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THE FIRST HALF-TURN OF AN INERTIAL VIBRATOR
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The paper concerns the starting of an inertial vibrator which, due to a high value of
static unbalance, is unable to perform the first half-turn in the gravitational field of force.
The problem plays an essential role in the selection of driving units for the wide class of
over–resonance machines.

On the basis of the Pontryagin’s Maximum Principle the problem was formulated in terms
of a dynamic optimisation. Thus, the driving moment performs the function of control – which
is being looked for – while equations of motion and start-end conditions related to the position
of a vibrator, act as constrains equations and boundary conditions. The possible simplifications
in description of the motion of the vibrator, as well as the influence of the variable asynchronous
motor driving moment on the optimal solutions, are discussed in the paper. On the basis of the
work-energy equivalence principle, the minimum values of the driving moment – which warrants
the performance of the first half-turn of the vibrator at a given number of the moment switch-
overs – were determined. The problem of thermal loads of the motor during the first half-turn
was also considered. The theoretical results were confirmed by the computer simulations.
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1. Introduction

The problem of selecting the driving unit power is very important for a wide
class of over-resonance vibrating machines, such as: conveyers, screens, tables,
grids etc. The demand for the driving moment for these machines is related to the
need of overcoming two critical states. The first state concerns the necessity to
surmount the gravitational force of an unbalanced mass during the first half-turn,
while the second state corresponds to overcoming the rapidly increased resistance
to motion during passing through the resonance zone. The estimated – in such
a way – driving unit power exceeds, in many cases, several times the power
demand for realization of the in-coming steady state. In the steady state, the
energy dissipation occurs due to the technological or transporting processes, due
to overcoming the resistance to the motion of vibrators and elements of machine
suspension, or losses related to the driving moment transmission. The problem
has been repeatedly pointed out and discussed in scientific papers. For example,
the paper by Banaszewski [2], describes the start of the one- and two-mass
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vibrator at the given moment of force and the resistances from the rolling friction
and bearing seal.Michalczyk [8] determined the minimum value of the moment
of force:

Mmin = 0.7246meg ,(1.1)

which allows to perform the first half-turn when the motor starts from the ar-
rested lowest position (me – static unbalance of a vibrator, g – gravitational
acceleration). However, the approaches applied in the papers mentioned above
were restricted to the vibrator model presented as a pendulum – at the assump-
tion that the value of the driving moment as well as its sense are constant.

2. Problem formulated in terms of the Maximum Principle

Let us consider the problem in a more general way. Thus, let us find the form
of the moment acting on the vibrator shaft, which will allow to move the centre
of its mass from the lower to upper position – without imposing at that moment
any limitations concerning the value and direction of operation. It is obvious
that there is an infinite number of such forms; however, only some of them can
are of practical significance. The selection of the criterion deciding upon the
chosen solution is an open problem. However, it should be taken into account
that not all criteria are useful. E.g. an instinctively appearing criterion related
to minimalisation of the work being done by the driving moment, when applied
to the loss-less model of a physical pendulum, will not provide the expected
results. The optimal solution can be easily guessed since it is related to the
state, in which the kinetic energy is zeroing at the upper position of the vibrator.
But again – such a state can be obtained by an unlimited number of measures.
This diversity of solutions requires either imposing of an additional condition
on the criterion or the task formulation in the form of a multi-optimisation
expression.

The most reasonable and convenient criterion seems to be the time-minimal
criterion, which:

1. Provides directly an explicit solution.
2. Due to the time decrease in which the driving motor is present within

the range of short-circuit currents, it directly causes lowering of the heat
produced in rotor windings.

Thus the origin for further considerations becomes the form quality functional
(2.1) as well as the equations of motion of the vibrating machine (2.2) – the model
of which is presented in Fig. 1.

(2.1) T =

t=tk∫

t=0

dt → min ,
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Fig. 1. The vibrating machine model.

(2.2)
(M + m)ẍ + meϕ̈ cos(ϕ)−meϕ̇2 sin(ϕ) + bẋ + kx = 0,

(Js + me2
w + Jw)ϕ̈ + meẍ cos(ϕ) = Mel −mge cos(ϕ),

Js – central moment of the vibrator inertia, Jw – axial moment of the motor
rotor inertia.

