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ON A GENERAL THEORY OF COMPOSITE MATERIALS
AND MICRO-INHOMOGENEQUS ELASTIC MEDIA

V.M. LEVIN (PIETROZAVODSK) and V.N. NIKOL AIE V8K I (MOSCOW)

A method is developed to average over the volume the differential equations of eqguilibrium
describing inhomogeneous clastic composite media with markedly different elastic moduli. A chain
of macro-equilibrium. equations is obtained invelving macro tensors of stress couples and other
stresses, all of increasing rank. These tensors are in general unisymmetric due to their definition of
average quantities with respect to the oriented surface elements. The system of equations reduces
to a single equation involving a serics of derivatives of stresses of increasing order, averaged over
the volume and residual ferm which is a derivative of stress averaged over the surface. By truncation
of the series for an assumed accuracy a differential equation is obtained which is sufficient in the case
when a single kinernatic quantity is a vector of macro displacement, A structure of equation is
derived typical for a gradient in the nonlocal theory of elasticity. Mumerical calculations were
carried out for a polycrystal provided that averaging over the volume is equivalent to averaging
over the number of possible realizations. :

A method of averaging over the volume for differential equations of equilibrium
in inhomogeneous elastic media is developed in the present paper. The material
under consideration is assumed to be a composite, the constituents of which are
characterized by various elastic moduli. A chain set of macro-equilibrium equations
is obtained, containing macro-tensors of stress, double-stress, etc. These tensors
are mon-symmetric in general, due to their definitions as some mean values over
the surface, in accordance with the original Cauchy’s concept. In the case when the
displacement vector constitutes the only kinematic variable, the chain set of equations
reduces to a single one which contains, however, some additional differential com-
ponents of subsequently increasing orders, dependent on the order of the theory.
Similar analytical expressions are derived in the case of a polycrystal material,

The difference between the present theory and the widely acknowledged approach
presented, for example, in the papers [4-7], consists in considering the physical
background for the application of different methods of averaging for various state
parameters. Only in the case of calculating the mean characteristic of a random
distribution of elastic moduli over the volume is statistic averaging performed,
i.e. an ensemble averaging over the realization of a random distribution of crystals
in the considered volume. If one introduced the hypothesis of an equivalence. of all
methods of averaging, one would a priori exclude theories of couple stress elasticity
from consideration, thus making. it impossible to investigate their connection . with
statistical theories of micro-inhomogeneous materials, On the other hand, in contra-
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dition to some well-known theories of couple-stress elasticity [8-10] the relationships
between the macro-tensors of stress and strain are introduced in the present paper
not by a hypothetic assumption of some elastic potential, but as a result of averaging
the constitutive equations valid for the micro-level of description.

1.

Let us introduce two different levels of investigation for the state of stress and
strain of the medium: the micro-level described by the coordinates x,, and the
macro-level for which the coordinates X; are appropriate. Further, let us suppose
for the micro-scale, i.c. for an infinitesimal element ds=dx, dx, dx,, the validity
of the equations of equilibrium

i
(].1) .a—xjo‘ij-{‘ﬂ:(),

where o,;=0;; (x) denotes the microstress tensor, f =f; (x) is the body force vector.
Muitlplymg Eq. (1.1) with x,, we obtain

o y: -
(1.2) - Gik:?x;(?’ij .Xk) _f; K

Further multiplication with the Levy-Civitta’s alternating tensor g, vields the mo-
ment of momentum balance eguation

7
(1.3) ' _a;":;(slkiaijxk)_glkiﬂxk=os

where the symmetry of the stress tensor a;,, defined in the microscale d¥, is taken
into account (&g, . =0).

The medium under considration is assumed to be perfectly elastic but inhomo-
geneous at the m1cro—1evel The stress-strain relation for this medium obeys the
Hooke s law’

(1-4) S =i Errs

where the tensor of elastic moduli Ly, (x) is a random function of coordinates.
In the above expression g, denotes the tensor of micro-strain which is related in the
usual way to the vector of miCro—displacements u; (x):

15' - o "yl(@uk_'_au;)
a9 o TGy, ax )

- Let us assume -that the inhomogeneity of the medium is due to.the presence of
micro-constituents which have various elastic properties; those could be monocrystal
grains with random distribution of the crystallographic axes’ orientations, or inclu-
sions into a compomte materlal d1ﬁ"er1ng in’ elastic’ moduh from the surrouudmg
embedment. - - - o
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Consider now an elementary macro-volume F=AX, AX, A4X;, the dimensions
of which are much greater than the characteristic length of the micro-inhomogeneity
scale. Integration of Eq. (1.1} over this volume leads to

(1.6) !Uudsj“['lﬁdf/:oa

where 5 denotes the surface of the volume ¥V, dS; =n; dS represents a surface element
with a normal vector n;. Divide Eq. (1.6) by ¥ and define in the following way the
mean values over the volume and over the surface element AX, AX,,:

_l — 1 . ! .
<...>—-I;Vf(...)dV, D= AXRAX—MSI(...)nde, ktmt].

