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THERMODIFFUSION IN ELASTIC MATERIALS OF GRADE TWO

N. NAERLOVICGC-VELIKOVIC and M. PLAVEIC (BELGRADE)

The elastic solid of grade two subjected to the process of thermodiffusion is studied in the
framework of the nonlinear mechanics of continua. Two independent sets of constitutive quantities.
are obtained: the first set results from the free energy density as a thermodynamic potential, and.
second one consists of thermodynamic fluxes, Constifutive equations for thermodynamic fluxes
are restricted not only by the entropy inequality, but also by a number of additional conditions.
following from the entropy inequality. Expanding the free energy density info -a quadratic poly-
nomial and assuming particular forms of constifutive equations for entropy, heat and diffusion
fluxes, the linearized field equations for displacements, temperature and concentration of diffused
mass are derived.

1. INTRODUCTION

The problem of thermodiffusion in elastic solids with microstructure was studied
in Paper [1]. In Paper [2] the nonlinear and linearized field equations for thermodiffu-
sion in micropolar elastic materials were derived. In both papers ithe process of ther-
modiffusion was regarded as a sequence of nonuniformity of the temperature distri-
bution in the body, thus in the absence of chemical reactions, that is, under the
z:s—sumption of the validity of the law of mass conservation. In that sense the notion
of thermodiffusion was primarly introduced by Popstrigacz [3] and Nowackr [4].
The same concep{ion of thermodiffusion will be followed in the present paper.

2. EQUATIONS OF BALANCE

The theory of elastic materials of grade two was developed by many authors
[5, 6]. The main purpose of constructing the theory of thermodiffusion for such
materials is to find the density p (X, ¢}, the concentration.: of diffused mass ¢ (Y%, ¢),
the temperature 0 (X%, t) and the motion x* (X%, #) of material points of the body
whose state in an arbitrary chosen reference configuration is characterized by the
coordinates X¥ and by the corresponding density po (X®), the uniform temperature
field @, and concentration ¢, (X*).
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Equations of balance of rmass, linear momentum, moment of momentum and
" energy for the material of grade two may be written in the following local form:

19‘4“[)?):.1':0;
1 tpfi=po’,
2.1) T y
t[n, J‘]+M’r}p€k=pFU,
[)l]’=f(’ij) 'Uj,j"i'MijkQ)jj‘k'l‘q,ti'i‘pk.

In Eq. (2.1) the dots denote time derivatives with fixed X*;(...) , represents deriva-
tives with respect to the present position. The further following notations are used:
t nonsyminetric stress tensor, M= — M¥* couple stress iensor, f* body force
density, » internal energy density, ph body heat supply, ¢' heat flux vector, IV
inertia spin. The last quantity may be expiessed in the form

@y Pl (@5 4o o) (=¥ X!
with
(2.3) wy=ty g V=%

The term representing the contribution of couple stresses in Eq. (2.1)4 may be writ-
ten in the following way:

2.4 MUy = M o o= MU @,

Apart from that, the following decomposition of the couple stress tensor takes
place

1 .
(25) Mijk=#ijk + ? 5;3::; i
with
@0 Wm0, MU=,

In this manner, instead of Eq. (2.1), the equation of balance of energy will be present-
ed in the form

(2.7) [)L-t=f(u) ?)i’j+}£ijk coij,k-l-qfi-l-.ph.

Assuming that there are no body sources of mass production and denoting by J*
the flux vector of diffused mass, we complete the set of equations of balance (2.1); -5
and (2.7) by the local equation of balance of diffused mass

(2.8) , pi—Ji =0
From Eq. (2.1); we find

@9 polp=V &G det {xt}.
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Introducing
{2.10) ki =Xax XL R a=Roxe XI5 Xt hy g X5
and eliminating the skew-symmetric part of the stress tensor by means of Eq. (2.1),,
we wiite the remaining equations of- balance in the form
[(40 — ! 49 X 4 (pT), ] 1 X5~ f R XK 4 pfie=pid,
(211) p”"’“[t(rj) XK”**.“I(JJ‘} XK }x; +ﬂ!(ﬂ‘) XK xi KL+q KXK +ph
pé—J! X5=0.
In the case of an clastic solid, the stress tensor, the couple stress tensor, internal
energy density, the heat flux vector and diffusion flux vector at time ¢ are related
through constitutive equations to the instant values of variables of state. In our

case the response function describes the thermodynamic properties of the material
depending on the instant values of the following variables:

(2.12) xie, X 0, Ok, o oy
- In that way we siarl with the following constitntive equations:
D = () (x: K> x;KLJ 8,8, x,¢ ¢z,
Fii(ﬂc)=ﬂ'”ﬂ‘) (X:K s X;IKL! &, 9; K G & K)s
(2.13) w=u(xlg, %1y, 0,0, ¢ ¢4),
q'=q (x:K > x:KLs 0, 8.k, ¢ ¢x),
Ji=T(xle, xi,, 0,0k, 0,¢5).
Introducing the constitutive equations (2.13) in the equations of balance (2.11),

we obtain a set of differential field equations for x!, # and ¢. Every particular solution
of this set of equations represents a thermodynamic process in the body.

3. THE ENTROPY INEQUALITY

Possible forms of the constitutive equations (2.13) are restricted by the entropy
inequality. Denoting by # the entropy density, @* the entropy flux and o the entropy
production, we express the entropy balance and the entropy inequality in the form [7]

. ., Ph
(3.1) P’?“@:e_”g_f@ oz0

where the last term on the ths. of Eq. (3.1), represents the supply of entropy
due to the existence of body heat sources. The inequality. (3.1), must be
satisfied i every thermodynamic process. In accordance with the principle of equi-
presence, the set of constitutive equations (2 13) will be completed by two additional
equations:

]

=y ('x;KD x;KL’ 89 g;K: ¢, C,'K).'-

(3.2) o
D= (X, g, X, g1, 0, 0,5, ¢, ¢, k).
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The equation of balance of linear momentum (2.11), as well as the equation
of energy balance (2.11), include free terms in the form of body force density and
heat supply. For an arbitrary choice of variables p (X%, t), x* (X*, 1), ") (X¥, 1),
WY (XK D, u (X%, D), ¢f (X%, 1), these two equations may serve to determine the
- corresponding values of body forces and body heat supply. On the contrary, Eq.
(2.11); may be understood as a constraint on the thermodynamic fields which are
admissible in the sense of the restriction (3.1},

From the inequality (3.1), we may eliminate the term ph using Eq. (2.11),. In
that way we obtain

(3.3) -p (If’/ “|”’Té) o+ [ X;KJ-JF I () X;Kj,k} Xpxt ﬂi (kY X;Kj Xpget
+ X5 (gl x— 00 )20,
with the usual definition of the free energy density w=u—#0.

In order to overcome the restriction imposed on the process through the relation
(2.11);, we paultiply it with the Lagrangian multiplier x4 and subtract it from the
inequality (3.3). Proceeding in that way we obtain the following form of the dissipa-
tion inequality:

(B4 —p W Hnl—pd)+[19D X+ @t O X;Kjk] P A P ST
+X;Ki (q:K_BrP;'K-—.u,};"K);O‘_

In calculating the derivatives included in the Eq. (3.4}, we find e.g.

.oy By dw . Ay Loy v

R B s b S

o E g e g P g G T e €T g G

. aqt aqt aq' aq'

P ey +—__n _g.. +

Q;K axt;Lxl,KL+ ax;LM xI,KLM 39 6,K+ 39;‘[’8,1(1‘
aqt aqt

o e g ey

de Gxt de,r Crr

Inserting the expressions for the derivatives \J, gl ., @4, J!\ in the inequality (3.4)
we state that the relation obtained is linear in %, gr, 0, 0. % & € 50 Xp; k0an X35 55 0, k1
e xr. The inequality must be valid for arbitrary values of variables and hence the

following conditions must be fulfilled:

U yk LK) YK W
t X;J'+‘u X;jKﬁp 0. =0,
oy
PG vE yE =
# X X paxi;KL 0.
(3.5

}-aw* i 0
Ta T FT e

oy d

= !// :0,
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(3.5) ( aq* S ay ) ]
feont.3 8., 930;1. —H 26., X, =0,
( g )XK 0
.ac;L aC;L —H BC;L (K, L) Y2
axl;LM Bx,;LM TH 336[; M (H(K, Ly MY T Y.