The problem presented hereby can be formulated and solved by means of the
theory of calculus of variations, based on the Pontryagin’s Maximum Principle.
Due to the reasons of the presentation clarity, two variants of the problem will
be discussed in the paper. At first the simplified variant – in which mutual inter-
actions of the machine body and the vibrator are disregarded – will be presented.
In this variant, the mechanical system becomes a physical pendulum subjected
to the influence of the gravitational field and to the moment – which is being
looked for. Later on, the second variant, that takes into account the previously
omitted interactions and which is based on Eqs. (2.3) – will be discussed.

2.1. Simplified variant

On the basis of equations of motion of the pendulum (2.3) being subjected
to the influence of M(t) moment and referring to the Maximum Principle [4],
the Hamiltonian function – due to the criterion (2.1) – takes the form given by
Eq. (2.4).

(2.3)

dω

dt
=

1
Jzr

(M(t)−mge sin(ϕ)) ,

dϕ

dt
= ω,
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Fig. 2. Inertial vibrator model presented in the form of a physical pendulum.

(2.4) H =
Ψ1

Jzr
(M(t)−mge sin(ϕ)) + ωΨ2 − 1.

The Hamiltonian function linear dependence on the M(t) value implicates imme-
diately the form of the moment maximising the Hamiltonian along the optimal
trajectory to the trajectory contained within the boundary of variability of the
force moment. Thus, limiting the M(t) moment to the set:

(2.5) M(t) ⊂ [−M0, +M0]

we may observe that:

(2.6) M(t) = M0 · sgn(Ψ1),

where M0 is given value.
On the grounds of the conditions necessary for existing of the Hamiltonian

extremum, the system (2.3) can be supplemented with equations for the coupled
functions Ψ1, Ψ2:

dΨ1

dt
= −∂H

∂ω
= −Ψ2,

dΨ2

dt
= −∂H

∂ϕ
=

mge cos(ϕ)Ψ1

Jzr
.

(2.7)

In turn, due to the time-minimal variant of the Maximum Principle, the final
positions of coupled functions should fulfil the transversality conditions, which
– in a general form [1] – can be written as:

(2.8) Ψ̄∗ =
m∑

α=1

kα
∂gα[x̄∗, t∗k]

∂x̄∗[t∗k]
,
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where gα[x∗(tk), t∗k] – equations imposed on the motion coordinates at time
t = t∗k.

In the problem discussed hereby, we have only one condition imposed on the
final positions of the motion coordinates:

(2.9) g1 : ϕ∗(t∗k)− π = 0

and on its basis we determine:

Ψ∗1 (t∗k) = k1
∂g1

∂ω
= 0,

Ψ∗2 (t∗k) = k1
∂g1

∂ϕ
= k1,

(2.10)

where k1 – certain constant.
The fact of explicit independence of the final conditions of the time imposes

one additional condition on the Hamilton’s function: zeroing of its value along
the optimal trajectory.

Thus, supplementing the final conditions (2.10) with conditions at the start:

ω∗(0) = 0,
ϕ∗(0) = 0,

(2.11)

and condition of zeroing of the Hamiltonian e.g. at t = tk:

H(t∗k) = 0(2.12)

we obtain the set of dependences needed for an explicit solution of systems (2.3)
and (2.7).

The task being considered here belongs to the so-called two-point boundary
value problems, which in a general case cannot be solved by traditional methods
of numerical integration and requires a special approach. However, the prelimi-
nary analysis provides already some interesting conclusions.

Using the Eq. (2.7) we obtain the following equation:

(2.13)
d2Ψ1

dt2
+

mge

Jzr
Ψ1 cos (ϕ) = 0

which, for small values of ϕ angle, becomes a homogeneous differential equation
with constant coefficients. One can state – on its basis – that the time form of
the moment is a switch-over type function with the switching frequency being
equal to the double frequency of the pendulum free vibrations:

(2.14) f0 =
1
π

√
mge

Jzr
.
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The system (2.7) – for any chosen value of angle ϕ – can be solved e.g. by
application of the gradient shooting method [6].