The surface integral in Eq. (1.6) is reduced to the sum of three subsequent diffe-
rences A of the surface integrals taken over the elements of the surface.
As an example, consider one of these differences:

1 ‘ 1 AX, AX,
?Afau as, =TX1 o101 (XI + T; X, Xa)“<ﬂ'i1>1 (Xl_ Tst, Xs)}-
5

In order to derive the equations of macro-continuum, let us investigate the limit
transition for the above relation when 4X, -»0. The result will be

I p 7
7AJ i1 dS1=“éZ<0'i1>1-
8
Adding in a similar way the expressions for j=1, 2, 3, in Eq. (1.6), and dividing by
the volume ¥, we obtain the equation of the macro-equilibrium

a :
) Ly =0,

where the tensor of macro-stress {o;;>; is, in general, non-symmetric.

Let X, denote the macro-coordinates of the center of masses of the volume V.
Denote with ¢; the vector of the relative positiontwith respect to the centre of masses
for some material point within the vegion V. Averaging Eq. (1.2) over the volume V
and observing that x,=X;+¢&;, we obtain

; b}
(L.8) . <Jik>:<aik>k+};¥;"<aij Eoi—<{fid.

It follows from this relation that the mean value of the stress tensor {g;,>, taken
over the volume, constitutes only a part of the macro-stress tensor {g,,>,, and must
not be directly substituted into the equation of equilibrium, [3]. Actually, the relation
(1.8) presents an equilibrium equation corresponding to the additional degrees
of freedom of the medium. In fact by multiplying the relation (1.8) with &, we
obtain a particular case of this additional motion (the balance of kinetic energy):

d .
(1.9) €11k {Oup T E €15 Fij ék)j‘(etkiﬁ &> =0.
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In-deriving the above relation it has been taken into account that g, (o> =0,i.e.
averaging over the volume does not change the symmetry of the tensor ¢, Equation
(1.9) contains, as it should have happened, the skew-symmetric part of the macro-
tensor {o,, ). Let us infroduce the notation below:

{ Tk :Txk , Lopy= T:; . <0“u“ Cur 5= Hige 5
lawoisCori=tn, <{file>=Pu, ety =M.

Following the current terminology T, denotes the usual macro-stress (Cuachy’s),
Ui — double stress, p,-couple stress, @ -double body forces, p~body couple.

Assume that the considered medium is a homogeneous continyum at the macro-
level. If the elementary volume is reducible to a point (§;—0), i.e. if the medium is
additionally homogeneous at the micro-level, then the following relations are valid:
=0, Ty =T7%, and it is sufficient to take inte consideration only the first, ,,classi-
cal”, equilibrium equation ' ‘

(1.10) —gZTiﬂr(ﬁ):O-‘

Due to the fact that in the limit fransition of a macro-volume down to a point
the macro- and micro-coordinates actually coincide, Eqg. (1.10) obviously does not
differ from Eq. (1.1). If the considered medium was micro-inhomogeneous, the
characteristic dimension of an elementary volume should fulfil additionally the follow-
ing requirement: it should contain a sufficiently large number of microelements
so as to make it possible to treat the material as a macro-homogeneous one. In
consequence, the diemensions of ¥ have a lower limit which is at least of one order
higher than the characteristic scale of the micro-inhomogeneity. In this case Ty, 777,
the macro-element can be subjected to a rigid rotation independently of the field of
displacements. This means that the limiting volume ¥ is no more a point but rather
a ,,rigid particle”. Therefore, Eq. (1.10) has to be completed with Eq. (1.9)

(L11y ' Ty + ot Pra=0,  Tu#Th,

é X, Hxis
where the square brackets denote antisymmetrizatibn with respéct to the borrespond-
ing indices. The obtained equation is typical of couple-stress elasticity, [11].