From Egs. (3.5)s ¢ we conclude that the free energy density does not depend
on temperature and concentration gradients, hence,

(36) W=y (‘x:K b x;iKLD 95 C)-

Moreover, on the ground of Egs. (3.5),., we realize that the free energy density
plays the role of the thermodynamic potential for the stress tensor, couple stress
tensor, entropy density and for the quantity g which we are going {o denote as the
chemical potential. The corresponding constitutive equations read:

y ad dy
e e i)

dy
(3.7 W UR = pott x! xK,
TRt
v
=60 dc

The ths. of Eq. (3.7); is symmetric in i, j and the same must hold for its right hand
side. Further, taking into account the fact that p*f*= — p'* we get /=0, In
view of these remarks the following conditions take place:

Yoo o)
{1 PRIV S S S —

dy
i Pk
gl Xl xty =0.
( dx; gy, (LK)

The conditions (3.8) represent a system of 13 partial differential equations. Consid-
ering these conditions, we realize that among 27 variables x! ¢ and x!,;, only 14
are independent. We' choose the following independent measures of deformation:

(3.8)

(3.9 EKL"'_"7 (ke x;‘K x:'L_ Gkr),  Dirm =E’ 8t (XI;EML foer;‘MK xEL)

and hence

(3.10) =y (Exr, Diia 6, ©).
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The set of constitutive equations (3.7) reduces now to

0 o oy L
ti=p ( i Xogxi +2 X X?)J,M) >

GEgg D ’
Ay
(3.11) PLACL g ¢ P
' ¢ p Dy SRR M
dy Ay

4, THERMODYNAMIC FLUXES

The stress tensor, the couple stress tensor, the entropy density and the chemical
potential are, within the frame of this theory, derivable from the free energy density
using Eqgs. (3.11). The constitutive equations for ¢, @' and J' must, on the other
side, obey the set of restrictive conditions (3.5);., as well as the inequality

YRy adt oJt gt ot aJi
@1 XX l( ~ - )x,;m. ( T

- L
OX; 1, axy, 1. ! X,

w0 P )’

(aqi 9 an) ] ;
R B - PN
M dge Hac |Gx]FT

The relations (3.5},_, may be satisfied by the following particular solutions:
g
b e —
f g’
g =q (X, 01, s

. Ji=Ji (E RPN A ¢n)

(4.2)

if the relation below is respected:
o dyr )

This last relation restricts the form of the constitutive equation (3.15). Accounting
Eqs. (4.2)(4.3), we find that the entropy inequality reduces to

@.4) wr(i) pa g
. _ o g) T4y =0

Hereafter we will examine the sequel of particular solutions (4.2) together with
the constitutive equations (3.11), on the form of field equations of the considered
process. : :
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3. IsOTROPIC SOLID. LINEARIZATION

In the case of an isotropic solid we introduce spatial tensors corresponding to
those given by Eqs. (3.9)

1
s Gier, (X5 X5~ XK KT,

1
(5.1) eu=7(gu—GKL X;Ka X;L,-)a dijp= 3

The corresponding constitutive equations for stress and couple siress tensors are

dy Ay dw oy )
(id) = i !
o= ( Ger, 2 tep & g M ag, D

Jui(jk)=p[(_a_w_“;_ 8W )ﬁe:( a"’ 4 — 5!// )]
Odiye ey Odyye  ddy;

In the linearized theory, introducing the displacements

53) o W=gfoxk,

(5.2)

we reduce the tensors (5.1) to the known expressions
(54 ey=t,g>  dip=u, %

The corresponding constitotive equations are [6]

(5 5) N — 6’_!,[/ i —2 a!"f
. =p 56’,-; » P =Lp adn‘.jrc
Instead of the tensor g'/*, we may introduce
k— 1 ik
(56) Mz_jgij.! #J »
. given by
o 8W daf ! klm - 1 ictm
(5.7) Hi=p F "Cf.f:?gim e dys __2_ Gim &7 Uy g5
iy ¥

where Eg. (3.6) is to be replaced by
(5.8) w=u (e r;;, 0, ).

