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PRECISE MEASUREMENT AND FORMULATION OF PLASTIC
' BEHAVIOUR OF METALS.

Y, OHASHI (NAGOYA)

In the present paper, results of investigations on the plastic behaviour under complex-loading
by using an automatic complex-loading testing machine are summarized in accordance with the
data obtained in our laboratory. Some experimental results on mild steel subjected to proportionat
deformations under combined loadings of axial force, torque and internal pressure applied {o thin-
-walled tubular specimens with constant strain rate are discussed with emphasis on the effects of the
first and third invariants of stress and strain. Experimental results under the above-mentioned com-
bined loadings are discussed further on the plastic behaviour along the strain trajectories with
a right-angle corner in the three-dimensional vector space corresponding to strain deviator, As the
results of these experiments, the relations between stress and strain after the corner of strain trajec-
tories which are In the relation of mirror transformation do not always agree with each other. Howev-
er, such a disagreement for the relations almost vanishes after a modification in which the effect

¢ of the third invariand is eliminated from the experimental results. In other words, Ilyushin’s ““postulate’
of isotropy”™ is satisfied almost completely after such a modification on the results obtained by the
above-roentioned experiments for mild steel. .After such a modiication, experimental relations
between stress and strain after the corner of strain trajectory are formulated in a form of nonlinear
tensor equality.

1. INTRODUCTION

Complicated nonlinear phenomena accompanying history effects appear in the.
plastic deformation of real materials, and thus it has been very difficalt, from the
mathematical standpoint, to reffect them properly in deformation analyses. To avoid
these difficulties, an elegant “plastic flow theory” which is convenient for mathematical
analysis has been formulated by neglecting the complicated history effects which .
appear in real materials. The results of these developments have been described
in a variety of books, including the famous treaties by R. HirL [1], and represent
a considerable contribution to the analysis of plastic deformation. However, this
simplified theory is able to approximate only a part of the plastic behaviour of real
materials under complicated loading systems; still, it is applicable in a wide range
of engineering problems. For this reason, various investigations have been conducted
to modify this plastic low theory so as to reflect the history effects [2-8]. However,
there remain many difficulties, both thoeretical and practical. ‘

The reason why the flow theory cannot express precisely the plastic behav:our
due to strongly varying history effects seems to be that an irreversible process in the
plastic deformation, which should be considered as the so-called path-dependent’
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one, has been approximated by intreducing the ““plastic potential” which is by nature
a path-independent function. Even for a comparatively mild history effect it would
be difficult to determine precisely the functions expressing a sequence of innu-
merable potential surfaces along a complex loading path from the corresponding
calibration tests.

Since most of the mathematical difficulties have been eliminated by the intro-
duction of computers, it may be said that the accuracy of an analytical result mainly
depends on the approximation in formulating the results of precise observation of
deformation behaviours of real materials under complex loading systems.

- In the field of continuum mechanics, a general form of constitutive equation has
been constructed in terms of functionals concerning the characteristics of deformation
behaviour which materials acquire through the history effects [9]. The general
plastic theory in a five-dimensional vector space corresponding to a stress or strain
deviator proposed by ILyusHIN [10] in formulating plastic behaviours of metals
under complex loading also belongs to this category, and his “postulate of isotropy”
and “principle of delay” also seem to be useful approximations to simplify the con-
stitutive equation being considered generally in the field of continuum mechanics.
His theory has been discussed experimentally by Lensky [11] who veriefied the validity
of this theory for some metals under certain complex loading systems.

However, as Iviev [12] and Novozmirov [13] have pointed out, the vector
space used by Ilyushin cannot reflect explicitly some of the characteristics in tensor
space.

Under circumstances such as those mentioned above, a full-automatic complex-
-loading testing machine with high accuracy was constructed recently in our laborato-
ry for the precise measurement of the plastic behaviour of metals subjected to
combined loadings. '

Using this apparatus in the first experiment, proportional deformations under
combined loading were measured with high.accuracy on mild steel. From the results
it was ascertained that the third invariant of strain (or stress) deviator affects the
experimental results considerably, whereas the first invariant does little. These
invariants cannot be expressed explicitely in the vector space.

Next, as a fundamental example of plastic behaviour under complex loading,
experiments were performed with a constant strain rate along various kinds of strain
trajectories consisting of two straight segments intersecting so as to form a corner.
In the results of the precise measurements of deformation behaviours for mild steel,
the history effect on the deformation behaviour along the trajectory after the corner
was mingled with the effect of the third invariant mentioned above. Thus, the postu-
late of isotropy in the vector space could not be satisfied accurately on the basis
of the experimental resulis obtained for the effect of the third invariant.

However, by modifying the vector space to eliminate the effect of the third
mnvariant from the measured value, plastic behaviours after the corner on mild
steel may be expressed by an identical stress-strain relation for a fixed geometry
of strain trajectory, respectively. 1rrespect1ve 'of the orientation in the vector
space. w
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Moreover, the distribution of the third invariant was found in the vector space,
and the relation between stress and strain-increment deviators, which are not coaxial
in general, was formuiated in the form of a nonlinear tensor equation, The relation
may express the deformation behaviour after the corner with high accuracy. '

2. SPECIMEN [14, 15] AND EXPERIMENTAL APPARATUS [14]

The specimen is a thin-walled tubular specimen precisely machined from a bar
of initially isotropic mild steel (SI0C). The apparatus is an automatic complex
loading testing machine which can apply combined loadings of axial force, torque
and internal pressure precisely to the above mentioned specimen with automatic
control. It also records the values of load and deformation simultanecusly.

3. GENERAL RELATION BETWEEN DEVIATORIC TENSORS {16}

In the consideration of deformation properties of materials with tegard to stress
and strain or strain-increment as tensor quantitiﬂs the properties may be expressed
by the functional relations between these tensors. Moreover, as the relation between
their spherical parts may be regarded as elastic, the inela-

Sa
stic properties of the materials may be d1scussed as to
the relation between their deviators. 1

The resulting variation in deformation properties after
various plastic deformations of initially isotropic mate-
rials, that is the history effect in deformation properties,

:
|

may be formulated in the form of a tensorial functional g E 5o

relation between the above-mentioned deviators in the - !

isotropic deviatoric space. (55253 l

in 'o»‘rder to formulate rationally the experimental Fic. 1. Plane of stress devia-
results in the most general form, the relation bet- Do i=1, 2. 3) denotes
weent a stress deviator D,=(y; ieiey 4Lj=1,2,3) the principal values of D,
and a strain-increment deviator Dg=(dey; e, e I
1, j=1,2,3) is derived, for example, whete e; (i=1, 2, 3) denote the base vectors
which prescribe the space, £; e; denote the cormspondmg base tensors, and s;; de;;
are the corresponding components. When a set of orthonormai base vectors con—
cerning the principal directions of D, is selected as e (i=1, 2, 3), the tr igonometric
form of D, may be expressed as

Do=siye00,=(2/)/3) ¢, {cose, &) ] —cos (a, +
(3.12) +n/3)e,e,—cos (o, —xf3) e es),
Z=tw02=00,), cosln,= ’ |
@3.0b) . . =CYIDLONL D)2 =33/ LD,
(D)=t (D)3,

where 1, (D,) and I; (D,) denote the second and third invariants of the stress deviator
Dg. tespectively, and «, denotes an angle expressing the stress state (ref. Fig. 1).
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In terms of three deviatoric base. tensors with respect to the stress deviator
G, =y2/36,¢,e;(,j=1,2,3),
I G, =(1y/3 Qe e]—cse)—eiel),
Gy=e;e,—e,e5,

which are mutually orthonormal, the expression (3.1z) may be rewritten in the
following form:

(3.3) D, =&, (cosa, G, +sine, G,).