In a more general case of deformation of a particle one should consider Eq. (1.8)

o d
(L.12) _ | Tik“Trrc""B};#Uk“F@ik:O-

However, when the characteristic length for the gradient of macro-displacement
is ‘comparable ‘' with the dimensions of the macro-voluine, the stress field within
the latter will be inhomogenéous, and the limiting macro-volume will possess the
ability of performing more complex ,,clementary”- motions. To describe the latter
some more detailed equations of equilibrium might be needed. These new independent
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equations which contain \'couple stresses of increasing order can be derived in the
following way. Let us multiply Eqgs. (1.1) with the diadic product x, x,,:

Tigg X+ O X — oX. (dij Xy xm) +ﬂ K X =0.
. J

Averaging this relation over the volume brings

a - .
<Gik X,,,> +<aim xk> - X, <o-ij K xm>j + <f; X xm) =0.
J

After substituting the equality x, =X, + & and applying the above notation, we get

1 g i

(113) }ui(mk)‘_/-[;,/(mk) + E -ﬁ Higim + ? éfkm =0.

The paranthesis denotes here symmetrization with respect to corresponding indices,

* Hijrm =<GEJ ék ‘fm> ’ Do =L J1Ex&my 5

and the upper index ¥ indicates, as it did before, the mean value of the same
quantity taken over the volume, with exception of its surface. By means of a similar
procedure we can derive the S-th equation of equilibrium:

-1 2 1
Oty o ks) !‘lr(k‘ o E5) + E _¢9X_j His, ks + E @Ekl ks:(} .

. It can be seen that Egs. (1.10) and (1.14) form with S=1, 2, ... , a chain set of coupled
equations of increasing orders. It isn’t difficult to observe as well that in the case
when the mean values over the volume and over the surface coincide for all orders
of couple-stresses, the equations of the set separate and become a chain of conse-
quences; , . : . : L

In the paper {12] flow of a Stokesian fluid was considered and the characteristic
macro-volume was chosen with dimensions comparable to the characteristic length
velocity field gradient. The stress tensor in an arbitrary point of the macro-volume
was expanded in Taylor series. .

doy(X) 1 82a,(X)

+
axX, ¢

Uij(X+£):aii(X)__+ k E oX;0X,
EOAy

élaim"’? see

Within such a definition the macro-stress tensor o;; (X) was obviously a symmetric
one, while the first non-vanishing components of the Taylor expansion of the kinetic
moment of the particle led to the 'equatioh of diffusion of vorticity, as a consequence
of the balance of momentum equation. A similar situation arises in the case of Egs.
(1.10) and (1.14) when the micro-inhomogeneities of the medium vanish.

2. ’

‘Let us introduce the vector of macro-displacement U; (X), deﬁning itasa mean
value over the volume V for the field of local displacements w; (x):

@n ‘ Up=(u .
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We shall present the field of micro-displace.ments u; (x) as the sum of a regular
. component and an irregular one:

aU,
(2.2) w(Q)=Uit o~ §J+u:

Here u; (x) denotes the pulsation of the displacement caused by the inhomogeneities
of the medium. The representation (2.2) is compatible with the definition (2.1) if
the following condition is fulfilled: <u,»=0.

The macro-strain tensor {g;> can also be introduced as a mean value over the
volume V for the tensor ;;, defined by Eq. (1.5): ‘

(2.3) Ceygp = (< e > < >)_E( gz + a;;h )

The above expression contains mean values over the surface for a vector quantity.
In the papers [2, 3] it was assumed that there is an equivalence between the mean
values of a vector when taken over a volume or over a surface. This assumption
cant be justified on the basis of the following consideration. .

A mean value over a volume for a quantity ¢;;...(x), denoted {g;;...>, can be
reduced to an integral from mean values over the surface. For example, with the
normal vector #;:

1 1
@1y --->:"17f¢ij(x1ax2:x3)dV:A—le<(”ij--->1 dxy .
V .

Since the calculations are performed within the elementary volume ¥V =4X, 4X, 4X,,
the quantity (¢;;...> becomes a function of the point x; =X, +¢&,, X,, X;. We shall
consider further the situations for which this function is a deterministic one only.
The necessary condtion for that is a sufficient “stirring” of the micro-inhomogeneities,
and V' A*, where A denotes the characteristic length or micro-inhomogeneities.
Only in the case when {g;;...>;=const, which means equal mean values over the
limiting planes, are the mean values over the volume and over planes of different
orientations identical. The differences in averaging over various planes as well as
over the volume involve automatically some additional geometric characteristics,
like normal vectors to the planes. Consequently, averaging over the surfaces might
put a macro-vector {¢»; in correspondence to the micro-scalar ¢, as well as a macro-
tensor {g;»>; in correspondence to the micro- vector ¢;. This possibility must be
excluded for physical reasons since we demand the macro-characteristic of the den-
sity to remain a scalar, and the macro-displacement a vector. Beginning with tensors
of the second order, e.g. the stress tensor, the introduction of the vector of the
averaging plane orjentation can change the quantitative relations between the com-
ponents and can disturb even the symmetry of the tensor but, at the same time,
must not change its order.
Therefore if

(g () ;= (x = U (X)),
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we have

1 (an x) aU,-(Xl)

2.4 = 5 ax, —+ oX,

In accordance with the eXpression (2.2) the field ¢;; can be presented in the following
form:

i

: 1{eu, o )
(2.5) o & (0= X (811;-_ o ax, )+3ij ©-

It is assumed here that the field of fluctuations &;, (£) obeys the condition

(2.6) ey =0.

