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STABILITY CONSTRAINTS IN OPTIMIZATION OF CRACKED
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Maximization of the critical force of cracked columns, subjected to generalized follower
force is discussed in the paper. The crack is assumed to be formed according to the opening
and sliding modes and is modeled by a localized loss of stiffness. Influence of the crack stiffness
and its localization on the value of the critical force is analyzed. The optimization process
is based on the multimodal approach. The localization of crack with the critical force of the
system equal to 137.17 EJ/L2 is found.

1. Introduction

The structure considered in the paper is loaded by a follower force, i.e. the
force that moves with the body on which it acts and that preserves the same
attitude to this body during the loading process. In the present model, the
force inclination and its eccentricity are proportional to the actual structural
displacements. The contact force between the rail and the wheel, the reaction
force of the bridge span support, the force of the vapour pressure acting in the
Laval rotor or friction force of fluid against the pipes in fluid conveying pipes,
are examples of the considered loading in mechanical systems. Some of them are
discussed in literature, see references in [1] and [2]. Stability and optimization of
systems subjected to follower forces have been intensively developed for the last
three decades, whereas new results introduce an improvement in the stability
criteria and new research in optimization.

In literature, the optimization of nonconservative systems is often developed
on example of a column subjected to a concentrated compressive follower load,
tangential to the deflection curve. This simple structural model leads however
to some difficulties in structural and numerical modeling. It is due to the fact
that the system has no potential and is governed by non-selfadjoint differential
equations. For example, differences of about 20% in the value of the critical force
are obtained by the authors of [3] and [4], by using the same optimality criteria
but different methods of solution: the variational one and FEM.
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It is observed that the result of optimization of nonconservative systems de-
pends strongly on the starting point in the space of design variables, i.e. initial
dimensions of the column. The proper choice of initial parameters can be es-
sential for analysis. For example, a single crack located in the column span can
increase the value of critical force of the column or beam subjected to follower
compression [5, 14]. The optimal shape of a stepped column, shown in Fig. 1a,
was found by Bogacz et al. [6]. Probably the first result in the class of contin-
uous variation of the column cross-sections was obtained by Życzkowski and
Gajewski [7]. As far as the authors know, the best present result of the column
shape optimization, shown in Fig. 1b, is reported by Tada et al. [8].

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1. Selected results of shape optimization of column subjected to follower compression 
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Fig. 1. Selected results of shape optimization of column subjected to follower compression.

In the present consideration the design variables, crack localization and stiff-
ness are searched through to find the maximum value of the critical force. Crack is
modeled by a localized loss of stiffness as an elastic joint with possible rotational
and shear deformation. The critical force is determined from the configuration
of characteristic curves on the force-frequency plane, which are obtained from
the characteristic equation of the problem. The flutter force, the local maximum
of characteristic curve graph, occurs at nonzero eigenfrequency, whereas buck-
ling occurs at the eigenfrequency equal to zero. In the multimodal analysis 4–6
first eigenfrequencies are considered. More details of the optimization process
are reported in Sec. 3.
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2. Formulation of the problem

2.1. Model of the column

The considered model of column consists of segments of length li connected
by elastic joints. The column is subjected to a generalized, follower compressive
force P . The equation of motion for the i-th column segment, for small harmonic
vibrations, has the form

(2.1)
∂2

∂x2

(
EIi

∂2yi

∂x2

)
+ P

∂2yi

∂x2
+ ρAi

∂2yi

∂t2
= 0,

where ρAi denotes the mass per unit length and EIi – stiffness of the i-th
segment. In the further analysis the cross-sections, masses and stiffnesses of the
segments are assumed to be the same in the whole column. The separation of
variables is considered in the form

(2.2) yi(x, t) = wi(xi) exp(iωt),

where ω is the angular frequency. The exact solution for the segment of uniform
mass and stiffness distribution is given by

(2.3) wi(x) = A1 sinhλ1xi + A2 coshλ1xi + A3 sinλ2xi + A4 cosλ2xi,

where

(2.4) λ1/2 =

√√√√± P

2EIi
+

√(
P

2EIi

)2

+
ρAiω2

EIi
.