In the same way D,, may be expressed in terms of a set of orthonormal base vectors
d; (i=1, 2,3) for the principal directions of D, in the following form:

D=L g (cosay, H,y+sinog, Hy),
2=t (D3)2=L(Du), _
G4 0083us=CY3/) LD/ L (Da)*? =Gy 31D I (Da/
13 (Dg)=tr (D33, '

where I, (D) and I, (D,,) denote the second and third invariants of the strain-
-increment deviator D, , respectively, and 2, denotes an angle expressing the strain-
-increment state.

35 HJ. :]/méljdidj(is.j:l: 2, 3): H2=(1/]/§)(2d1 dl _dz dz_dﬂ dS)s

@3 Hy=d,d,—dsds

are designated as base tensors for the principal dircctions of the strain-increment
deviater Dg,, which are orthonormal with éach other.

Since the principal directions of D, and D,, are not always coaxial in general
plastic deformation, the above-mentioned two sets of base tensors G, and H; (i=
=1, 2, 3) may differ from each other. Since the functional relation between the de-
viators D, and D,, should be derived on common bases, the deviator D, is expressed
with respect to the base G, of D,.

By introducing a rotation tensor L of orthogonal systems such as

(3.6) e;=|_ d;_ (i:]9 2, 3)

and using the 1elation e; e;=1d, d;L =1 ord,d;=L~% ¢, ¢} L, the following relation
is obtained;

(3.7) Hi=L"1G,L (i=1,2,3).

By substituting the relation (3.7) into Egs. (3.4a), a form. is obtained in which D,,
is expressed with respect tc the orthonormal base tensor G; for the deviator D, as
follows,

(3.8) LD L= ge=c0804 G, +sina,. G;.
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In order to construct the base tensors G, and G, with two tensers which ae not
mutually coaxial, a quadratic deviator of LD, L=/,

(LD oo L= YL =33 G, =LD2, L5 )2, — /373 Gy =

3.9 =(1/)/3)(cos 204, G, —sin 2014, G3)

may be selected as the simplest normalized tensor which is not coaxial with LD, -1/
[ 4o In this respect the 1elations between the orthonormal base tensors

G.Gy=y23 G, +(1/y/3)Gs, Gy G3=G; Gz=—(1/l/§)63a

3.10
(3.10} G3 Gs=y/33 G~ (1y/3) Gs,

found from the relations (3.2) were used.

The following expressions are derived from Egs. (3.8) and (3.9):
$in 3otg, G =008 20040 (LD, .71 /E 40) ~ 3 cos 04 (LDZ, L“1/C3ew—]/2/73 G,
311 ; : —
G1b sin3ug, G, =sin 2000, (LD g L a0} + 3 sinerg (LD, L7/ :zre"‘]/2/3 Gi).

In the case of sin 3a,,#%0, the following relation between stress and straimincre—
ment deviators may be obtained by substituting G, and G, from Eqs. (3.11) into Eq.
{3.3):

Da/Caz (I/Sil’l 30Cde) {Sin (2(‘1.,1-9"- DC,,) LDde L—1/Cd2+ ‘
' Y3 sin (g —o) (LDZ L= 02, —y/373 G}

When the deviators D, and D, are coaxial, the rotation tensor L is reduced to the
unit tensor | and the well-known relation is obtained as follows [17]:

(3.12)

Do‘/Co’ = (1 /Sin 3“46) {Sin (Qﬂ‘de +G‘-u') Dde/(:de +
+/3 50 (tae— 0o D2/ L2~ T3 G}

In the case of «,=e,, in Eq. (3.13), the relation between D, and D,, is reduced to
the linear relation corresponding to the St. Venant-Levy-Mises law used conven-
tionally:

(3.14) Do =(Co/Cae) Dae-

(3.13)

In the case of sin 3«,,=0, the following relation is obtained from Egs, (3.11):

+ LDy L7143 (LDZ, L-Yje2,— V23 Gy).

‘Thus the quadratic deviator cannot be used as the base tensor. In such a case the
deviator D, may be expressed in the following form by selecting LD, L=1/Z
~and G; as base tensors, for examplc,

(315) Da=(.:a {cosaa(l—DdéL—I/Cde)'{'Sin‘xchS}'
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4. DEVIATORIC STRAIN VECTOR SPACE AND DEVIATORIC STRESS VECTOR SPACE

As shown in Egs. (31b) or (3.4b), each third invariant depends on the angle «,
or «,. The angle ., or «,, expresses the state of D, or Dy, i.e. the relation between
the elements of the deviator. For convenience this relation may be expressed geomet-
rically in the corresponding vector space. Since geometric representation is very
effective in discussing the history effect on the deformation behaviour of materials,
the behaviour is expressed in the vector spaces corresponding to the deviatoric
tensor space. In this respect special case must be taken in expressing experimental
results, because the first and third invariants of the tensor cannot be expressed explicit-
ly in the vector space while the second one can be expressed.

A strain deviator D,=¢;; e; ¢, (i, j=1, 2, 3) may be expanded as follows:

4.1 ) D.=erA, (1,2, ..,5),

with respect to five orthonormal base tensors:
Av=Abeie;  (k=1,2,..,5; i,j=1,23).

The scalar coefficients e, have the following relation in connection with e;;:

4.2) ey=ecAt, G j=1,23; k=12 .,5).
The relation
4.3) egep=ee, Gj=1,2,3; k=1,2,.,5

together ~with

V32 bum=Buee, (m=1,2,3 are not summed; .k=1.2),
4.4)

]/56.12=€3, ]/2"6‘23334, ]/2~e§1=e5

is designated between the second invariant in the deviatoric tensor space and the
invariant in the corresponding vector space where B, are scalar coefficients.
The following relations hold between ¢, and e;:

ey =2 {ey;co8(y+1/6)—e,,siny},
(4.5) e;=)/2 {e, sin(y+7/6)+e,, cosy},
83:]/45312, €4=l/§ez3, '35:]/5931-

On the other hand, the following expressions are obtained for the base tensors:
Ae (k=1,2,..,5).

Ar=y23 {cosye, erl—sin(y+:n:/6) e, €, +éin(yﬁ7z/6) esesl,

A, =y2/3 {sinye e, +cos (y+nf6)e, 62-—0-05(?“71'/6)83 es},
Ar=y3]3 cosnf6)(eresteser),  Ag=)/23 cos(n/6)(eses+eses),
As=y2/3 cos(n/6)(ese,+e; e3),

46y
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where 7 is an arbitrary parameter. From Egs. (4.6) the base tensors A, -are found
to be orthonormal.

From Eqgs. (4.1), (4.5) and-(4. 6) the state of deviatoric strain corresponding to
D, may be expressed by the coefficients e; (i=1, 2, ..., 5) by using the base tensors
A, constructed from a set of suitably prescribed orthonomma.l base vectors e;. Thus
the deviatoric strain vector

(4.7  e=en, for (k=1, 2, 5, (nk: orthonormal base vectors)

may be introduced for the state of deviatoric strain correspouding to D,, if a five-
-dimensional vector space Vs, of the deviatoric strain

[81 3 €25 erey es] :[]/5 {611 CO_S (?‘i‘ ﬂ'/6)—622‘ Sin }’} ¥
V2 feqsin(+m/6)+es 0087},  YZenn, Y2es, Y2eul,

is used. This vector space has been introduced by IyusHin [10].