Suppose that the fluctuations of the strain tensor &, » due to the micro-inhomogenei-
ties of the elastic properties of the material are caused by the macro-strain (g;,).

This corresponds to the case when the only kinematic variable is the displacement
vector of the centre of masses of the region V.

3.

In order to establish the dependence of the fluctuations e;, on the mean strain
{&;j». let us investigate the micro-equation of equilibrium (1.1). Assume that the
body forces vanish (f; =0) and denote by o,; the difference’

(3.1) U:jzgu(x)*<0u>-
This yields the equation

L/ 0
ox, THT

J

(3.2)

In deriving this equation the fact that the tensor {g;;> does not depend on micro-
-coordinates was taken into account. The {ensor of elastic moduli L, ,, (x) for the
volume ¥ can be expressed in the form

(3.3) Lijee(x) =LY, + 0Ly (%),

where L), ={L;5> is a deterministic quantit independent of coordinates, while
4kl J q y p
{BL,3,;» =0. Taking into account the representation (2.5), we get
(3.4) ﬂ‘;rj :Lfm 8::1 + 0L iy ({orry + 5:1) — 0L 3;1> :
Substituting this expression into Eq. (3.2), we find
g

(3.5) Fr L S;I =F

J

where
o d * *
Fp== ox, 0Lyt (e + 8 —<OLijur &) |-
: ‘ .

Ong can consider the vector F; (x) as a distribution of body forces in the homogeneous
medium, characterized by the tensor of elastic moduli L},,,. It follows here that the
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particular solution of Eq. (3.5) can be expressed with the Green’s tensor U, (x, x")
which is defined as such a solution to the equation

(3 6) LV az Ulm (JC,JC)

ikl a a + 5 (x 'x ) 5:111 7

which has the property of vanishing on the surface of the characteristic volume,
Instead of demanding an exact satisfaction of the unknown boundary conditions
for the function s:, (x), we will apply rather the condition (2.6), that is satisfy the
boundary conditions mtegrally One can show that th1s condition is fulfilled by the
following solution:

u! (JC) fUlk (x x) [(SLkImM (x) (<8mn>+8mu (xl)) <§Lk,}mn mn>] dx
After differentiation of both sides and partial integration, we get

(37) 6:_;‘ (JC) = f Gijkl (x, .)C') [JLkhmr (xl) (<8;m (x’)) - <5Lklmn E;m>] dx 2

where

. [ 8 Uy ] '
ik dx; ax: (u)(kz)

Under the assumption that the dimensions of the characteristic length of the micro-
inhomogeneities, we substitute for the Green’s function Uy, the function U for an
unbounded medium. For a polycrystal, for example, this leads to an error of the
order dfA, where J is the characteristic lenght of a grain, 4 denotes the characte-
ristic dimension of the macro-volume. Being translationally - invariant, the tensor.
U, and hence the tensor” G, depends on the difference x— x” only, except for the
vicinity of the surface. Therefore, the integral in Eq. (3.7) turns to a convolution.
Bearing in mind the commutative properties of convolutions and performing aver-
aging over the characteristic volume on both sides of Eq. (3.7), we come to the conclu-
sion that {e;,» =0. The integral équation (3.7) gives a relation between the fluctua-
tions ¢;, and the regular part of the strain tensor ey, as well as fluctuations of
the elastic moduli of the material. We shall give an approximate solution to this
equation, assuming the micro-inhomogeneous material to be a polycrystal.

The tensor L;;; (x) becomes a step function fot a polycrystal. It can be presented
therefore in the following form:

(3.8) Liga ()= Y 8,() L.