2.2. Boundary conditions

The considered model of loading, the so-called generalized follower force,
includes the variation of both the force horizontal displacement e and the force
inclination at an angle of χ, as shown in Fig. 2a, [9]. These two parameters
depend on both the actual generalized displacements, f and α, of the structure
at the point of the force application. The bending moment M = Pe and the
transversal force component H = P (α−χ) are finally included in the boundary
conditions

(2.5) w(0, t) = 0,
∂

∂x
w(x1, t)/x1=0 = 0,

(2.6)

∂2

∂x2
w(xn, t)/xn=L + λ

[
δ

∂

∂x
w(xn, t) + ϑw(xn, t)

]

xn=L

= 0,

∂3

∂x3
w(xn, t)/xn=L + λ

[
µ

∂

∂x
w(xn, t) + γw(xn, t)

]

xn=L

= 0,
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Fig. 2. a) Model of column subjected to generalized follower load,
b) Segmentation of the structure on example of Beck column,

c) Euler column.

where δ, ϑ, µ, γ are the non-dimensional parameters and L is the length of the
column. In this way, values of the parameters δ, ϑ, µ, γ determine the boundary
conditions.

Taking into account that the loading is an inseparable part of the whole
system, the type of the boundary condition implies its conservativeness or non-
conservativeness. Let us consider an operator Fx of the Eq. (2.1)

(2.7) Fx =
∂2

∂x2

(
EIi

∂2yi

∂x2

)
+ P

∂2yi

∂x2
.

The system is conservative if the operator (2.7) with respect to boundary con-
ditions (2.5) and (2.6) is selfadjoint. E.g. for e = 0 and χ = α (δ = ϑ = γ = 0,
µ = 1), the condition describes a conservative Euler column, shown in Fig. 2c,
subjected to a force applied to the free end, the direction of which does not
change during the loading process. For e = 0, χ = 0 (δ = ϑ = γ = µ = 0) the
condition describes a nonconservative Beck column, shown in Fig. 2b, loaded by
a force tangent to the column free end. This model will be considered in the
following section.

2.3. Model of the crack

We assume that a crack was formed according to the opening mode and
the sliding mode of development of the crack, so that in the mechanical model
presence of the crack is expressed by a discontinuity in displacement and slope.
Due to the fact that the column is loaded by a follower force, at location of the
crack, x = xC , the change of slope and shear depends on the rotary stiffness
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χR as written in formula (2.8a), whereas the change of deflection and bending
depends on the shear stiffness χS , as given in formula (2.8b):

(2.8a)
wI

i+1(xC)− wI
i (xC) = −γRwII

i+1(xC),

wIII
i+1(xC)− wIII

i (xC) = − P

EJ
γRwII

i+1(xC),

(2.8b)
wi+1(xC)− wi(xC) = γSwIII

i+1(xC),

wII
i+1(xC)− wII

i (xC) =
P

EJ
γSwIII

i+1(xC).

where (.)I = d(.)/dx and γR = 1/χR, γS = 1/χS represent additional flexibilities
of the column due to the crack, which can be calculated on the basis of fracture
mechanics. A model which is valid for a beam with a transverse open crack is
discussed in [10, 11].

2.4. Segmentation of the structure and design variables

In what follows, the dimensionless quantities are used:

(2.9) λ∗ = PL2/EI, ω∗2 = ω2ρAL4/EI, ui = wi/L, εi = xi/L.

The problem can now be rewritten in the following final form:

(2.10)

[uII
i (εi)]II + λ∗uII

i (εi)− ω∗2ui(εi) = 0, 0 ≤ εi ≤ 1,

u1(0) = uI
1(0) = uII

n (1) = [uII
n (1)]I = 0,

uI
i+1(εC)− uI

i (εC) = −γ∗RuII
i+1(εC),

uIII
i+1(εC)− uIII

i (εC) = − P

EJ
γ∗RuII

i+1(εC),

ui+1(εC)− ui(εC) = γ∗SuIII
i+1(εC),

uII
i+1(εC)− uII

i (εC) =
P

EJ
γ∗SuIII

i+1(εC),

where γ∗i = γiEI/L, χ∗i = 1/γ∗i are the dimensionless parameters of the joint
flexibility and stiffness, respectively.