By an approximation that the plane stress state appears in the tubular specimen,
if the axis-3 is selected in the radial direction of the specimen, the components of
stress oy3 (=1, 2, 3) and strain g, (i=1, 2) vanish, and thus the axis-3 becomes
a fixed principal axis for the stress deviator D, or strain deviator D,-Then D,
~may be expressed as follows for y=0;

(4.8)

Do=ehe  (k=1,2,3), |
4.9) De:]/3/'—2 leis {]/ﬁ(el €, —€,63/2—e, 63/2)}4‘(2/]/—3—)(31 2+
.+ €22) {lf"ﬁz_ez €2~ €3 ea)}+(2/l/_§) €12 ]/i?zm(el ey +eze])].

Accordingly, the state of deviatoric. strain corresponding to D, given in Eq. (4.9)
may be expressed by a strain vector

(4.10) e=eym+ QY3 e /2 )+ 2y 3) erans,

in a three-dimensional vector space Vs,

(4.11) fer, ex, eal=leyy . (2/]/3—)(@11/24'622): (2[|/§)elz].
The history of deviatoric strdain may be expressed by a hodograph of the strain
vector e (strain trajectory) in the space Vie

The state of deviatoric stress at an arbitrary point on the strcun trajectory may
be expressed by a deviatoric stress vector

. {4.12) “=(3/2){311 nl+(2/]/3)(511/2‘!'322)nz“‘_(z/]/?)slz,”s}
in a local vector space "V&, .
@13) o000, 01=[0D5, Y3 (124 522), YT 12l

correspondmg to the deviatoric stress established at that point where 5;; (/, j= 1 2, 3)
are components of D, and o, (k=1, 2, 3) denote the components introduced for
D, in the same way as in the relation (4.1).
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In the representation (4.9),if the base vector e, and e, rotate orthogonally around
the base vector e, corresponding to the fixed principal axis of D,, the components
€11 €22;-and ey, of the D, vary so as to correespond to the basis after rotation,
and the strain vector e also rotates around the origin in the space.V,,. Thus, a
history of a deviatoric strain state given in the space established with the base tensor -
Ax (k=1, 2, 3) may correspond to a set of strain trajectories in the space ¥y, In
other words, the strain trajectories in such a set may be equivalent to each other
in that space yet still be different in orientation. On the other hand, the strain tra-
jectories which are equivalent tensorially may be confirmed to have an identical
geometry in the space V,,. Still, every strain trajectory having the same geomeiry
is not always equivalent tensorially.

The magnitude |e| and direction (g,, 8.) of the deviatoric strain vector e in the
space V3 ¢ and the magnitude |o] and direction (g, 0,) of the deviatoric stress
vector o in the local space V o appearing in (4,10} through (4.13) are expressed as

Iel—(€1+ez+€ )“2 {311 +(4/3)(e,1/2+€21)2+(4/3)C’2 }1!2
tan%:ezfel=(€11+2€22)/]/3 €11, COSUe:é-n3/IE|=2€12/V§|6|,
: ]G|26%+J§+a§)”2:(3/2) {Sf1+(4/3)(311/2+522)2+(4/3)-5'2 }1"‘2,

(4.14)

(4.15)

tan%=02/ﬂ'1=(S11+2322)/5/3 Sy, cost, =a-n/le _]/3 Si2/l0].
As.found from Egs. (4.14) and (4.15) the magnitude |e| and |§] agree with the equi-
valent strain and the equivalent stiess, respectively.

5. DISTRIBUTIONS OF THE FIRST AND THIRD INVARIANTS ON THE THREE-DIMENSIONAL
' VECTOR SPACE [16, 19]

Since the second invariant I, (D} of the deviatoric tensor is maintained in the
corresponding vector space introduced in the previous section, the magnitude of
£, (D) is kept constant at every point on the spherical surface in the vector space.
On the contrary, values of the third invariant 7, (D) of the deviator and the first
invariant f; (T) of the tensor are not constant but functions of orientation in the
vector space. Thus, the distributions of 7, (D) and I, (T) on the surface of unit
sphere in the vector space are discussed in the following. _

A reduced value I, (D,) of the third invariant I3 (D,) of the strain deviator
D, by means of the second invariant I, (D,) may be expressed in terms of the com-
ponents e; (i=1, 2, 3) of the deviatoric strain vector e as follows:

LD ={e (el =3eD+G/D (e1 +/3 e2) e3}/(ed + &%+ €2)3 =

5.1) .
( =sinf, {sin2 8.co83¢,+3cos?d,cos(p,—n/3)}.

As found from Eq. (5.1) the distribution of I, (D,) in the space V., depends
only on the orientation and may be expressed by the curves on the unit sphere in
Flg 2 obtained as intersections of Eq. (5 1} and the surface of the unit sphere
eiteltel+=1.
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The projections of these curves I3 (D,) onto the plane —e; ¢, become a set of
straight segments shown in Fig. 3 with the dashed lines in the range —l<e,+
+]/ 3e, <1, and may be expressed by ome of the solutions of the following cubic
equations obtained by eliminating e; from e?+e3+¢2=1 and Eq. (5.1):

(e1+1/3 €2 —3 (e, +)/3 e2)+20,(D)=0.

€3

ol ?

1S5
Y
g // o)
2
/
. /
P /
60 /
/
/
9
v} !
€z
&y g
Fig. 2. Distribution of f3 (D) in the vector space VFi.. FiG. 3. Projection of the curves I5 (D)=

=const on the plane e, e,.

The solutions satisfying the condition —1<e, +)/3e, <1 are found as follows:

er+1/3e,=—2cos 2n/3—w,),

\yherc .
(5.2) w,=(1/3)cos~ 1 {I, (Dg)}..

On the other hand, the curves T, (D,) on the spherical surface are projected as a set
concentric circles on the plane e, + /3 e, =0.

_ In the same manner the reduced value 75 (D,) of the third invariant of the stress
* deviator D, may be expressed by the components a; (i=1, 2, 3) of the deviatoric
stress vector o as follows:

L, (D.)=3y/6 I (D)L (Dy*={o1 (61 —303)+(3/2) (0, +1/3 0:) 03} (o} +

5.3 .
o3 +02+03)32 =5in b, {sin* §, cos 3p,+ 3 cos? O, co8 (¢, —m/3)} -

The distribution of I (D,) may be expressed by a set of dashed curves on the surface
of unit sphere as shown in Fig. 4, as the intersections of ¢{+e3+0o5=1 and
Eq. (5.3). :
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The first invariant I; (T,) of the stress tensor T, =0y; e, €, (ij=1, 2, 3) is expressed
as follows: S Ty

5.4y L(T)=str(T,)=06,+0:,+0633.
[
Ol (5
X 08}
Ser (Ta(Dy)=1.0)
\\ & 0.&
B3 OFJ D {0.8}
o -~
QAT A A 0.5),
’\\\ =
NG //‘ 06
SN oY
/ ) (e} .
Oy Gl O"’
80 y 0 o? | Voo °
/ | 2
_/ oy \'/’09/ \ J (-0.5)
dl /”f’ S (-0.8)
: 1\ 10 -107)
," / i / 60
9 i
0 ¢ =30° .
o v

FiG. 4. Distribution of (D) and [, (T,) in the space Vi,.