Here L], denotes the constant value of the field L;,; (x) within the region o, occupied
by the r-th crystal, §,(x) is the characteristic function of this region equal to unity
within the region and vanishin everywhere beyond it. In a similar fashion we can
present the quantity JL;, where LG =Ly — Ly
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Averaging on both sides of Eq. (3. 8) over the volume V, we get

(3.9 o _L:;_r,_:_r ZLUM

where the summation is extended over all crystals contained in the region V. The
differences in values of the tensor L[, for neighbouring grains are due to variations
in the orientation of the crystallographic axes of monocrystals Denoting by w,
the orientation of the r-th grains axis with respect to ths laboratory system of coor-
dinates, we can transform the expression (3.9) and obtain

’ i
(3.10) L= 2 Cr Luga @),
where ¢,=v,/V. Taking into account a Iargc number of crystals in the region ¥,
we shall make a limit transition from the discret to the continuous distribution of
the orientations of crystals, substitutmg an mtegral for the sum in Eq. (3. 10)

(3.11) . L= f L; iy (0) Clw) der=CLiijir) s -
Here ¢ (w) denotes the continuous density of distribution over orientations, and
(0L, m>w=0. Thus averaging over the volume for the field of elastic moduli has
been reduced to the calculation of the ensemble average over the set of realizations.
When the polycrystal is macroscoplcaﬂy 1sotroplc we get

LZkIMk 5(1 5H+2)u' ( Likl éif()‘kl)s

* where the mean elastic moduli, the bulk mbdulus k* and the shear modulus o,
are expressed by linear invariants of the tensor L;;, according to the well-known
relations ‘ :

| 1
(3.12) - kY=g Luns W= Ly =3K").

Taking into account these results and mtroducmg for a while. symbolic notatlon
we obtain

(3.13) <5L: a*)r,-ZCrc‘iL’: g, '(cu,,):<5L: s,f)m,
where ¢, (w,) denotes the mean field of &* (x) for the volume v,.

Observing that & (xX)=<{e>+¢&* (x), {(SL: s }wm<5L £,0s We can present Lq.
(3.7) in the following form:

(3.14) e(x)=<{e>+ fG(x-jx'): [6L (x"): e(x")—{JL: &,>,]1dx

Let us fix the point of observation x in the region v, of an arb1trary grain, Separatmg
the integral over region, we can write . '

(3.15) g(x)%<e>+ fG(x—x’): [6L>: s(x’)—(.cSL: a,l,)m'] dx’+

by

V=g

;_1;2'fG(x—x-'):éL’:s(x’)dx’— fG'(x x’} <5L & dx’,
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where the apostrophe at the sum denotes lack of summation over the region v,.
Let us present the sum in the form
DV [GGe—xn: ar: s(xyde= X" [ Gx—&—0): oL (& +0) dL

roovy ro
where { denotes the vector connecting the centre of masses & of the r-th crystallite
with an arbitrary inner point of the volume. Since the integrals are non-singular,
we can expand them in Taylor’s series in the neighbourhood of points &, retaining
only the first term of the expansion

S Gle—x) BT e () dx' DG x=E&): 6L 8, (),

roov , r

The idea of the expansion, with the following rejection of all but the first term,
consists in substituting dipoles located at the p_oints &, instead of taking into account
the influence of the whole crystalline structure on the field &. The next step towards
the calculation of the sum will be made when the discreet distribution of the dipoles
in the region ¥ —w, is replaced by a continuous one. To this end, the density C (x, )
will be introduced; this in turn under the assumption of the macroscopic homogeneity
in the neighbourhood of the considered grain can be expressed in an approximate way

1
by the relation C {x, a))z? C{w). Finally, assuming that the absolute and relative

{for fixed w,) mean values coincide for a large number of crystals in the region V,
we get . ‘
VG (e~ 8L £, (w0, = [ Glx—&y: (oL &, dt.

r V—va
In this case, the sum and the last addend on the right hand side of Eq. (3.15) are
equal. As a result the equation takes the following form:

(3.16) e(X)={>+ fG(x'——x’): [6L%: e(x")Y—<{OL: g,>,]dx".

In order to proceed with calculations further, we need to know the shape of the
region o, If the geometry of the grain can be approximated by a sphere, we may
use the expression for the Green’s function which corresponds to the isotropic

- v
tensor L,

1 [ O - < 3K+ Y 82|x—x'l]

Ualx—x)= [x—x"| 3KV +44¥ | Gx; 0%

8mau¥
In this case

fG'(x—x’)dx’= -P,
where P denotes a constant isotropic tensor. It can be expressed by the components

of the tensor L[, in the following way (*):

Pe(P. ) 1 203V +6u%) . 1 55
—( ijkl)_méijakl—!-SHV(3]CV+4#V) ( ikl 3 ij m)-

"(*) Note that in the case of an ellipsbidal shape of the ‘v, region the tensor P is also a constant
one which possess an orthorhomboidal symmetry.
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Consequently, we obtain . . .
(3.17) £ (x)=(e) +P: <§L et [ Glx— x) SL*: e(x)dx

On account of the polyuomlal conservativeness of the operator (/—G)~*, [13],
the solution of the integral equation (3.17) is given by the function & (w,) which
depends solely on the orientation of the considered grain and does not depend on
the micro-coordinates:

(3.18) C e{w)=A, ((e>+P: {OL: 8),).
Here A, denotes ' ‘ _
Ay=A(o)=(I+P: L7~ 1.

