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FINITE PLASTIC DEFORMATIONS OF ORTHOTROPIC CIRCULAR
PLATES UNDER GAUSSIAN IMPULSE

5. ANANTHA RAMUand K. JANARDHANA [ YENG AR (BANGALORE)

The permanent deflection of an orthotropic circular plate subjected to impulse loading is
presented. The impulse is assumed to impart a transverse axisymmetric velocity having spatially
a general Gaussian distribution. The simultaneous influence of the membrane forces and bending
moments is considered in predicting the deformations. It is concladed that the simple bending
theory ‘overestimates the final plastic deformation and the time of deformation of the plate. The
order of over estimation is not very much dependent upon the spatial distribution of the impulse.
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NOTATIONS

Radial circumferential coordinates,

radius of circular plate,

plate thickness,

standard deviation,

1y e),

Gaussian parameter {@-5),

radial and circumferential bending moments,

radial and circurnferential membrane forces,

yield moments in radial and cirmuferential directions,

yield membrane forces in radial and cirmuferential directions,

radial and cil'ctlmferentia! curvature rafes,

radial and circumferentiai strain rates,

Moyo/Mo OF Noo/Neo,

time,

time at which hinge circle comes te the centre withoui membrane
forces,

time at which hinge circle comes to the centre with membrane for-
ces, :
time of cessation of plate fnotion,

plate’ deflection in transverse direction,

plate velocity,

w0, 0),

displacement in radial direction,

rfb,

p ()b,

Po,"b,

Bessel functions of the first kind of zerc and first order,

8§ roots of equation J, (,)=0,

ofb,
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B (Vi b2 [My H),

g mass per unit area of plate material,
5 () Dirac-d function,
p(t) radius of hinge circle at time ¢,

po radius of hinge circle at #=-0,

oy 2
. e’

s 6 N
] ? !

1. -INTRODUCTION

1t is well known that the simple beading theory is inadequate to describe the
response of impulsively loaded rigid plastic structures. Significant improvement in
theoretical predictions can be achieved if the inffuence of membrane forces is consid-
ered along with bending moments. Such an investigation was carried out by SYMONDS
and MEeNTEL [1] for the impulsively loaded, axially restrained rigid plastic beams.
FLORENCE [2] examined the behaviour of simply supported circular plates under
uniformly distributed impulse and reported permanent deflections which are consid-
erably smaller than those obtained by WANG [3] by the simple bending theory.
Because of the difficulties in obtaining exact solutions when finite deflections interact-
ing with membrane forces are retained, attempts were made to develop approximate
bounding methods. WisrzBICKI [4] extended MaRTIN'S [5] upper bound theorem
on displacements in order to take into account the influence of membrane forces.
This technique is of limited use because it is dependent on the availability of an exact
static solution for the corresponding dynamic problem using Von Mises’ yield condi-
tion. An extensive study of the inffuence of ‘geometry changes on the behaviour
of dynamically loaded, rigid plastic beams, plates and shells has been carried out
by Jongs [6] to [10]. A detailed literature review of the dynamic response of structures
published by Jongs {11} focuses attention primarily on the influence of finite disa-
cements or geometry changes and material strain rate seositivity.

All the reported theoretical investigations which retain the inffuence of ﬁmte
deflections assume the material of the plate to be isotropic and the dynamical load
to be uniformly distributed over the surface of the plate. However, many plates used
in practice are of stiffened construction in order to achieve a high strength-to-weight
ratio. Such plates can be considered to exhibit polarorthotropy. In addition, the
applied dynamical load may have a general spatial disiribution which may signifi-
cantly influence the plastic response of the structure. '

The objective of this paper is to present the plastic response of an impulsively
loaded, simply supported, orthotropic circular plate considering the influence of
membrane forces along with the bending moments. The impulse is assumed to im-
part instantaneously a transverse velocity which is axisymmetric with a general
Gaussian distribution spatially. The solutions are obtained for a variety of distribu-
tions of impulse ranging from a uniform distribution over the entire plate to a con-
centrated impulse at the centre. The solution presented is an extension of an earlier
work by th authors [12] in which the membrane forces were disregarded.
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2. BASIC EQUATIONS

The problem of a thin, orthotropic circular plare under impulsive loading is con-
sidered. The impulse is assumed to impart an instantaneous velocity having a general
Gaussian distribution (Fig. 1) given by

Q@ W=V, e ¥ 5(1).

2.2
Weave €2 B(1)

Fic. 1. Gaunssian velocity distribution.

The material of the plate is assumed to be rigid plastic and the principal directions of
anisotropy coincide with the radial and tangential directions. Membrane forces and
bending moments acting on an element of the plate are shown in Fig. 2. The basic
equations governing the behaviour of the plate are

Fra, 2. Forces and moments.