We look for the cracks localization εC and stiffnesses χ∗R, χ∗S which maximize
the critical load under the following constraints: a constant total mass of the
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column, a constant column cross-section A and the total column length L. For
n cracks this condition is written as

(2.11)
n+1∑

i=1

li = 1,

where li is the length of the i-th column segment. For the localization of the
crack at one of the column ends, l1 = 0 or ln+1 = 0. The design variables of the
problem are

(2.12) ∆α ∈ {εC , χ∗R, χ∗S}.

3. Optimality criteria based on multimodal analysis

Consider the optimization of a nonconservative Beck column under the con-
straints of dynamic stability. The objective function λ∗cr = λ∗cr(∆α), where ∆α
stands for a set of design variables, is not defined explicitly. The optimization
conditions, imposed in the frequency domain, are defined as limitations on vari-
ation of the shape of characteristic curves. Tada et al. [12] proposed a definition
of the optimal point as the one that represents the state for which all pairs of
eigenvalues become double roots with the same value of critical forces, as shown
in Fig. 3. In the present research it means that we should determine localiza-
tion and stiffnesses of the joint, for which the successive double roots have equal
values:

(3.1) λ∗12 = λ∗34 = λ∗56 = ...,

where λ∗ij denotes the critical load corresponding to the i-th and j-th frequency
branches in the force-frequency plane.

P
Popt

w1 w2 w3 w4 w5 w6 wn-1 wn

w

Fig. 3. Configuration of characteristic curves for the optimal shape.

The authors of [13] have noticed that for the developed cracks, flutter can
occur with frequency tending to zero. Increasing of the joint stiffness produces
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increasing of the flutter frequency. The condition of optimal structure can now
be rewritten in the following form

(3.2) λ∗01 = λ∗23 = λ∗45 = λ∗67 = ...

The first term λ∗01 of formula (3.2) can be understood as flutter occurring with
frequency tending to zero. Notice that this term can have a second meaning.
With respect to divergent-flutter systems it can be understood as buckling for
which the frequency is equal to zero.

In first optimizations the authors increased the value of λ∗12 like in [3] or
λ∗12 = λ∗34, similarly to [4]. In the analysis presented in [6] and [12] the first six
eigenfrequencies were considered. Finally, we reduce the problem to increasing
the value of λ∗opt under the condition

(3.3) λ∗opt ≤ λ∗ij ,

where λ∗opt = λ∗01, λ∗12 or λ∗23.
Notice that the assumption (3.3) is very useful in calculations since the ne-

cessity of keeping the first two or three first values of the critical force within
the range of acceptable accuracy can be eliminated.

The next constraint is introduced to preserve a high value of the critical force
against the shape perturbation. Due to possible interactions between the suc-
cessive characteristic curves, a discontinuous decrease in the critical force value
can appear. The assumption of minimal distance between two successive char-
acteristic curves prevents such interactions. The formula for a sufficient distance
between two curves is as follows:

(3.4) ω∗i+1 − ω∗i ≥ c,

where c is a positive number and i denotes the i-th frequency branch. Such
formulation of the condition was introduced in [12]. It is seen that a switch-over
of characteristic curves resulting in determination of a critical force higher than
λ∗opt of formula (3.3) is permitted.

4. Numerical examples – maximization of the critical force
of a cracked column

Let us consider the process of maximization of the critical force of a cracked
column. The optimization process consists of two steps. In the first one, possi-
ble combinations of the design variables ∆αi are checked to find the values for
which the critical force takes a higher value. In the second step, this result is
taken as the initial guess for the gradient procedure. The procedure selects the
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design parameter ∆α by analyzing the configuration of characteristic curves and
satisfying the conditions (3.2), (3.3) and (3.4). Notice that the condition (3.3)
guarantees only a non-negative value of the gradient of the objective function
and not the largest one. Discontinuous changes in the critical force are prevented
by the condition (3.4). The obtained maximum value of the critical force is equal
to λ∗cr = 137.17 EI/L2 for the crack localization of εC = 0.382 and stiffnesses
χ∗S = 0.01 and χ∗R = 0.0001. The column is shown in Fig. 4a and the correspond-
ing configuration of the characteristic curves is depicted in Fig. 4b. The value of
the critical force is compared with the best result obtained for continuous mass
distribution, reported by Tada et al. [8], shown in Fig. 1b. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4. Optimal localization of crack and respective shape of characteristic curves 
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Fig. 4. Optimal localization of crack and respective shape of characteristic curves.