Thus, &, {w)=e{w,) and <{dL: &>,=¢dL: &>,. Multiplication of both sides of
Eqg. (3.18) with L (w,) and calculation of the ensemble average over orientations
brings the expression of the ensemble average over orieniations brmgs the expression
for {dL: &>, : :

{3.19) (OL: £ ,={8L: Ay,: {A>7 : (&>,
Substituting back into Eq. (3.18) gives
(3.20) e{m)=A,: (A>T (&),

Finally, making use of th relation £* (w,)=¢ (w,)—<e), we come to the expression
(3.21) e (w)="=B,: (&>, B,=T—A,:{A>;*.

This is the solution to the problem of the relationship between the fluctuations of the
strain tensor and its regular part, obtained within the assumptions given above,
The flucutations’ field ¢* turns out to be piece-wise constant with B, =8 (w,) being
afourth-order positive determined tensor,

4 B .

In order to find the only kinematic variable, the macro-displacement vector
U, (X), we need one macro-equation of equilibrium. It might be obtained from Eqs.
(1.10) to (1.14} by reducing the set of equations.into a single equation of some higher
order. In fact, substituting into Eq. (1.10) the expression for Ty, from Eq (1.12) and
assuming vanlshmg body forces, we get

a2

d
V
(41) ._ . a Tik 3XkaX ﬂ!(}k)‘"‘o

Subsequently, the quantity Jul( 1 can be expressed from Eq (1. 13) and substltuted
into 'Eq. (4.1). ‘As a result we obtain

2 2 8
4.2) 7, =0

e W et T e
ax; X0, en Ty TaX, 0x,0X,, H
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Continuation of this procedure yields the following equation:

4.3) T"+2( b L +
(-__ aX ik (S 1)' aXm 3X M: {my'*msk)

mg
N
+ nl BX aX H; (mpaetity )

m, my

=0

for an arbitrary value of n. The presented procedure means in fact the reduction
of the macro-stress tensor T, to a sum of gradients of moments of increasing orders
for the micro-siress tensor ¢;, distribution. Consequently, we get the equation of
equilibrium which contains mean values over the volume only, except for the last
addend, which presents the mean value over the surface of the region. Assuming
some partlcular order of the exactness of the theory, we can neglect the differential
terms of the higher order so that the truncated equation of equilibrium will not
* contain any more the mean value over the surface. For example, when the members
of order (A4/N)? are kept, where / denotes the characteristic length for the gradient
of macro-displacement, the macro-equation of equilibrium takes the form

" J a2 1 a2
*3) ox, Ta™ ax.ax, Moo T3 Gx.x, 0%, M =0
Substituting into this equation the relation (3.1), one gets
a? 1 3
. +
. (44) BX <dik> aX BX < i;ék> 2 aX aX aXm <JIJ§{€6]">

1 a2

+ 5 m‘ljm {our=0,

where J;,,=<{&; &> denotés the specific moment of inertia of the macro-region V.

: .
If there is no micro-inhomogeneity (a;,‘=0), we get (o ={oyy and X {ou> =0,
k

according to Eq. (1.10) for f; =0. In this case the last member of Eq. (4.4) also vanishes
as a consequence of Eq. (1.10). In order to retain in the equation of macro-equilibrinvm
only the moments of the stress tensor distribution a; » let us multiply Eq. (4.3) by

2

———J,;. and deduct subsequently the result from Eq. (4.4), neglecting the
aXJ 8)(1?:

higher order terms. In effect we will obtain

32

a
(4 5) aX [<a:k> aX <O-ij ék) 2 BX 3X (0'” ék ém>]

‘Let us now express the quantities entermg Eq. (4.5) by the kmematic Varlab!c
U, (X). We have

au.
<Jik> =<lemn 3mn>, ﬁLgmm EX;’_ + <6Likm}l 8mn>a) .
M -
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Substitution of Eq. (3.19) into this relation gives

h

(4.6) o> =Ligomn 55> /
where
4.7 LP=LY 4 {0L: AY,: {A>;!

denotes the effective elasticity moduli tensor of the polycrystal. Note that Eq. (4.7)
coincides with the expressions for this quantity derived in the papers [4, 5] using the
methods of the theory of random functions. Besides, as it has been stated elsewhere,
[14], the expression (4.7) for the tensor L’ can be obtained as a result of the best
approximation procedure of the 7 matrix theory when the numerical properties
are taken into account.