() Equations of motion:
(rM,)' — My+rN, W' = f ur Wr,
2.2 o
(rN,) —Ng=urW' W .
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(i) Strain-displacement relations:

=i+ W W,
(2.3)
Eg=10/r,
: K,z(nr-f'll’)W”-!-l‘[W”—l.l” W’-‘M”W,
24 '

K.Q: W’/f.
(i) Boundary conditions:

M., 1)=0,

@3) Wb, 1)=0.

3, MODES OF DEFORMATIONS

The deformation of the plate takes place in two phases [12]. The first phase starts
with the initiation of the plastic hinge at radius p, at time ¢=0. If the yield moment
in the radial direction is greater than in the circumferential direction (i.e. Mo > Myg),
the first phase ends at a time ¢ =7, when travelling hinge comes to the centre. During
the second phase the plate continues to deform as an inverted cone with a stationary
hinge at »=0, until all the kinetic energy imparted to the plate is completely dissipated
by plastic deformation. Alterratively, if the yield moment in the circumferential
direction is greater than that in the radial direction (i.e. Mpo> M,q) at time =7,
the travelling hinge does not shrink to the centre of the plate but has a radius p;.
This radius p; is dependent upon the parameter K which is the ratio of the circumfer-
ential yield moment to the radial yield moment and is given by the equation

2p}(K—D—3y; + K—1=0.

During the second phase the plate continues to deform in the shape of an inverted
truncated cone and comes to rest when the energy imparted to the plate by the im-
pulse is completely dissipated by plastic deformation,

4. YIELD CONDITION

The equilibrium equations (2.2) must be solved uvsing a four-dimensional yield
surface relating N,, Ny, M, and M,. Joxes [6, 7] has shown that the simplified two-
moment limited interaction surface proposed by Hobae [13] gives reasonably good
results, Hence the same simplified yield condition and associated flow rules with
a modification for orthotropy as given in Ref. [14] is used in this investigation.
The yield condition and the associated flow rules are (Fig. 3):

Case 1.
Mo>Mgy, Nep>Ngo,
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For 0<r<p (1)

(4.0

For p{t)<r<b

(4.2)

Case 2.

For p{f)<r<b

(4.3)

Fic. 3. Yield condition.

Mr=M3=M00 N
N, =Ng="Ngo,

K.=0, K;=0,

6,=0, £20.

Ma kaT Mrp > Mso Ne toi Nro=>Nao
! > |
51‘.0 ’ s — Neo e Er
: ’,
T AT My % AT, Ny
il\Iloo Nao
. | |
Mo -+ Mro jar— Npg == Nrg -
Me K°1 Meo > Mro Nej 2'1 Neo>Nro
Myg Neo A
e ’
s L
e Y
4Ti04 My ;. ATH, N
Mao Neo
+—Mro———Mro—r 4o Nrg—e—Nygesf

Mo=Mpyy, OKM,<M,,, 7

N,.=Nyg, 0L Nyt Ny,

K,=0, K,=0.

-M90'2 Mr09 NBO;-ZVPO:

My= Mo, 0\<~Mr\<\Mro,

Nr:NrD’ OgNe'g_Nro,

K,.:O, K,;.‘//“O,
850,  §,=0.
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5. SoLurioN .

Case 1,
Moo>Mo,  Nep>Npg.
Phase 1. 0t/ :

At some time ¢ after the application of the impulse the circumferential plastic
hinge will have a radius p (). The motion of the plate is then described with the
following velocity field:

W=V,e “p* for 0O<r<p(s),
(5.1) . 1 2[ b ] f N b-
=Voe " p?|— n<r<h.
W=V,e " p b—p () or  p(O)<r |
It is to be noted that Was given by Eq. (5.1) is continuous across the travelling hinge
and satisfies all the flow conditions and the boundary conditions as well. .

As a first approximation, if the membrane forces are neglected, the position of

the plastic hinge at any time can be shown [12] to be given by the equatiosn.

(5.2) IEHI(Bi +B,)(B3,

where ¢, is the time at which the plastic hinge comes to the centre and
By =[1—6(1—y5) ¢+ yo—Syp-+ 3ygl e~ ¥y 3fm =% erf (ewo) ,
(5.3) By=[-146(1—3)c 2 —p+ 52 =3y e y2 + 3/m e~ erf (cyy),
By=~146c"2+8,.