Since the plane stress state {(022=0) may be assumed in the thin-walled tubular
specimen, I, (T,) may be approximated as follows in considering Eq. (4.12)

(5.5) : 11(Ta)=0'11+0'22‘—"0'1+]/§52- ,
The dimensionless value 7, (T,) reduced by the second invariant , (D,) is expressed as

I (T,_,) =2 L (T30 DN =(0, +/3 02)/2le) =

(5.6) =sin b, cos (p,— 7/3).

The distribution of I, {T,) in the s;ﬁace Vi, may be expressed by a set of solid
curves on the surface of the unit sphere as shown in Fig. 4. The following relation
is obtained from Egs. (5.3) and (5.6) between I, (D,) and 7, (T,) in the space V,,.

(57) ]3 (Dc)= _4f1 (Td) {il (Ta)+ ]/5/2} {Il (T,)‘"]/?/z} "

It is found from Eq. (5.7) that the values' 7, (T,)=0, +)/3/2 correspond to
I; (D)=0, and the value }/3/2 is close to the extreme value I, (T,)=1. As shown
in Fig. 4, the following conditions exist:

L{T)=y3/2, L(D)=0 along the axis-o,,

68 I, (f,)=0, L(D,)=0 along the axis-g;.
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28 /3
o .90°
120 . s
S
g o
[s]

150 = . .
by Be=30
=
o

*
180° Be

{ uniaxial compression)o {uniaxicl tension)  ®o

F1g, 5. Deviatoric strain vector space ¥; ¢ for combined loads of axial force and torque.

6. PROPORTIONAL. DEFORMATION TEST

6.1. Proportional deformation test in the plane -e, ey (Vy, for p,=0)

Figure 5 shows the vector space V,, (e, 2e,,/)/3) corresponding to the combi-
nation of tension and torque. The strain trajectories are shown by the radial lines
starting from the origin (state of zero strain). The angle @) determmes a ratlo of
“deviatoric axial and shear strains (9 corres-
ponds to & complementary angle of 8,), and

0, =0°,90° and 180° correspond to the uniaxial 2 E

tension, pure torsion and uniaxial compres- &

sion, respectively. In the experiment, a constant o

strain rate (ds/dr=3x10"%/sec) was used, >

where s denotes an arc length of strain tra- .

jectory expressed. by s=f(d/lel/dr)dr in A0

general, A plastic part of the arc length may . (bq,\"\'

be expressed by s?. Q;\

In Fig. 6 the local stress space V,, is Koy
shown at a point on the strain trajectory =}%/ gt
whose base vectors agree with those of ¥,,. -~ ' -
. O | 1

FiG. 6. Local vector space V,, for devia-
toric stress at a point on the strain

The resuts of the expreriment are expres- trajectory.
sed in the plane of deviatoric plastic strain
Vie(elr, 2¢5,/y/3), where ef, and e, denote the plastic parts obtained
by subtracting the corresponding elastic parts from €11 and e,, by an assumptlon
of the constant elastic moduli during plastic deformation.

0.1.1. |&l-s? curves

Rozprawy InZynierskie — 8
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The results of the proportional deformation test under combination of axial
force and torque are shown in Fig. 7 for mild steel. As found from the figure, the
curve for pure torsion (6, =90°, I; (D,)=0) appears lowest and the curves become

34 . =
O ee: O; -
. - = 3I0° -
S 32 g = 48m°
E - = B60° ;i
=y 30 | =~ = 900
= - =120
T e N AT
2Bre- - 508 At
- - = |80 2
& 26 | Y Ehe |
24 ¢ § Ze‘; o
E ) .4 0 CY
22 o AL |
0 | 2 3 4 5
s* (%)

Fie. 7. |o]—s* curves of proportional deformation under combined loads of axial force and torgue.

higher with an increase of the axial strain (or stress) component, and the correspon-
ding curves in the hardening region are close to each other for each pair of strain
trajectories which are symmetric with respect to the axis 2el,/)/3 (or /3 gy2),
although the curves on the compression side (90°<#,<180°) appear a little higher
than those on the tension side (0°<67<90°) and the trend is more pronounced

on the horizontal yield region.

6.1.2. Relation between 0, and 0,

The angles 6, and 8. are expected to agree with each other for every proportional
deformation. However, the experimental results proved that these angles did not
always do so. They agree with each other for §,=0° and 180°, but the angle g,
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Fig. 2. Relation between the angles 8., 8, and s*.
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is smaller on the tension side and larger on the compression side than the angle
0.. As shown in Fig. 8, the values of i@ —8° .| remain almost constant at less
than 5°.

6.1.3. Equi-strain curves [15], [16], [20].

In order to clarify the effect of 7, (D,) on the experimental results, equi-strain
curves are described from the experimental results in Fig. 9. In the figure the small
circles corresponding to the experimental results are connected by the solid curves.
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Fia. 9. Equi-strain curves.

The dashed curves show Mises® circle passing through the expetimental points in
pure torsion (I3 (D,)=0) which correspond to the equi-strain curves without the
effect of I, (D,). .

These equi-strain curves may be approximated with high accuracy by the following
ellipse:

(6.1) Ao Do P +H[YE 00 Y3 (P =1.
By introducing a modyfying coefficient

(6.2) Ro=}/31(s")]a(s"),

the expression (6.1) is Tewritten as follows:

(6.3) {Ro(s") o1, (5)}2 +{y/3 0112 (M} =9/3 1(s9)}2,

where o (s7) denotes the magnitude of the stress vector for uniaxial tension as a func-
tion of the arc length of the strain trajectory when the siress vector is in the first
quadrant of the plane (7,4, /3 ¢,,) and for uniaxial compression when the stress
vector is in the second one, and |/§1 (37) denotes that for pure torsion,
Equations (6.3) expresses a circle in a modified space with coordinate axes
Ro (57) 011 (s°) and /3 0y, (s*), whose radius corresponds to a modified, magnitude
l6*| of the deviatoric stress vector. In the modified space every |a| —s¥ curve obtained
in the experiment may be reduced to a curve |o™| —s® corresponding to pure torsion
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irrespective of the angle f>. Tn other words, by eliminating the- effect of I,(D,)
{or I, (D,), because of the minute difference between I (D) and I; (D,)) from the
experimental results, the deformation behaviour may be discussed as the relation
between the second invariants of stress and strain deviators.

By expressing the modified magnitude |6™| as R |ol, the coefficient R is expressed
as follows: ,
~ R=le*|flo|={(Ro01,)" +307,} (o] +307,) =
©4 : ' ={14(R%— sin?4,}'/2.
In the plane (o ,, ]/ 3 0,,) with p,=0° a solution of Eq. (5.3) satisfying the condition
—1<f, (D)< is obtained as follows:

(6.5) sin 8, = —2cos {27/3—(1/3)cos * I, (D,)}.
By substituting Eq. (6.5) into (6.4), the following relation is obtained:
(6.6) R=[1+4(R}—1)cos? {2r/3~(1/3)cos™* L33,

In the three-dimensional space Vi,, the following expression is obtained by
substituting Eq. (5.3) into Eq. (6.6):_
67 R=[1+4(R}~ 1)cos* [2m/3--(1/3) cos ™" {sin* §, cos 3p,+
‘ + 3 sin @, cos? 8, cos (p,— =/3}]'*,

where
Ri=a(s"){b(s") O< L(D) <),
NRe=a(smes) (-1 L (D)<0),
and a (s%), b(s") and ¢(s”) denote the values of stress vector for pure torsion,
‘umiaxial tension and uniaxial compression in relation to the arc length of the strain
trajectory.