Applying such an approach, the problem was solved for two values of moment
M0, namely for M0 = 16.47 [Nm] and M0 = 65.88 [Nm]. The values Jzr =
1.98 [kgm2], mw = 382.3 [kg], e = 0.04 [m] were assumed for the pendulum.

The solution for the first M0 value is presented in Fig. 3. As it can be seen
from the graph, the moment changes its sign eight times and finally, the angle

-15

-10

-5

 0

 5

 10

 15

 20

 0  0.5  1  1.5  2  2.5  3  3.5

ω
 [1

/s
]

t [s]

ω

-3

-2

-1

 0

 1

 2

 3

 4

 0  0.5  1  1.5  2  2.5  3  3.5

ϕ 
[r

ad
]

t [s]

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0  0.5  1  1.5  2  2.5  3  3.5

Ψ
1

t [s]

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0  0.5  1  1.5  2  2.5  3  3.5

Ψ
2

t [s]

-1

-0.5

 0

 0.5

 1

 0  0.5  1  1.5  2  2.5  3  3.5

H

t [s]

-20

-15

-10

-5

 0

 5

 10

 15

 20

 0  0.5  1  1.5  2  2.5  3  3.5

M
 [N

m
]

t [s]

Fig. 3. Graphical presentation of solutions for the set of Eqs. (2.3) and (2.7),
for M0 = 16.47 [Nm].
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coordinate ϕ reaches the value π. In accordance with Eq. (2.6), the time when
the coupled coordinate Ψ1 passes zero indicates the switch-over time and equals
successively: 0.185 [s], 0.548 [s], 0.914 [s], 1.286 [s], 1.666 [s], 2.064 [s], 2.484 [s]
and 2.947 [s].

The solution for the second M0 value (being 4 times larger then the previous
one) is presented in Fig. 4. In this case the moment changes its sign only once
at t = 0.36 [s].
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Fig. 4. Graphical presentation of solutions for the set of Eqs. (2.3) and (2.7),
for M0 = 65.88 [Nm].
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2.2. Full variant

Proceeding in a similar fashion as in the previous chapter, we determine
the Hamilton’s function, which after rearrangement of Eqs. (2.2) to a standard
form (2.15)

(2.15)

dv

dt
=

(Jw + me2)(meω2 sin (ϕ)− kx− bv −Mg −mg)
∆

− me cos (ϕ)(Mel −mge cos (ϕ))
∆

,

dω

dt
=
−me cos (ϕ)(meω2 sin (ϕ)− kx− bv −Mg −mg)

∆

+
(M + m)(Mel −mge cos (ϕ))

∆
,

dx

dt
= v,

dϕ

dt
= ω,

∆ = (M + m)(Jw + me2)− (me cos (ϕ))2

assumes the following form:

(2.16) H = Ψ1
dv

dt
+ Ψ2

dω

dt
+ Ψ3

dx

dt
+ Ψ4

dϕ

dt
− 1 .

On the basis of Eq. (2.16) and criterion (2.1) we determine the formulae for
derivatives of coupled functions (2.17):

(2.17)

dΨ1

dt
=

(Jw + me2)bΨ1 −me cos (ϕ)bΨ2

∆
− Ψ3,

dΨ2

dt
=
−2(Jw + me2)meω sin (ϕ)Ψ1 + 2m2e2 cos (ϕ)ω sin (ϕ)Ψ2

∆
− Ψ4,

dΨ3

dt
=

(Jw + me2)kΨ1 −me cos (ϕ)kΨ2

∆
,
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(2.17)
[cont.]

dΨ4

dt
= −

[
(Jw + me2)meω2 cos(ϕ) + me sin(ϕ)(Mel −mge cos(ϕ))

−m2e2g cos(ϕ) sin(ϕ)
]Ψ1

∆

+ 2
[
(Jw + me2)(meω2 sinϕ− kx− bv −Mg −mg)

−me cosϕ(Mel −mge cosϕ)
]Ψ1m

2e2 cosϕ sinϕ

∆2

−
[
me sinϕ(meω2 sinϕ− k − bv −Mg −mg)−m2e2(cosϕ)2ω2

+ (m + M)mge sinϕ
]Ψ2

∆

+
[
(m + M)(Mel −mge cosϕ)−me cosϕ(meω2 sinϕ− kx− bv

−Mg −mg)
]Ψ2m

2e2 cosϕ sinϕ

∆2
.