In Egs. (5.3) y, is the position of the hinge at f=0. This is determined as a function
of the Gaussian parameter ¢ as in Ref. [12],

As the deflection in the first phase of deformation will not be too large, the time
function for the case where the influence of membrane forces is taken into account
can be written analogous to Eq. (5.2) as

(5.4) t=i(B;+B,)B;,

where 7 is the time at which the plastic hinge comes to the cenire of the plate and is
determined later. .

The region of the plate between the radii p, and b lies in the plastic regime given
by Egs. (4.2) for all time, whereas the region between the radii p, and p (1) lies in the
plastic regime given by Egs. (4.1) up to a time #,, and for ¢3¢, it lies in the plastic
regime given by Eqgs. (4.2). Hence, using Egs. (5.1) the deflection of the plate is
given by

" .

b

W(F: t):f Voe_aipZ (b:-;)—)dt for pgéréb,
0

(5.5)

T
r
W(r, [):Vge_ﬂzpzfr-«i—fVo ewaipz(b_)dt for pO=sr<py(f).
iy
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Combining Egs. (5.5) and (2.2), and integrating the resulting equation of motion,
we get the distribution of radial moment in the two regions of the plate. Using the
continuity condition of radial moment at r#p,, we get an equation of the form
Vof By B, l4B4Bs B+ 1]%’

. = — o
(5:6) H 8B, 3B, 3

where B, and B are known functions of p, and ¢. The actual expressions are not
given here as they are lengthy. For the particular case of a uniformly distributed
impulse (c—=0) Eq. (5.6} reduces to Eq. (25) of Ref. [6]. At t=1{, the deflection of
the plate is obtained from Egs. (5.4) and (5.5) as

Vof
W(r,t')=—ngv~‘(1—x)36 for pe<xgl,,
(5.7) ?

r Fl

LY
W(r,t)="B3 B, for O<x<y,,

where
By=1.5¢"2—0.5—(1.502+ 1.5¢7> —0.5—yg) e~ 2<* ",
By=[—1—x+6(1—x)c *+5x>=3x* e <" ¥ +3(m)! ¢~ erf (cx) +
+B,+(1—x) [(1.5¢72— 0.5~ (1.5x* 4 1.5¢72— 0.5~ x) e~ 2" ~']..
Phase 2 /<1<¢, ‘

After the time =7, it is reasonable to assume that deflections are large in com-
parison with plate thickness. Hence the rate of energy dissipated in stretching is
more than that by bending. The plate could be considered to behave as a membrane
and the second equation (2.2), can be reduced to the standard Bessel equation.

(5.8) : W't W fr= W Ny .

~

FoHowing the conditions that deflection must be finite at r=0 and zero at r=b,
the solution of Eq. (5.8) is given by '

(5.9) W, )= 2 (E, 008 7, 1+ F, sin p,1) Jp (%),

s=1

Moo Vb
where ysﬁ( - )zfls .

The constants E, and F, are evaluated using the condition that dt #=7 the deflection
and the velocity from the first and second phases must be continuous. The plate
comes to rest at time £, when the velocity at every point of the plate vanishes. Using
Eq. (5.9) we get

(5.10) tp=y7 ' tan~ (K, E;?).
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Combining Egs. (5.9) and (5.10) the final deformed shape of the plate is given byy

N
& D 14 B BB,
S=1

where A=(V,)}/B. _
B;s and B, are calculated using the following equations:

By=(2J7 " («,) Bg)/B;,

1 .
I, = f(x—xz)JQ(och)dx,

Yo
»Ya )
L= f [(—x—x?45x% - 3x*+ 672 x+ 62 x) e~ ¥ +
? +(x—x2)(1.5¢72~0.5)—(1.5x2+ 1.5¢=2 — 0.5— x) e~ 26 =]

+3(m) ¢ % erf (ex)+xB, 4] Jp (o0, X) dx,
Bis=BgI,+1,,

) _
Bys=Ji (@), " [ (x—x")Jo (o %) dx.
0

Case 2.

Mooz Mo, N2z Ny
Phase 1 0<#<E g

The deformation of the plate in this phase is characterized by a plastically flowing
annulus sarrounding a central rigid portion of the plate. The plastic flow is governed
by the yield and flow conditions given by Egs. (4.3). Neglecting the influence of
membrane forces, the differential equation for the movement of plastic hinge is derived
as in Ref. [12], which is solved and modified to account for the membrane forces to
get
1=({4)/Ds,

where :

Ag=S A1+ A~ S A — A,

.D():Sl A5+A6_S1 A3‘"A4.

Sy, A, etc., are defined in Ref. [12].