6.2. Proportionals deformation in the plane —ey ey (Vae for ¢.=90%
Figure 10 shows the results of the proportional tests 4 (6,=0° along the axis-es),
E(0,=32"), F(0,=61.5) and G (§.,=90° along the axis-e,) for mild steel [15].
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Fic. 10. Results of proporfional deformation tests in the plane-e. es.
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Tn the figure, experimental points for, the A-test along the axis-e; and those for
the G-test along the axis-e, lie on an identical:curve. The curve for the F-test corres-
ponding to [, =0.46, J;==0.99 appears higher than that for the F-test corresponding
to F,=0.76, I,=0.52. The difference between these curves suggests a possible
effects of 7, (T,) as well as that of I, (D).

In order to estimate the effects of I, and Iq on the deformation: behav1our pro-
portional loadmgs along the axes o, and o; may be used because the values J, =
;:]/'?{/2 and 0 along these axes differ marl(édiy for the identical value of 7;=0, as
found from the conditions (5.8). On the other hand, the proportional deformation
along the axes e, and e; may be regarded as those along the axes o, and o, respec-
tively. Then the effect of I, on the [a]—=s curves is found to be negligible from the
above-mentioned results for the tests 4 and G along the axes e; and e,. Therefore,
it may be concluded that the difference between the ] —s curves due to the angle
g, is the effect of I; (D).

7. EXPERIMENTAL RESULTS ALONG THE STRAIN TRAJECTORIES CONSISTING CF TWO
STRAIGHT. BRANCHES

The plastic behaviour along the ,,strain trajec'tory with a right-augle‘corner”
(symbolized as STN hereafter) may be discussed in the three-dimensional local
vector space of the deviatoric stress V,, established at a point on the STN in the
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Fia. 11. Local stress space Vi o
(o1, o2, 03) on STN in the space
Vae (€1, €2, €3}

Fic. 12. STN used for experiments in the space V..

three-dimensional vector space of the deviatoric sirain ¥, shown in Fig. 11. In
the figure, the length s, of the first branch corresponds to the pre-strain, As=(s—5,)
shows a length of the second branch after the corner point, and e =¢; n;, de =de; n,
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Fic. 17. lo|— ds curves obtained by the 1E and 2E tests,

and o=o; n; denote the strain, strain-increment and stress vectors, respec-
tively. ) ; :
Experimental results are discussed on the STN’s shown in Fig. 12 as well as in
the Table. These results are obtained by apllying the combined loads of axial force,
torque and internal pressure to the thin-walled tubular specimen of mild steel.
Strain rate is kept constant {ds/dt=3 x10~%/sec) in every test.

Table 1. STN tested for mild steel (s,:==2 percent)

Experiment ]MIA 24 | B| 2B | 1C | 2c | 1D | 20 | 1E | 2E

first ¢, 90° | o0° | 90° | o 1200|120 | 00| 00| o0 ] o
branch 6, |.%0° | 900 | oo | 900 | 1200 | 1200 | 0| o0 | 0 | o

second @, 90° o° 0° 0° 90° o’ 45° 45° 0° S0°
branch 8, 0° 50° 0° 0° o° 90° | 135° | —45° | 9 ! o°

7.1, |lo|—As curves

The curves obtained by the tests along the STN’s 14, 24 through 1F, 2F are
shown in Figs. 13 through 17. The corresponding parts of the curves for pure torsion
and uniaxial tension are indicated by the dashed and chain curves, respectively.
A sudden drop in la| occurs just after the corner of STN in every experiment. This
sudden drop occurs for increasing strain at constant rate, and thus cannot be regarded
as the so-called unloading which has been defined with decreasing strain in the
quasi-static process. This drop might be atiributable to a stress relaxation effect,
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because the strain along the first branch persists at the corner whereas the strain
compenent along the second branch is very small. However, when the second branch
is not present, the decrease of stress has been ascertained to attain only about one-third
of the total decrease obtained above. Moreover, from the results obtained for the
STN’s in the e, ¢,-plane, this stress decrease may be found in the deformation in
which the principal stress axes do not rotate throngh the first and second branches
of STN. Therefore, this phenomenon can be ascribed to a microscopic instability
of materials induced by a change in microscopic structure (release of dislocation
piled up during pre-strain, for examplé) Jjust atter a sudden change in strain (or stress)
state. In other words, the comulative dislocation fixed during the deformation along
the first branch is refeased as a result of the strain application in the direction of the
second branch, and the resulting increase of plastic strain reduces the elastic part
of the total strain which is increasing with constant rate. This can be related directly
to the sudden drop in jo} mentioned above. The considered phenomenon may be
regarded as a transitional one and cannot be discussed by means of the flow theory
based mainly on Drucker’s hypothesis on the premise of a stably hardening process.

As found from these figures, the curves |o]— 45 corresponding to the STN’s
which are in the relation of mirror transformation in V5, do not always agree with
each other. In line with the foregoing discussion, this may be attributed partly to
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Fic. 18, Modified curves |o*|— 45 obtained by using the coefficient R.

the effect of I; (D,). For example, the curves | 6| — As for the second branch of STN’s
agree well for the tests 14 and 24 along the axes e, and ey for which I, (D,} have
the same value 0,

Figure 18 shows an example of the curve 18| — 4s modified by using the coeffi-
cient R introduced in the previous section. As shown in Fig. 18, the modified curve
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|6*| — As for which the remarkable difference was observed before modification for
the STN’s in the relation of mirror transformation is reduced to an identical curve
after modification.

7.2, Angle 8 between the strain-increment and stress vectors

In the results obtained by the tests of the strain-controlled type, the direction
of the stress vector o delays from that of the strain-increment vector which coincides
with STN. The angle § between the & and de directions is expressed by #==cos™!(a-
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FiGc. 19. Relation betwen @ and As,

fdef|a] |del. The value of 8 varies with the increase of 4s. An example of the relation
- —ds is shown in Fig. 19 where the functions 8 (4s=F(4s) are almost the same
for every STN.

8. FORMULATION OF STRESS-STRAIN RELATION FOR THE SECOND BRANCH OF STN [16]

8.1. Equivalent strain trajectory in the space Vs,

From the discussion in Sect. 4 and its experimental verification tor special case
in Sect. 7, every strain trajectory oriented in the direction of I; (D,)=const is ten-
sorially equivalent, whereas the corresponding stress state may be different. For
example, equivalent strain trajectories for the strain trajectory 2E, obtained by rota-
ting the coordinate axes established in the element by an angle ¢ around the axis-3
(radial direction of the specimen), are shown with the thick solid lines in Fig. 20.
In other words, a STN having the corner at arbitrary peint on the circle I; (D)= -
=const on the spherical surface, whose center lies at the origin, may represent all
the trajectories having the corner on the circle.

On the other hand, since the plane ]/361—92:0 intersects with every circle
mentioned above, as seen in Fig. 3, every STN having the corner on the spherical
surface may be equivalent with either STN having its first branch in this plane,
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FiG. 20. STN’s which are tensorially equivalent to STN for the 2E test.