We chose the reference state as an arbitrary state. Now we suppose that at the
reference state the following conditions take place: e;;=0, x;,=0, y=0, +¥=0,
#9=0, #=0 and p=0. Further, we introduce the following notations for the
departure of temperature and concentration from their values at the reference state:

(5.9) ' T=0—8,, C=c—c,.

Assuming that during the process of thermodiffusion a small disturbance of the
reference state fakes place, that is,

(5.10) ]T/90;<1 |Clecol <1,

1
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we expand the free energy fonction in terms of iis arguments in a quadatie polyno-
mial of the form

1 1 iy
511y pw =5 A e ey +? B e, e ey T+ DY ey Ct

1 1
+--mT? +\2 nC2:+pTC,

2
‘where
Aijk!=/1gji gk[‘l“ﬂ (gil gjk +gik gﬂ),
Bijkl=4ﬂ'lz (g['.[ gjk+ ﬁgik gﬂ) .
OV — (344 241) az 8
Dii= —(3A+2u) ac gV

(5.12)

are isotropic tensors and m, 1, p, A, y4, I, ], &g, % &1€ material constants. The total
number of material constants in Eq. (5.11) is nine.

In that way we obtain the following linear constitutive equations:

. 3A4+2u ' . N 3
=) e = (ar T+oc C) | g/ +2ue"  (er=g1 €%);
(5.13)  wI=2p0 (MR
po 1=(3A+2p) ey e, —(MT+pC),
pO #= _(3/?'+ 2#) e €I+(pT+nC) .

Linear constitutive equations for heat flux and flux of diffused mass are based
on the expressions (4.2); 5. According to Eqs. (5.3) and (5.4), we replace the arguments
Xy, ears 0. p and €., by the following g

m Lk

x; =g g u,n
(514) LMK ’ M &K Y1, mks y
I’;ng[,T,!! C;LZgL C;I'

Herefrom, in the case of an isotropic solid, lmear constitutive equations for heat

and diffusion fluxes may be written, in the form

=L T~ L CotLiser,
(5.15) q 11 4, 1z & has O
Ji=Ly T i+L: Citlazer.

-According to the constitutive.equations (5.13) and (5.15), the entropy inequality
(4.4) reduces to the following expression:

(516) (L Ti4+Lyy C it Loz er,)) [PT—:i‘}‘"C,i — (34421 ac eri,}+
+%’ (Lit T i+Lys C+Lisers) T,t>0-
o - .

The inequality must be fulfilled for arbitrary values of variables and herefrom the
following relations between the coefficients L1, Lya, oo 1 Py Oc must take place:
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Po 7

p P B
PLas 0 Lyy >0, ALy FpLoy +) " Lip=0,
Uy B "
o nlyy >0, —(3’14_‘2#)1'121 ﬂc+PL23+?’L13=O’s"
L3 000, 7(324—2‘{.&)1@2 occ+nL23—0”

Finally, we remark that the constant coefficients 7., le,.:... A, p, occ ;ntroduced n
the linéarized theery ar¢ useful only for small disturbances from the 1eferenee state
and thelr va.lues are comlected w:th the reference state AR

AL e e 6 FIELD LQUAT[ONS

The linearized field equa.tlons for thermod;ffumon in an elastlc sohd of grade
two consist of equations of balance (2.1) and (2.8) as well as of, constitutive equations
(5.13) and (5.15). On the ths. of Eq. (2.1); there is the inertia term ', Regarding
material pomts of the contmuum as mﬁmtemmal sphetes, the fo]lowmg value for
inertia spln as its ﬁrst a.pprommatmn ma.y bé obtainéd: ' :

R e RN 1. 2.
(6.1). I FJ*EI%}";(u‘J—MJ i,
and henee‘“ B o

cero pEGE S (ViR e ) with - prp (T—enmps

Aceountmg Eq (6 1), _vve may represent both equatlons of ba.la.nce (2 1)2 3 m the
form of the followmg equation:

NN

. . pol . .
62 1y @l V2R —po i+ pf'=0,

The 1ema1nmg equatlons of bala.nce are

Po 1]/—2‘('"" 1, -Hl” u!,.ﬂc Po (9’14‘!’6)"“1 i“'“Ph

6.3 .
(?;ﬂ"mrf~,' | N .