Then – on the grounds of extremalising the conditions of the Hamilton’s function
versus moment M(t)el – we formulate the Law of Control in the form (2.18):

(2.18) Mel = M0sgn
[
(M + m)Ψ2 −me cosϕΨ1

∆

]
,

where M0 – given value of the moment of force.
Using the transversality conditions (2.8) for coupled functions, Hamiltonian

zeroing along the optimal trajectory as well as the start conditions for the motion
coordinates of the system, we are able to determine the set of start-end conditions
(2.19), which allow to solve the system (2.15) and (2.17) in an explicit way.

(2.19)

v(0) = 0, x(0) = −(M + m)g
k

, H(t∗k) = 0,

ω(0) = 0, ϕ(0) = −π

2
,

ϕ(t∗k) = +
π

2
, Ψ1(t∗k) = 0,

Ψ2(t∗k) = 0, Ψ3(t∗k) = 0.

The problem has been solved numerically for M0 = 65.88 [Nm], using the set of
parameters given in Table 1. The results are presented in Fig. 5.
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Table 1.

Vibrator mass 382.3 [kg]

Radius of vibrator unbalance 0.04 [m]

Moment of inertia reduced to the axis of rotation 1.3 [kgm2]

Machine body mass 7263.2 [kg]

Coefficient of elasticity of the machine body support 4.83·106 [N/m]

Viscous damping coefficient of the machine body support 3.84·104 [Ns/m]
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Fig. 5. The solutions of systems Eqs. (2.15) and (2.17).
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Fig. 6. The solutions of systems Eqs. (2.15) and (2.17) – continuation.

3. Influence of variability of the electric driving motor moment
on the optimal solutions

The most popular source of the moment of force in vibrating machine drives
is – in practice – an asynchronous motor. The instantaneous form of the moment
of this motor – in the velocity range being near zero – is far from constant and
exhibits very strong oscillations with the power network frequency. However, its
mean value is – in this velocity range – near the value of the starting moment
determined on the basis of the mechanical characteristic of the motor. Assum-
ing this value as M0 in the previously given models, the comparing simulations
can be performed. They will allow estimate the influence of the electromag-
netic moment variability on the optimal solutions determined for models with
bi-stable moments. The interdependence of the electromagnetic moment of the
driving motor and the vibrator shaft was determined in simulations based on
the grounds of the asynchronous machine equations obtained as the result of
two transformations applied separately for the stator circuit and for the rotor
circuit. The first transformation, the Park’s one described by the transforma-
tion matrix [T ] (3.1), changes the phase system of stator circuit equations into
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quasi-coordinates 0, d, q. The second transformation, the Clark’s transformation
(3.2), transforms the phase system of rotor circuit equations to the coordinates
0, α, β.

[T ] =

√
2
3




1√
2

1√
2

1√
2

cos (pbϕ) cos
(

pbϕ− 2
3
π

)
cos

(
pbϕ− 4

3
π

)

− sin (pbϕ) − sin
(

pbϕ− 2
3
π

)
− sin

(
pbϕ− 4

3
π

)




,(3.1)

[C] =

√
2
3




1√
2

1√
2

1√
2

1 −1
2

−1
2

0
√

3
2

−
√

3
2




.(3.2)

The relations between currents and quasi-currents i′αr i′βr ids idq and the trans-
formed power voltages uds, uqs can be presented in the following matrix notation:

(3.3)




uds

uqs

0
0


 =




Lσs + Lm 0 Lm 0
0 Lσs + Lm 0 Lm

Lm 0 L′σr + Lm 0
0 Lm 0 L′σr + Lm




d

dt




ids

iqs

i′αr

i′βr


+

+pbϕ̇




0 −(Lσs + Lm) 0 −Lm

Lσs + Lm 0 Lm 0
0 0 0 0
0 0 0 0







ids

iqs

i′αr

i′βr


+

+




Rs 0 0 0
0 Rs 0 0
0 0 R′

r 0
0 0 0 R′

r







ids

iqs

i′αr

i′βr


,

while the electric moment is formulated as:

(3.4) Mel = pb (Ψdsiqs − Ψqsids) ,
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where Ψds, Ψqs – components of the electromagnetic flow associated with the
stator and rotor, which can be presented in the matrix notation (3.5):

(3.5)




Ψds

Ψqs

Ψαr

Ψβr


 =




Lσs + Lm 0 Lm 0
0 Lσs + Lm 0 Lm

Lm 0 L′σr + Lm 0
0 Lm 0 L′σr + Lm







ids

iqs

i′αr

i′βr


.

The commutation process related to switching-over the phase sequence of
the stator circuit, being done in order to change the sense of the moment to
the opposite one, was determined on the basis of the Continuity Principle of
the electromagnetic flow associated with the rotor circuit. Taking into account
Eq. (3.5) – the components of the relevant currents – we can state that: Ψ−αr = Ψ+

αr

and Ψ−βr = Ψ+
βr, where indices „+” and „−” mark the time just before and just

after the switch-over, respectively.
The continuity of the flow associated with the rotor leads to the formulae for

the current components values just after the switch-over, in the form:

i+ds = 0,

i+qs = 0,

i
′+
αr =

Lmi−ds + (L′σr + Lm)i
′−
αr

L′σr + Lm
,

i
′+
βr =

Lmi−qs + (L′σr + Lm)i
′−
βr

L′σr + Lm
.

(3.6)

Table 2. Parameters of the asynchronous motor.

Motor power rating Pn 8.1 [kW]

Motor rated velocity nn 1420 [rot/min]

Stator leakage inductance Lσs 4.77 [mH]

Rotor leakage inductance in stator terms L′σw 4.77 [mH]

Magnetic induction Lµ 82.4 [mH]

Stator resistance Rs 0.62 [Ω]

Rotor resistance in stator terms R′w 0.84 [Ω]

The simulation results presented in Fig. 7 indicate that the switch-over per-
formed at the times determined for models presented in Secs. 2.1 and 2.2, does
not cause any significant differences, neither in the curve of the angular coor-
dinate nor in the curve of the angular velocity mean value – regardless of the
visible oscillatory influence on the driving moment.
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Fig. 7. Graphs of the motion coordinates for: A – model with an electric moment originated
from an asynchronous motor, B – full variant with a bi-stable moment of force, C – simplified

variant with a bi-stable moment of force.

4. Number of switch-overs of the driving moment

The need to determine the number of the moment switch-overs realizing the
first half-turn of the vibrator for the given M0 value, might be essential in the
preliminary designing process. For the simplified model this problem can be
solved analytically, without the necessity of performing an explicit solution of
the pendulum equation of motion. Thus, on the basis of the condition of the
mass lifting – in the gravitational field of force [8] – subjected to the influence
of the constant value M0 moment, for the case in which only one switch-over
occurs, we are entitled to state the following:

1. During lifting of the vibrator mass centre, the motion will take place until
the work performed by the moment of force equals the potential energy
stored in the vibrator. Denoting by ϕ1 the angular distance at which this
equalisation occurs, we obtain the formula:

(4.1) M0ϕ1 = mge(1− cosϕ1).
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2. During the reverse in the intermediate point, related to the lowest position
of the vibrator mass centre, the vibrator kinetic energy constitutes the sum
of the recovered potential energy connected with the height determined by
angle ϕ1 and the work performed at returning at the angular distance ϕ1.
This energy – increased by the work performed on the further part of the
distance ϕ and decreased by the potential energy of the repeated lifting of
the mass centre - should retain its positive value to avoid the stopping of
motion and changing its direction. Thus, we can write:

E = mge(1− cosϕ1) + M0ϕ1 + M0ϕ−mge(1− cosϕ) > 0.(4.2)

3. To quarantee the fulfilment of inequality (4.2), which after rearrangement
assumes the form:

M0

mge
(2ϕ1 + ϕ) > 1− cosϕ,(4.3)

the care should be taken that the straight line of the left-hand side of
the inequality should be above the function value of the right-hand side.
The smallest M0 value corresponds to the situation when tangents to the
function on its both sides are equal at certain critical point ϕkr and the
function values are also equal at this point. Thus, respectively:

M0min

mge
= sin ϕkr,(4.4)

M0min

mge
(2ϕ1 + ϕkr) = 1− cosϕkr.(4.5)

4. Solution of the set of Eqs. (4.1), (4.4), (4.5):

M0min = 0.422mge,

ϕ1 = 0.905 [rad],

ϕkr = 2.706 [rad]

(4.6)

determines the smallest value of the driving moment M0min, which allows
to perform the first half-turn with only one switch-over of the moment. It
also determines two angles: ϕ1 and ϕkr, for which the angular velocity of
the vibrator equals zero.

By means of a similar reasoning we can determine the switch-over times and
the minimum moment M0 for a larger number of switch-overs. Table 3 presents
the determined dependences, with notations: n – number of switch-overs,

k =
M0min

mge
, ϕi – successive angles corresponding to switch-overs of the mo-

ment, ϕkr – critical value of the angle of rotation.
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Table 3.

n k ϕi [rad] ϕkr [rad]

0 0.724 − +2.31

1 0.422 −0.905 +2.706

2 0.293 +0.605, −1.306 +2.844

3 0.224 −0.456, +0.948, −1.546 +2.916

Knowing the switch-over number of the moment, it is possible to estimate
the least upper bound of the time needed for performing the first half-turn.
Fig. 8 presents the nomogram, obtained by solving the pendulum equation of
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Fig. 8. Time of the first half-turn as a function of α and β parameters for the case of one
switch-over of the moment. a) Nomogram, b) Table of data (* – indicates data for the

example discussed in the paper).
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motion, relating the time – which is looked for – to two parameters α =
mge

Jzr

and β =
M0

Jzr
for the case of one switch-over of the moment.

5. Conclusions

Summarising the problem of the first half-turn, we can state that:
1. It is possible to find the driving moment of the variable sense, which will

allow the first half-turn to be performed by vibrators, without unnecessery
overmotoring.
(a) The driving moment is contained within the boundary of this moment

variability, and due to this feature – for the values being in the range
[−M0,+M0] – it becomes the bi-stable moment of the value ±M0.

(b) Times of the switch-over of the driving moment can be estimated on
the basis of Eq. (2.18) and dependences (2.15), (2.17), (2.19) necessary
for solving the Hamiltonian extreme (2.16).

2. The start, in which the first half-turn is put into practice by switch-overs of
the sense of the moment, allows to decrease radically the starting moment
of the motor, which corresponds to decreasing the driving unit power. As
a result, the system efficiency at the nominal operations improves signifi-
cantly.

3. Simplifications – following from the assumption that the driving moment is
of a constant value and from the omission of body and vibrator interactions
– do not introduce any essential errors, concerning the determination of
the switch-over time of the moment of force, for typical driving systems of
vibratory machines. It means for such systems, in which an asynchronous
motor is the source of the moment of force and the vibrator is fixed to
the elastically supported machine body. The value of the motor starting
moment found directly from the catalogue data or determined on the basis
of the Kloss mechanical characteristics – with taking into consideration the
displacement of current for deep-groove motors (like in B NEMA [National
Electrical Manufacturers Association] design) and for multi-cage motors
(like in C NEMA design) – should be applied in calculations as the M0

value.
4. When determining the M0 value for over-resonance machines, special atten-

tion should be directed towards the situation when the vibrator is passing
through the resonance zone. When the selected value of the moment (al-
though allowing to perform the first half-turn and to overcome the motion
resistance at nominal operations) is too low, it might be not sufficient to
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overcome the increased resistance during passing through the resonance
zone. In consequence, the stall of a motor in this zone occurs.

5. If the start is realised at low values of the M0 moment, which prolongs
the time when the motor stays in the zone of short-circuit currents, the
problem of motor thermal load and the selection of safety measures should
be considered. For estimation of the lowest upper bound of the time of the
first half-turn and for determination of the minimum number of switch-
overs of the moment, one can use dependences presented in Sec. 4.
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