‘When a coordinate system ¢] e; ey (Fig. 3) is introduced by rotating the system
e e; ey 120° clockwise around the axis-3, the values of e, e, and e; may be
expressed as follows:

¢y =—(e, +]/ 3 e)f2=—(e1+e1), e =(V§é1 —e)f2=
i("31L“"322)/]/I§, : e;=e3=2312/|/§~,

Since the plane /3 e; —e, =0 is expressed by the planie e] e, in the system e e, e,
every STN mentioned above may be replaced by a STN having its first branch in
the plane-e; e;.

(8.1)

8.2. Stress-strain relation for STN whose first branch lies in the plane-e; e,

As shown in Fig. 21, a STN is considered in which the first branch makes an
angle £ to the axis-e; in the plane-e; e;, and the second branch makes an angle
a to the plane-e; ¢} . Moreover, 5, denotes the length of the first branch (pre-strain)
and As denotes that of the second branch after the corner. When a local coordinate
system o, o, o, whose axes are parallel with those of the previous system is estab-
lished at a point on the second branch, the relations’ Hetween Oy, G4 ‘O

and o,, o,, a5 are expressed as follows:
2) 0'—;:"(171 +]/§0'2)/2:—3(5'11 +532)/2, a;=(]/§0“1—02)/2,=
. =]/§(511—522)/2; 0"; ='0'3=]/§'~?12-

The direction of the vector de coincides with that of the second branch and the
direction of ¢ delays by an angle # from that of de in the plane of STN. Therefore,
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in order to formulate the stress-strain relation in the form of Eq. (3.12) it is necessary
to determine the orthogonal rotation tensor L as well as the angle of the stress state
u, and the intensity {, of the stress deviator D,.

8.2.1. Determination of angle «,

When the direction a delays from that
of de by the angle §(=F{(4s)) at the
length As after the corner, the following
relations are obtained from Fig. 21:

o, =|o|(sinfcos § —

—cos@cosasin f),
(8.3)

05=|c|cosfsina,

o5 =|0](cosf cosucos f+sinfsin f).
Moreover, the following relation is ob-
tained from Eqs. (5.3) and (8.2}:

84) LD, =C08 3og :0'; (0'12 —36,>~ 6. 21, Local stress vector space Vs, (o1,
. B 30_;2}/0_;2 —|—a’£2 +a';2)3"2 ‘ o4, o5 on STN in the space Vi.l(el, e, €3).
By substituting the relations (8.3) into Eq. (8.4), «, is expressed as follows:
(8.5)  w,=(1/3)cos™! [(sin@cos f—cosBcosacos f) {(sinfcos ﬁ—'
~cos B cos asin §)2 —3cos? Gsin® o.— 3 (cos & cos e cor f+sin dsin §)*}].

In the same way, as for the vector de, the following expreésions are found from
Fig. 21: ' ' '

(8.6) dej=lde|cosasinf, de,=|de|sino, de;=Ide|cosacosp.
By substituting the relations {8.6) into the relation obtained from Eqs. (5.1) and (8.1),
g is expressed as follows: ' ' ‘

{8.7) wa=(1/3)cos™!{-—cosasin f(cos® asin® §—3sin®a—3cos® ancos® B)}.

8.2.2. Determination of the orthogonal rotation tensor |

There exist the following relations between the orthogonal rotation tensor
L (=Lie;e;; i,j=1,2,3) and the rotation vector w=aw, e,:
: L =expe®®=|+Rsinw+ (1 —cosm) Q2,
(8.8a) : o .
L=t =exp e =] —-Lsinw+ (1 ~cosw) Q2.
and

(8.8b) I=d,e,e;, Q=Qe;e;, Qu=(u;—oy)2, @y=cpt,
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where @ denotes the magnitude (rotation angle) of w, and «, denotes the direction
of @ (direction cosine for the axis of rotation).
Along the second branch of STN; the magnitude @ is given as

(8.9a) W=z~ Dy,
where
tan2m, =251,/ (511 — 522} =

(8.9b) = — ooy =(cos A coswcos f+sin O sin ffcos Asin e,

tan 2,4, =2de, ,/(de,  —des ;) =de’jde, =cos« cos ffsine .

Since the axis of rotation coincides with the axis-3 (radial direction in the specimen)
of the coordinate system.established in the element, the above-mentioned relations
may be reduced to the case «,=wm,=0, w«3=1, and thus

(8.10) Q=c.c,—e,e;, P=-e,c;—e,e,.

By substituting Eqs. (8.9a), (8.9b) and (8.10) into Eqgs. (8.8a), the orthogonal rotation
tensor 1. may be obtained.

8.2.3. Determination of {,

- The parameter {, expressing the intensity of D, is given in the following form:
(8.11) ' {,(45)=|alf)/3 =|a*|/)/3 R=G(4s){y/3 R,

where R is given by Eq. (6.6). Since the expression {cos™' I, (D,)}/3 in Eq. (6.6)
corresponds to o, given in Eq. (8.5), if the functional form a, (4s) in Eq. (8.5) is
obtained from the experimental results, o, (A4s) may be found with the use of G (4s).

The relation between D, and D,, may be obtained by substituting these parame-
ters into Eq. (3.12). From the relation thus obtained, the stress deviator D, may be
calculated along the second branch of STN whose first branch lies in the plane-e; e, .

8.3. Stress-strain relation for STN of arbitrary orientation

Stress-strain relation along the second branch of STN, whose first branch starts
at the origin (state of zero strain) and the second branch intersects with the first
branch normally, may be determined by selecting the corresponding angle o and £
in Fig. 22 in the following way.

If a strain vector on the first branch and a straintincrement vector on the second
one are expressed by e,=efn, and de,=deln;, where n; denotes the base vector
of the axis-e;, respectively, the following condition holds:

(8.12) y-dey 0.

One of the STN’s equivalent with the above-mentioned STN, whose first branch
lies in the plane-e; e;, is shown in Fig. 22 with the dashed line, In the same figure
the relation

- (8.13) cos fi=ne4fIn; e =€if|edl
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may be found. From the relation AB=e,—OA=e,—|e,| n}jcosf, the following
relation is obtained: '

{8.149) cos a=de, AB/|de,! |AB| = —deél[lde,|sin §.
“These relations are expressed in tensor components as follows:

cos f=—(e5+63,)/(2e%, ¢ 1312, '
‘(8.15) ﬁ AN 2z Joii ez.
 cosa={de}, +

+de} ) (2de}; dey f3)!* sin fi-

8.4. Determination of the functional form
of |a¥|=0C (4s) and 8=F(As)

On the second segment of the strain
trajectory, the components of the stress vector
parallel and perpendicular to the trajectory
are designated as G (4s) and G,(4s). Since
the component of the stress vector perpen-
dicular to the trajectory decays with the
increase of As from the value at the corner,
the functional frem G, (4s) may be expres-
sed as : F1c. 22. Equivalent STN’s in the space

(8.162) G, (ds)=22.75 ¢=2845 Ya

Jrom the experimental result shown in Fig. 18, where 22.75 kegf/mm?® corresponds
to the magnitude of the modified siress vector at the corner point.