- Let us consider now the second addend in Eq. (4.5). Using the formula (3.4
and expressing the coordinates &€ in the form ¢ =&+, where & denotes the radius-
-vector of the centre of masses of the r-th grain ({{>,=0), we get

(o= YL et @)+ (D).

We shall assume that the sums in this relation can be replaced by integrals and,
accordingly, the radins-vector ¢" changes continuously. Introducing as above the

1
density 7 C (w), we obtain

4.8 (@' & = (L2 €30 +{BL>g: (£))<E=0
since, by definition, (&> =0. Similarly, taking into account the relation {SLEE> =
=LY, J==0, we get

(0'E= DI o (@) & & +L ¥ @) =T(OL: 6%,

1 o
where "= Y=— |} {, L, dv. The limit transition from sums to integrals leads to
km o h g

I'vr

1 ‘
ZC‘L": ¥ () E =T %>, ?L’: e¥(w)i"={L: e%>,1i,

where i={i,)=<i,> denotes the mean specific moment of inertia of the crystallite
(i=0 (d?)). Consequently, '

, au,
(49) <Gij ék ém) = == <‘§Lljot,’i BotﬁrS)m _(9? .
5

Since the shape of the grain has been assumed to be spherical, we have i, =
=i Substitution of the formulae (4.6) to (4.9} into Bqg. (4.5) leads to the following
differential equation with respect to the vector of macro-displacement U; (X):

0 ( o = id? ) T o
(4.10) Lt 5 id? Mipn BA’RaA_’,,—_ .
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32

ax, 90X,
Equation (4.10) has the same form as in the “gradient” theory of elasticity when the
considered kinematics is based on the classical theory; while the elastic potential
is assumed to depend not only on the strain tensor but also on its gradient I8, 91,
“The same form of the equation is obtained in the theory of elasticity with micro-
-structure [10] in the case of a long wave approximation, when Eq. (9.31) does not
contain inertia terms. All these theories are constructed axiomatically by introducing
potential energy as a function of governing parameters, and by applying subsequently
the minimum principle to this function. The coefficients of the equation of equilib-
rium become constant tensors in such theories, and their comnection with
" micro-structure is not clear. On the contrary, in the present approach the coefficients
of Bq. (4.10) are expressed explicitly by the characteristics of the inhomogeneity.
In particular, for an isotropic aggregate of cubic crystallites we obtain

(4.11) (24 12 (1-d, V?) aX a())(()

where M g =<0L;xus Bugmuyo and V2= denotes the  Laplace operatof.

+ (1 —-d, VIV U, (X)=0.

Here A*, ¢ denote the effective Lamé constants:
J 1 D s 1 D
,1#31;{5_'"#39 2 2]’,u

The quantities appearing in these relations can be expressed by the moduli of elasticity
of a cubic monocrystal Cyq, Cyz, Cug:

I 2 1
B=m(Cyt2C) =5 @, w=p =D, W=CutoC,

5

dCyy . I
C=C;—C,—2C44, D:m;, C12=C12+-§C,
3y 1 3Ct,+8u”

0C,,= 25

P s o

=3olle3e)

Note, that averaging Eq. (1.1) over the ensemble of realizations leads to another
result. In the paper [6], for example a random inhomogeneous defermation of a poly-
crystal was considered. It was proposed to derive the relation between the mean
stress and mean strain by expanding in series the flucutation &; 1) :

: 3
el ()C) Ea” . <smn (X)>

“; ax}.k

where the coefficients aré homogeneous randor furictionis. Caleulations have shown
that such an approach leads to nonlocal constitutive relations of the following form:

@12) C oul = L = ¥ D b
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The nonlocality is caused on one hand by the inhomogeneity of the field (e (x)),
and on the other one, by a non-vanishing radius of correlation of the fluctuation
field of elastic moduli which is of the order of the mean grain diameter.