Notice that this result could be improved when higher frequencies would be
taken into consideration. However, this requires greater computational efforts.
On the other hand, due to a high sensitivity, such optimality is questionable
from the viewpoint of the structure reliability and safety.

5. Discussion of stability of the cracked columns and conclusions

The authors of [13] analyzed the problem of stability of column with localized
loss of stiffness described by a model similar to that given by expression (2.8).
On the force-frequency plane they observed two kinds of characteristic curves.
One of them can be attributed to a column with a joint located at the fixed
end, whereas the second kind concerns the column with a joint located at the
free end. Notice that the second localization of the joint does not influence the
stability of the column, the configuration of characteristic curves is the same
as that for a uniform Beck column. By changing the position of the joint, the
characteristic curves of one kind approach the origin of coordinates whereas the
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curves of second kind move away from it. The same phenomenon is observed for
the present model. In Fig. 5 the configurations of characteristic curves are shown
on the example of a column with optimal localization of the crack, considered in
the previous chapter. The curves of one kind are depicted by black line whereas
the curves of the second kind – by a gray line.
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Fig. 5. Two kinds of eigencurves of column with optimal localization of crack.

An interesting observation concerns the stability of a column with crack
which was formed according to the sliding mode, modeled by the loss of the
shear stiffness, i.e. for χ∗R → ∞ and arbitrary χ∗S . Any localization of the joint
and every value of the shear stiffness do not influence the stability of the system.
For each joint location and its stiffness, the shape of characteristic curves and
the value of critical force are the same as for a uniform column.

However, when the rotary stiffness of the crack is finite, the shear stiffness
influences the shape of characteristic curves. An example is shown in Fig. 6,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Characteristic curves of column with crack placed at $\varepsilon_{ for 
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 Fig. 6. Characteristic curves of column with crack placed at ε1 = 0.0 for χ∗R = 1e− 4,
χ∗S →∞ (gray) and χ∗R = 1e-4, χ∗S = 1e4 (black).
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where the shape of characteristic curves for a joint of rotary stiffness χ∗R =
1e-4 placed at εC = 0.0 and two different values of shear stiffness χ∗S = 1e10
and χ∗S = 1e4 are shown. It is seen that the column with hinge-joint, χ∗S →∞,
loses stability by divergence. The successive critical forces occur with frequencies
approximately equal to zero. Release of the shear flexibility causes that successive
critical frequencies arise.

Let us consider the column with a crack which was formed according to
the opening mode, modeled by the localized loss of the rotary stiffness, i.e. for
χ∗S →∞ and arbitrary χ∗R. The critical load versus dimensionless joint location
εC is shown in Fig. 7. Notice that the critical load decreases considerably for
εC > 0.3. Discontinuous changes of the critical force occur when the crack of
χ∗R = 0.1 and χ∗R = 1e-4 is located near the free end of the column. The dis-
continuities on the chart result from the qualitative changes of the shape of
characteristic curves. The phenomenon is described e.g. in [5, 6] or [13].
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Fig. 7. Critical force versus hinge-joint localization for various joint stiffnesses.

Let us observe the shape of the curve plotted for the stiffness of χ∗R = 1.0.
An analysis of this shape can give some information concerning optimal volume
distribution of the column. The simplest way to increase the value of the critical
force of the column of constant length and constant Young modulus, is to in-
crease the moment of inertia, namely to enlarge the cross-sections of the column.
We have concluded that the column cross-sections should be enlarged in these
coordinates, for which the critical force is lower than that for a uniform column.
On the other hand, the volume of the column can be taken away in these co-
ordinates for which the critical force is higher than that for a uniform column.
According to this, the optimal shape of the column relates directly to the shape
of the curve plotted in Fig. 7.

In the modern mechanical systems the follower load can be caused e.g. by
systems of active control. The present analysis shows that in the class of slender
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columns subjected to follower load, the existence of a crack not always destroyed
the structure. There are localizations of the crack, for which the critical force is
higher than that of a uniform column. Designer can initialize such localization
of the crack for which the cracked element under the action of the follower load
will not be destroyed.
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