Thus the definitive form of lmearlzed ﬁeld equatlons for the process of thermodn‘fu—
sion ‘in-ain- 1sotroplc solid of glade AWO IS s e L

(/1+u) u" *+w-’- ut +,u12 (Vl Vz l Vz y =)+ __(Vz A A
GO T G020 e T e G
' (3ﬂ'+2tu) or 90 it ;c'“go (mT+pC) Ll] vE THL, V? C+L13 Vz u ,:+ph
PoC=Ly; V2T+L;, V2 CH Ly, V2 i, )
The three equations of motion (6.4),, the equation of the temperature.field (6.4), and
the equation of the field of concentration (6.4); represent the complete sjstem
of differential equations of the problem..

This work is a part of the research pio;ect whach has been sponsored by the
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STRESZCZENIE

TERMODYFUZJA W MATERIALACH SPREZYSTYCH DRUGIEGO RZEDU

W ramach nieliniowej teorii osrodkéw cigglych rozwazono material sprezysty drugiego rzedu
poddany procesowi termodyfuzji. Otrzymano dwa niezalezne uklady wielkosci konstytutywnych:
jedne wynikaja z gestodcl energii swobodnej jako potencjalu termodynamicznego, a drugie sa stru-
mienjami termodynamicznymi. Rownania konstytutywne strumieni termodynamicznych ' ograni-
czone sg nie tylko przez nierdwnoss entropii lecz takie przez szereg watunkow dodatkowych wyni-
kajacych z tej nierdwnoéci. Rozwijajac funkeie gestodel energii swobodnej w wielomian kwadratowy
i zakladajac pewne szcregdlne postacie rownan konstytutywnych dla entropii oraz strumieni ciepla
i dyfuzji, wyprowadza sie zlinearyzowane rownania pola dla przemieszezen, temperatury i kon-
centracii dyfundujacej masy.

PezwMe

%

TEPMOOULOYIHS B VIIPYIAX MATEPHAJIAX BTéPOFO MMOPAOKA

B pamkax Henueipiof TCOPHY, CONCHIHMX CPElX PACCMOTDEH YIOPYFHA MaTepHan BTODOFC
NOPAAKA NTOABEPHYTEIH IPOLEcey repMonEdhy3ud. TI0TyueHbl IBC HEIABHCHMEIC CHOTEMEL OIIpe-
IETRIOMUX BONHUAN: ONMH BHITEKAOT H3 DNOTHOCTH cBoBGOmMHOH SHOPTHH, Kak Tepmommamt{éc»
KOTO HOTEHIIMAA, 4 RTOPHIE HBJIAIOTCA TEPMOAMHAMMYCCKEME IOTORAMM. QupeeIsIIoIIKEE YPaB-
HEHHS TEPMOITHHAMWHECKHX TOTOKOB OTPAHMYEHE] HE TOJLKO HEPABCHCTBOM IHTPOIIHK, HO TAKXKe
PANOM NOTQIHUTENLHEBIX YCNOBAHA, BuiTEKAIOUIMX U3 3TOTO wepapescTna. PasnaTan QyHKUWIO MIO0T~
HOCTM CROGOMHON IHEPrHH B KRaADATHLIH MHOTOYJEH H MPEANONAIaf HEKOTOPAS YaCTHLIC BHILL
ONpeeIBIOINEX YPABHEHHEH AN JUTPOIMH, & TAKKe NOTOXOB TeIiFd H rudbyIve, BHIBOARTCA k-
HeAPM3OBAHABIC YDABHEHUs IONA JJIA TePeMeiieHHH, TeMnepaTypsl ¥ xoHneHTpauxn aHddynan-
pyrorue Macebt,
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