On the other hand, the component of the stress vector parallel to the trajectory
increases almost exponentially with the increase of As just after the corner, thus
ihe form of &, (4s) may be approximated by

(8.16b) Gy (4s)=23.7(L~e~7*95) 1 13.63 (45} 7~ 1.0|,

where the second term on the right hand side modifies the function so that the exper-
imental result may be approximated well for large values of As. This term does
not affect significantly the value of G (4s)=l6"| (4s) at the corner {4s=0) for the
sufficiently large value of G, (4s).

Then, the functiondl form of G (d4s) is obtained from the following relation:

(8.160) G (45)={G? (4s)+ G2 (ds)}/2 .

The functional form of @=F (4s) obtained from the experimental result may be
expressed as follows:

(8.17) F(ds)=30 (21095 . g~2.545)
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"The results for |6°| and 8 calculated by Eqé, (8.16) and (8.17) are shown in Figs. 18
and 19 with solid curves, respectively. As found in these figures, the functions (8.16)
and (8.17) are close approximations of the experimental results, respectively.

8.5. Results of culculation of stress-strain relation for concrete form of STN and
comparison with the experimental result [20]

An example of the calculation is considered by using the above —- obtained strain
trajectories 2C and 2E (Figs. 15 and 17), These two trajectories are equivalent
tensorially and correspond with the case of cos =0 and cos = —1/2 as found
from the relations (8.15).
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FrG. 23, Relation between the stress components and As calculated by a tensorial eguation in
comparing with the corresponding experimental results in the 2C and 2F tests

The results of calculation are shown in Fig. 23 with the solid curves. In the figure,
various symbols show the corresponding experimental results, These solid curves
approximate the experimental results with high accuracy, and almost the same degree
of approximation can be obtained for other experimental results. Therefore, it may
be concluded that the tensor equation (3.12) may approximate with high accuracy
the stress-strain relation along the second branch of every STN in the set of STN’s
of fixed geometry, if’ the deformation characteristics of the material are measured
along any STN, :

Figure 24 compares the tensorially linear tesm on the right hand side of Eq. (3.12)

(8.183) 5ty =108 Qo+ o )sin 3o} (LD L1040
with the tensorially nonlinear term
(8186) ¥, = {}/F L, sin (ue—e,)fsin 3t} (LD2, L =422, /273 G)

for their contributions to the axial stress component o, in the 28 test. As found
from the figure, the contribution of the linear term is quite small and the component
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g, consists of the tensorially nonlinear part just after the corner. However, the
linear part increases while the nonlinear one decreases very quickly with the increase:
of As thereafier. -

The reason why the oy,
curve in Fig. 24 has a hump
just after the corner point may
be explained as follows.

The value ¢, remains con-
stant after the corner of the
strain trajectory while = the
value ¢, decreases from the
magnitude |o| at the corner
point with the increase of As
and tends to 0 for large values ol
of As (Fig. 25). In other
words, the value o, varies so
that the value of ¢, may be
kept constant after the corner.

On the other hand, o, and &, are expressed by using the relation (4.13) as well as
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Fii. 24, Tensorially linear and nonlinear contributions for
the stress components By in the 2.8 test

$11=01,—0, §pp=0Gpy— 0, 733 =0,

as follows
o1 =(2s1 .= (011 —022(2), o, =]/§ (5¢1/24822)= ]/§ Uzzfi-

Therefore, if the increasing rate of o, is larger than the decreasing rate of o, with
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two rates. For all that, since the magnitude of the stress. vector o is obtained by the
relation

jol=(o]+ o)V ={(0)1—622/2° +303,/4}' 1,

ol may decrease with the increase of As in the range ,,% a,, for the significant
effect of ¢, to the magnitude [o].

The above-mentioned effect cannot be formulated by the conventional flow rule.
However, in the range 45> 1.0 percent, since such an effect becomes negligibly small,
the conventional stress-strain-increment relation may be a good approximation.

The phenomenon mentioned above, for example the drop of stress magnitude
or the delay of the stress vector for the strain trajectory after the corner, should
be understood as a transitional one appearing in the deformation under a constant
strain rate. On the contrary, the results of a quast—static test for this case using
a stepwise loading increment seem to satisfy well the conventional flow rule, As
a matter of fact, in such a quasi-static test the above-mentioned transient phenomenon
occurs in the period in which the deformation and the corresponding stress attain
a state of equilibrium on each loading step. When the measurement is not performed
in. this period, this phenomenon cannot be detected, and this may be why these
transient phenomenons are not discussed in the results of quasi-static tests.

Judging from the fact that most of the deformation processes in engineering
application are not of a quasi-static nature with stepwise load increment, the results
of such a quasi-static test seem to be insufficient for anaiysing practical deformation
state precisely.

9. CONCLUSION

We are trying to formulate the experimental results for arbitrarily prescribed
configurations of a strain trajectory in the form of a nonlinear tensor equation.
Though our study is not very profound at present, the following conclusions can
be summarized from the above-mentioned discussions.

1} The third invariant of the strain (or stress) deviator affects the experimental
resnlis of plastic deformation of metal whereas the first invariant does Httle. Thus,
the effect of the third invariant and the history effect on the deformation behaviour
appears in the experimental results of the plastic deformation of miid steel under
complex loading,

2) The first and third invariants in the isotropic tensor space cannot be invariants
in the corresponding isotropic vector space. The distributions of the first and third
invariants in the corresponding vector space depend on the orientation in the space.
Since the vector space is convenient for discussing the deformation behaviour due
to history effect, it seems promising to make use of the vector space in this discussion
in modifying the experimental results so as to eliminate the effect. of the third inva-
riant.

'3) For this purpose the effect of these invariants on the experimental results
of plastic behaviour were discussed experimentally on the proportional deformation
{constant values of these invariants) in the two-dimensional vector space, by applying
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combined loads of axial force and torque to the thin-walled tubular specimen. In
the results it was found that the effect of the third invariant on the experimental
results may be eliminated by means of a comparatively dimple procedure.

4) In order to expand the above-mentioned modification into the three-dimension-
al vector space, a modifying coefficient R was introduced. It was ascertained that
the stress-strain curve for every proportional deformation in the three-dimensional
vector space may be presumed from the experimental results obtained under the
axial force and torque with the use of the coefficient R.

5) The plastic behaviour of mild steel after the corner of a strain tiajectory con-
sisiting of two siraight segments which intersect with the right-angle corner was
observed with high accuracy for each couple of trajectories, with a pre-strain 2
* percent, which are in the relation of mirror image mutually. In the resulis a sudden
drop in stress value was observed just after the corner for Increasing strain at con-
stant rate. The amount of stress drop is far larger than that corresponding to the
stress relaxation for the strain component at the end of the first branch, which is
kept constant after the corner. This phenomenon can be ascribed to a microscopic
instability induced by a change in the microscopic structure of the materials at the
sudden change in strain (or stress) state.

6) The sudden drop in stress value at the corner recovers quickly with an increase
of strain, and the deformation curve |6] — As (or |o|— 4s?} after the recovery runs
parallel with that of proportional deformation corresponding to the second branch.
The range from the corner to the end of recovery is a transient one in which the
history effect appears strongly. )

The direction of the stress vector on the second branch delays markedly from that
of the strain-increment vector just afier the corner, but the delay disappears quickly
" with an increase of strain and, at about | percent of strain after the corner, both
vectors may be regarded as to agree with each other. This transient range almost
agrees with the range of recovery of stress.drop after the corner.