‘The “gradient” theory of elasticity for a small inhomogeneity (JL<L") was
proposed in the paper [15]. The following representation was assumed:

) ll: (x) = @imn ()C) <8um (X)> s

where the tensor p (x) is determined by the Green’s tensor of the theory of homoge-
neous elasticity as well as by the tensor dL. Then the potential energy W={g,; 2;;
was calculated and the Lagrange’s variational principle applied. The latter leads
to an equilibrium equation of the (4.10)-type, where the coefficients have the
same order as in Bq. (4.10); however, their values are nevertheless different ffom
those in Eq. (4.10).
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STRESZCZENIE

0 PEWNEJ OGOLNEJ TEORI KOMPOZYTOW ORAZ SPREZYSTYCH OSRODKOW
MIKRO-NIEJEDNORODNYCH

Opracowana jest metoda udrednienia wzgledem objetosel réiniczkowych réwnan rownowagi
- niejednorodnych ofrodkow sprezystych, skladajacych si¢ ze skiadnikéw o znacznie réznigcych sig
modutach sprezystodei. Otrzymano ukiad rownafi réwnowagi w wielkodciach ,,makro™, w ktorych
pojawiaja sie makro-tensory naprezefi, naprezei momentowych i innych naprezen, wszystkie
rosngcego rzedu. Tensory te sa w ogdlnym przypadku niesymteryczne, poniewaz wprowadzone
zostaly jako Srednie ze wzgledu na zorientowane elementy powierzchni. Uklad réwnan sprowadza
sig do jednego rownania, zawierajgcego szereg z pochodnych naprezen rosngcego rzedu, usrednio-
nych jedynie wzgledem objetodci oraz pozostaly wyraz, bedacy pochodna naprezenia usrednionego
" wzgledem powierzchni. Obcinajac szereg dla danej doktadnosci otrzymuje sie rownanie réwno-
wagi, ktdre okazuje si¢ wystarczajagce w przypadku, kiedy jedna zmienna kinematyczna jest
wektor makro-przemieszczenia, Przedstawiona jest konstrukcia rownania typowa dla ,,gradientowei”
lub , nielokalnej” teorii sprezystodci. Przeprowadzono obliczenia dla polikrysztalu przy zalozeniu
rownowaznoéel usrednienia wzglgdem objetodci i wzgledem liczbiy mozZliwych realizacji.

PeszmowMme

OB HEKOTOPOH OBHIE¥I TEOPHMM KOMIIO3UTHBIX MATEPHUAJIOB U MUIKPO
HEOOHOPOAHBIX VIIFYI'MX CPE]

PasemBaercs MeTonm ocpefiendd 0 obbeMy OIEOQOPCHUHMIPHMK YDPABHCHHAM DaBHOBECHS
HEO[HOPOIHEIX YIIPYTUX GO, COCTOMINEX B3 KOMIIOHCHTOB, Pa3/HYRIONIMXCA 3HAICHISIME YOy~
tax monyneir. Tlomyuena NENOURA MAKPOYPABECHHUY PARRORECHA, B KOTOPHIX DUryPHPYIOT MAKpO-
TFECH30PE HANPKCHRH, NBOMHMX HAanPAXCHMHE M APYTHX HAODAKCHEH BCE BO3PACTAFONIETO PAHTA.
B ofmeM clIyd9ae 9TH TeH30PA HECHMMETDHYHS! H3-3a NPABHIA BBSOCHMS HX KaK CPEHAX 10 OPHEH-

" THpOBAHHEIM ILTOIIAHKAM. [lenouxa ypaBHERMI CBOAATCA K OAHOMY YDABHSRHIO, B KOTOpOE BXO-
JAT PAR B3 OPOEIBONHEIX 07 HANPMKEHHH HOBMOIAIOMMXCA DANTOB, OCPEIHEHHEIX TEIEKO WO
obpeMy, U OCTATOUHBN WISH — HPOH3BOAHAA OT HANPDKeHHS CPEOECTO OO moBepxHocrs. OOpeB
paOa ¢ 3aJaHHOH TOYHOCTEIO IPRBOJANT K yPAaBHEHHIO PAaBHOBECHA, KOTOPOE OKA3EIBASTCA HOCTA-
TOYHBIM, €CIIH €/IMHCTBEHHOH KENEMATHICCKOH IEPEMCHHOH SBIASYCH BEKTOD MAKDPO-MEIIEHHA,
TTomywaemas KOHCTpYRIHSA YPABHCHHN XAPAKTCPHA Iaa ,TPANMCHTANGHON WMIH ,,HCHOKAILHON' .
TEOPHE YOPYFOCTH. BHIMHCIEHHS MPOBEACHEI A IOMHKPHCTAINA B OPelUIONOKeHHM 0O 3KBMBA- .
JICHTHOCTH OCDeNHeHMs 110 o0’eMy H 110 MHOKECTBY PeajH3aIlfii.
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