centre. The Iength of each

crack is c.
The appropriate boundary conditions are Egs. (1.27). With the help of these
boundary conditions we obtain the dual series equations

7
Z E',,posmé;’=0, 7 O<§s~2~—,

m=1,3

411 1
(2.16) 2 {(1 +F,) cos mé+ G —= 7 [(~ n— vf) sinhm (—2— 7~ é)]

m=1,3

h-—,—d

—H, smhm(mfz 6) =XR,, cos m¢, 0<§_<c",
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where
, 1
. E,=E, cosec £y mm,
.17 | |
G, =Gy, cosec o, H, =H, cosec " T R =R, cosec T

Integrating Eq. (2.16), from 0 to & we obtain

oy

. 1 1
(2.18) 2 E, \(1+F,) sin mé —mG,, 5 msinh—-mz —

m=1,3

1 1 1 i
- (?ﬂ,’—“f) sinh m (7%—5)]—}1; {cosh 5 mn—cosh m (?n—é)}} =

=5 = .
- sinmé, 0<é<c
As in case II, we choose
(2.19) Ey=[ @) Jo (mr)
4] .
which givés the right type of singularity at the crack-tip.

Substituting for E, in Eq. (2.18) and proceeding along standard lines, we obtain
the following integral equations:

(2.20) 0(0)+ [ Kp,1) 0 (rydr=h{(p), O<p<l1,
where

K(p, r)=2c*r (Zm {8, Jo (mpe)+ G, [B (cosh I, (mpe)—sinh BLo(mpc))+

+sinh f (I (mpc)+mpe I, (mpc))~cosh (Lo (ntpc)+iﬁpc (2/m

@.21) L+ L 1{mpe))1-+H,, [sinh B I, (mpc)~cosh Lo (mpe)]} Jo (mrc) +
+f°° sI, (spc) Iy (sre) ),
P 14-¢™

h{(p)=22 Ry Jo (mpc), 0 (p)= (pc)f(pc). ’

Physical quantities. Fhe strain energy and the stress intensity factor—two quan-
tities of importance—are given by Egs. (2.13) and (2.11), respectively.

Numerical results and discussion. It is not possible to solve Eqs. (2.13) and (2.20)
by theoretical methods. Therefore, 6 () has been computed numerically by dis-
cretizing the integrals using the Gauss quadrature formula. FE, and w were then

Rezprawy InZynierskie — 10
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FiG. 3, Variation of @ with x/z along the Fig. 4. Variation of @ with x/nx along the
line y=n/2 with s(=2c/r) when the cracks line y==/2 with s(=2¢/r) when the craks
are from the edges. are from the centre.

Table 3. Hlusirating the variation of strain energy and the central deflection with the crack-iength

when P =1

2ec

— 0.0 0.2 0.4 0.6 0.8 1.0

b
®°y 0.39571 0.39612 0.40208 0.42759 0.50207 0.83373
w’y 0.39571 0.44578 0.58500 0.78188 0.97804 1.08715
2U,fq 0.32138 0.32187 0.32832 0.35233 0.40997 0.59219
2U,0q 0.32138 - 0.35728 0.45120 0.56933 0.66815 0.70695

Table 4, Illustrating the vaviation of stress intensity factor
for P = 1 with the crack-length

2: Cracks from outside Cracks from inside
0.1 0.000126 0.001502
0.2 0.000343 0.002065
0.3 0.000605 0.002422
0.4 0.000894 0.002635
0.5 0.001201 0.002719
0.6 3.001522 0.002675
0.7 0.001865 0.002488
0.8 0.002260 - 0.002139
0.9 0,002846 ’ 0.001560

[a04]
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evaluated. In Figs, (3) and (4), w has been exhibited against x for y=n/2 for different
values of the crack-lengths. It can be again noted that there is a discrepancy in
the value of w for full crack in the two cases, namely, when cracks start outside and
when cracks start from inside. In the former case the value of w is Iess on account
of the restraint dw/dx=0 at the centre,

In Table 3 strain energy and central deflection are shown against the crack
length for both cases. o o '

Finally, in Table 4 the stress intensfity factors are given for different values of
the crack-length for both cases. It may be again noted that the stress intensity factor
keeps on increasing with, the crack-length when the cracks emanate from the edges,
however, it has a maximum value at about half the crack-length when the cracks
start from inside, ' '
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STRESZCZENIE

DRGANIA I ZGINANIE PLYTY ZF SZCZELINAMI

Rozwazono zginanie i drgania olyty kwadratowej zawierajacej crtery szezeliny wychodzace
ze drodka plyty lub ze srodicéw Jef krawedzi. Wyprowadzono duaine réwnania szeregowe wynika-
iace z nieciaglych warunkow brzegowych spelnionych wzdhuz linii, na ktorych lezg szezeliny, Wy-
odrebnienie z rozwigzafi cziondow osobliwych pozwala sprawdzic zagadnienie do réwnania catko
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wego Fredholma, kibre rozwiazuje si¢ numerycznie. W przypadku plyty drgajdcej wyznaczono
czestosci odpowiadajace dwom plerwszym postaciom drgan wiasnych, a w przypadlu zginania
obliczono przemieszczenia oraz energie odksztalcenia plyty. W obu przypadkach wyznaczono
rowniez wspolczynniki intensywnoéci napreZenia.

PezwmMme

KOJIEBAHUSA W M3IWE TINATHL CO MERAMUI

PaccuoTrpensi M3rRE w xomeGanus KBaIpaTHOH IUEATHL, CONEpHaBIieH YeTHIPE HIENH BBIXO-
[Ane @3 MEHTpa WM U3 CepeluHsl e Tpareil. BHBEHCHEE AYANBHEIC NOCIEROBATCARHEIE ypaBHe-
Hasl, BEITEKATONHE M3 PA3PLHIBHBIN TDAHHTHEX YCHOBIET Y/IOBIETBOPEHHEIX BIOIL nawkai. §a Ko~
TOPWIX JNENHT IenH. Beigenchue w3 perntexi 0coGHX WICHOB MO3BOMAAET CBECTH HpobmeMy X HH-
TETPaEEHOMY ypasHermo PpenrofnMa, KOTopoe pelnaeycs THCACHHBIM oGpasom, B cnydae xo-
 nefmromelics TUIATEL OHOPEAGHeHBl HaCTOTH OTBEUAOIIYE 7IBYM NEPBEIM BHIAM cOBCTBEAHEIX
xocHaHnil, a B ciyYae u3ruba BRMECICH HePeMEIIeH A 1 auwepras pedopmanmy WuTH. B oGomx
Cy4asX OIpPEfEHeHs! TOXKe KOI(PHITHCHTS! HanpsKenusd,

DEPARTMENT OF MATHEMATICS AND STATISTICS
THE UNIVERSITY OF CALGARY

Received October 25, 1979