The deformation curves after the recovery corresponding to the couple of strain
trajectories which are in the relation of the mirror image do not agree with each
other. In other words, the postulate . of isotropy proposed by Ilyushin does not
hold with high accuracy in the experimental results.

7) If the effect of the third invariant is eliminated from the experimental results
with the use of the coefficient R, on the modified deformation curve after the transient
range, the postulate of isotropy holds accurately for mild steel.

8) A general form of a non-linear tensorial equation between the siress and
strain-increment deviators was derived to formulate the stress-strain relation along
the second branch of a strain trajectory for mild steel for which the postulate of
isotropy holds after modification. In this equation the stress deviator is expressed
as a function of the strain-increment deviator.

In this case, since the principal axes of both deviators are not coaxial in the tran-
stent range, the equation was derived with respect to the principal axis of the stress
deviator by operating an orthogonal rotation tensor upon the strain-increment

Rozprawy InZzynierskie - 9
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deviator. In this equation the functional expressing the history effect may be determin-
ed from the experimental results. Lo

9) The stress-strain relation obtained above was confirmed to approximate
accurately the experimental results of the plast1c behaviour of mild steel aftm the
corner.

10) In order to confitm the generality of the procedure in formulating stress-
-strain relation in this paper, some kinds of experiments have already been performed
on brass and aluminium alloys (f.c.c. metals; on the contrary, mild steel is a b.c.c. |
one) and these results showed that the procedure could be suitable for brass, but
not so suitable for aluminium alloys due to the effect of aging occurring on the
deformation process at constant sirain rate. '
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STRESZCZENIE

DOKYADNE POMIARY I OPIS PLASTYCZNEGO ZACHOWANIA SIE METALI

W ninigjszej pracy podsumnowano wyniki badar dotyezacych plastycznego zachowania sie me-
tali w warunkach zloZonego obclazenia, przeprowadzonych na automatycznef maszynie festujacej
dla zlozonego obcigzenia, na podstawie danych otrzymanych w naszym laboratorium, Przedysku-
towano kilka wynikow doswiadezalnych dla mickkiej stali, poddanej proporcjonalnym deformacjom
w warunkach ztozonego obcigZenia przy jednoczesnym dzie\daniu sily osiowej, momentu skrecaja-
cego i cidnienia wewngtrznego. Doswiadczenia przeprowadzono na cienkoéciennych rurkowych
probkach pray stalej predkoscd odkszialeenda, kiadac nacisk na wplyw drugiego i trzeciego niezmien-
nika napr¢zenia i odksztalcenia.

Dyskusje wynikow eksperymentalnych przy wspomnianych wyZej ztozonych obciaZeniach prze-

niesiono nastgpnie na plastyczne zachowanie sie materiala wzdhuz trajektorii odksztalcenia z prosto-
katnym narozem w tréjwymiarowej przestrzeni wektorowej, odpowiadajacej dewiatorowi odksztal-
cenia. :
Z doswiadczesi tych wynika, 7e zwiazki miedzy naprezeniem i odksztatceniem za narogerm trajek-
torii odksztatcenia, ktore sa w relacii z lustrzanym przeksztaiceniem, nie zawsze sg zgodne. Jednakze
rozbieznosé zwiazkéw prawie zanika po modyfikacji, w ktore] efekt trzeciego niezmiennika jest wye-
liminowany z wyniikow dogwiadczaluych. Innymi stowy, po takiej modyfikacji wynikow otrzymanych
za pomocy wyzej wspomnianych do$wiadezen dla migkkief stali, «postulat o izotropii» Iljuszyna
Jjest spelniony prawie catkowicie.

Po te] modyfikacji relacie doswiadczalne migdzy naprezeniem i odksztalceniem za narozem
trajektorii odksztalcenia sa sformulowane w postaci réwnescl tensorowej.

PesroMme

TOYHBIE IBMEPEHU S ¥ OTIHCAHHWE IIIACTHUYECKOIO TIOBELEHITA METAJIOR

B mactoalredi paboTe DONBITONMEHE! PESYALTATH HCCAGROBANHEN, KACAOIONECA IWIACTHICCKOTO
LEOBG/CHI META/IJICE B YCHOBRUIX CJIOMNCHOTO HATPYYESHHS, TPOBEIEHEBIX HA ADTOMATHYECKON HCIDLI-
TATENBHON MaITHKHe JUIR CTIOWHOTO HATPYKCHHA HA OCHOBC OauHbIX MOJIYYCHNbIX B Hamiel gaGopa-
TOPHE. OBCYRASHO HECKONEKO 3KCOEPEMEHTAMBMbIX Pe3y/BETATOB IS MACKOH CTa/IE, ITOBEPTHY-~
TOH MPOMOPHACHANEHEIM AedOPMALMAM B YCIOBHEAX CIOIKHOTO HAIPYXEHHSA, IPH OHHOBPEMEHHOM
HEHCTRHK GCEBOH CHITHI, CKPYYHBAEOIUEre MOMEHNTA H BHYTPEHHEIO JABIICHMSE, JKCIEPHMEHTE ITPO-
BE/IeHbl HA TOHKOCTSHHBIX TPYGUaTHX 06pasnaX, OpE HOCTOSHHOH CKOPOCTH nedopmanmy, moa-
MEDRUBAA BIMIHHE BTOPOIO M TePTHETO HHBAPHAHTOR Hanpmkeins u medopManuy. Q6cyxienme
ICICPHMCETANLILIX PESYIBTATOR, NOAYICRHABIX TPH YIOMSHYTHIX Bbillle CTOXHEIX HATDYXEHRK,
TEPEHCECCRC 3TeM HA IUTACTRYCCKOE TIOBEICHAE MATEPHAIIA BAOTS TPACKTOPEH nediopMaluH ¢ Hpsa-
MOYTHNBHBIM PEBPOM B TPEXMEPHOM BEXTOPHOM TIPOCTPAHCTRE, OTBEYAIOITICM JAEBHATODY je-
dopyarra. I3 5THX IKCOEPUMEHTOR CIGIYET, YTO COOTHOIHSHHS MEK Y HANPSKEHNeM H Aedopna-
pedi 3a peSpoM TPAECKTOPHM AehOpMAIME, KOTOPBIE CRM3ANLY C 3ePKALALIM Ipe0dpasOBaHucM,
He peerga cosnazarot. OHHAKO PACKOAMMOCTS COOTHOIMIEHHH HOYTH HCYE3AET TOC/E MOIADHKATIM,
B X0Topo# 3hdexT TpeTsero EHBAPHAHTA HCKIIOUCH U3 SKCHCPHMEHTANBHEIX Pe3yiTeTaroB. MHeME
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CIIOBAMHA TIQCHE TAKON MOBMQARALIMY NMOIYYSHHBIX PE3YIbTATOR "TIpH NOMOLIE RBTHIE YHOMSIHYTHIX
SKCTIEPHMEHTOB 1A MAFKOH CTAMY, ,,IOCTYART 06 morpommy” Wmoamna y/IOBIeTBOPRETCH MOUTH
HomaocTeio. Tlocne 910k MOTUGHKALME HKCICPAMEH TATLHBIC COOTROIICHES MeERIY HAMPSHECHESM
H pedopmanueii 3a pefpoM TPaCKTOPHU eopMauyE chopMya¥POBAHEL B BHAS TCHIOPHOIO pas
BCHCTEA. : :
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