Using essentially the same procedure as in Case 1, the equation for the time
- can be obtained in the form

B
Ed

Vol Dy . Dy [4D
(5.11) T l 32ﬁ+1]
1

_|..
H 8D, - 8D
where [ is the impulse value and D,, D, are known functions of Yo, ¥1, K and ¢. For
an isotropic plate (K—+1) subjected to a uniformly distributed impulse (¢c—0), Eq.
(5.11) reduces to Eq. (25) of .Ref. [6].
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Phase 2 i<y, .
The deformation of the plate during this phase is governed by the equation

Ku
W,
NGO

W'+ W'fr=

which can be solved to get the deflection of the plate at any time. The final deformed
shape of the plate is given by

W,
7=

rel

,
D) 4Dl DA (x) for i<,
5=1

W, 1
?’EZ[AZD;%«D%SFJOOOJJ for  O<x<y;.
| o§=1

D5, Dy are known functions of y,, ¥y, K, «, and the Gaussian parameter c.

NUMERICAL RESULTS AND CONCLUSIONS

From the preceding analysis it is clear that the plastic response of orthotropic
circular plates under Gaussian impulsive loading depends on the magnitude of the
impulse f, the Gaussian parameter ¢, the degree of orthrotropy K and the presence
of the membrane forces. Figures 4 to 9 show the influence of the above parameters.
Figure 4 shows the position of the plastic hinge as a function of time for various
values of ¢. It is observed that the plastic hinge travels at a greater speed towards
the centre of the plate when the influence of the memebrane forces is considered.
Figure 5 shows the influence of the magnitude of impulse on central deflection for
different values of c. Figures 6 to 9 show the deflection profile of the plate. The be-
haviour of the orthotropic plate with K< 1 is similar to that of an isotropic plate.
With ¢=0.1 which approximates to a uniformly distributed impulse, the results
compare very well with the results of Jongs [6]. From the results obtained in Figs.
5 to 9 the following observations are made.

(i) The infivence of the membrane forces is to reduce the deflections considerably.
Consequently, the theory based on bending moments alone greatly overestimates
the deflection.

(i) The amount of overestimation is not very much sensitive to the spatial distrib-
ution of the impuise. It is almost the same for a uniformly distributed and the hi ghly
localized impulse near the centre of the plate. The difference in deflections and the
time of movement of hinge obtained by the simple bending theory and the theory
which retains the influence of membrane forces is considerably large for larger
values of impulse.

Rozprawy InZynierskie — 7
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STRESZCZENIE

SKONCZONE ODKSZTALCENIA PLASTYCZNE ORTOTROPOWYCH PLYT KOLOWYCH

WYWOLANE IMPULSEM TYPU GAUSSA

Przedstawiono trwale ugiecia ortotropowej plyty kolowej poddanej obciazeniu impulsowenm.

Przyjeto taki impuls, kidry wywolywal predkosc osiowoe-symetryczng odpowiadajacg w przestrzeni
ogolnemu rozkladowi Gaussa. Do wyznaczenia odksztalcet zalozono jednoczesny wplyw sil mem-
branowych i momentow gnacych. Wykazano, ze teoria zgieciowa daje zbyt wysokie oszacowanie
trwalego odkszialcenia plastyczoego i czasu odksztalcenia plyty. Rzad przeceniania nie zalezy w istot-
ny sposéb od przestrzennego rozkladu impulsu. '



A0 e - oos B ANANTHA RAMU AND K. JANARDHANA IYENGAR.

Peswme

KOHEYHBIE TITACTHYECKHWE JAEQOPMATINI OPTOTIIOPHBIX KPYFOBLIX TINAT
BBI3BAHHBIE MIIVJILRCOM THITA TAVCCA .

TipeRcTanaeHs! OCTATOUHEIE OPOTROLI OPTOTPOIHOH KPYroBoi INATH HOIBEPFHYTOH WMITYIL-
cHOl warpyske, IIpraar Taxo#t HMITYIBC, KOTODbIH BLI3BIBAET OCECHMMETPRUMHYIO CKOPOCTH, OTBE-
HAIOIIYI0 B IPOCTPaECTRE 06memMy pacupegenenuto Daycca, s onpenencHas AehopMauuii mpenio-
HKERO OJHOBPEMENHOE BARARAC MeMOpaHubix cBn ¥ warrbarolmx MomMenTos. ITokasano, yto ms-
ryGHad TeOPHA AT CHUILIKOM BRICOKYIO OLGHKY OCTATOMHON miacrHueckoii nedopmarmm  spe-
MeHE AeopMandn TmTEL, TIOpAgoK. IPeBEAICHAS HE 3ABHECHT CYLUeCTBEHHEIM 006pa3oM OT mpo-
CTPAaHCTREHHOTO PACHPEReNeHHs WMy THCA.
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