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CREEP RUPTURE OF STRUCTURES AT ELEVATED TEMPERATURE
AND ESTIMATES OF RUPTURE LIFE

W. WOJEWODZKI (WARSZAWA)

A description of creep rupture at elevated temperature is proposed. The functions introduced
to the constitutive equations were defermined from the results of technically possible experiments
in the uniaxial stress state, The description is shown to be useful in an investigation of the influence
of the elevated temperature, the temperature gradients, its cyclic fluctuations and the cyclic propor-
tional loading upon the stress redistribution, the amount of deformation, the propagation of the
damage front and the rupture life of structures, Using the methods for bounding the rupture life of
siructures, the lower and upper bounds for simple structures were also obtained and compared
with the given exact solution.

1. INTRODUCTION

The creep processes in metals are associated with physical mechanisms which,
causing internal damage, weaken the material. As a result the stress redistribution
occurs, the strain rate increases with time and a structure ruptures in the tertiary
phase of creep. Elevated temperature accelerates the process of material deterioration.
At low stress and high temperature a. brittle type of fracture takes place (PENNY
and MARRIOTT [1]). Many structural components, for example in nuclear reactors,
operate in such loading conditions, hence this type of rupture will be considered.

Cyclic temperature and loading fluctuations may lead to an increase in the creep
rate and shorten the time to rupture. The influence of cyclic fluctuations on creep
depends on a number of factors: the material, the temperature and stress level,
and the parameters of cycle, ODING et al [2], KENNEDY [3], TAmrA [4], TorFr and
Broow [5], TioLy {6}, and others. _ '

Only a few creep data have been produced in which the stress is teversed period-
ically during the test. In the case of torsion thgﬁ acceleration of the creep process
was observed, NAMESTNIKOV [7], MOrRROW and HALFORD [8]. In the case of bending
the test results have shown that for copper the material deterioration oceurs only in
tension and for aluminium under both tension and compression, Haymurst [9].

Most experiments have been carried out under uni-axial stress, states. The inve-
stigation of creep under variable loading and temperature conditions in the tri-axial
stress states is a techmically difficult problem and the available results have so far
been insufficient,

The majority of existing theories accounting for variable loadings concern.the
primary and the secondary stages of creep and may be used in the special cases, [2],
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RagoTNov [10], PonTer [11], Opovist and Hurt [12]. Long-term creep lea.diﬁg to
rupture and accounting for the tertiary phase of creep may be considered from the
stadpoint of accumulation of damage. This is recognized as KacHanov's [13] concept
of damage. Basing on this concept LEckie and HayHURST [14] suggested constitutive
equations which reasonably represent the macroscopic behaviour of creeping material.

-The aim of the present paper is to show, on the basis of these equations and the
analysis of creep mechanisms, the possibilities of describing the creep rupture behav-
iour of a material at elevated constant and variable temperature and under constant
or proportional cychic loading. The influence of variable loading and the temper-
ature gradient upon the rupture fife and strains of a two-bar structure and a thick
cylinder is investigated in detail. Also, the estimate of the rupture life of structures
which are loaded at constant temperature is presented.

2, THE CONSTITUTIVE EQUATIONS
The total strain rate &;; is assumed to be the sum of the clastlc é;; and creep
Vi components, namely
D ' 815= iy s
The elastic strain e;; is related to the stress o,; by
(2.2) eyy=Ciya O+ a0dy;,

where C;j;, is a tensor of elastic constants, « denotes the linear coeﬁ‘iment ‘of thermal
expansmn and &, is the Kronecker delta. The creep strain rate 2;; and the damage
rate i can be described by the equations, LEckiE and HavHursT [14],

' . K dp
(2.3) i‘-’u_“w',.' p" Fay
2 - = A v
(2.4) W= pE A4v,

where the scalar functions ¢ and A are the homogencous and convex functions of
degree | in o;;. The functions ¢ and A are equal to ¢ when the applied stress is uni-
axial. The material constants are represented by K, n, 4, v. Basing on the studies
reported by metal physicists, Leckie and HAYHURST [14] suggested that the scalar
function  can be used to measure the physical processes of deterioration. For
undarhaged material w =1, as damage occurs y decreases so that the strain rate
1increases. The rupture time #, is obtained by integrating the relation (2.4) and applying
the rupture condition w=0.
For a constant stress state, the expression for the rupture time is

(2.5) t=1/[4 (L-+v) 4"].

Tsochronous surfaces are given by the condition 4 (g;;)=const. The function 4 (o, J)
can take various forms. Multi-axial rupture experiments show that the isochronous
rupture surface of some important materials, such as stainless steel and aluminjum
alloys satisfy the Huber-Mises criterion of shear stress intensity. Other metals,

-+
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such as pure annealed cop\per and certain nimonic alloys, satisfy the maximum
principal stress criterion. The rupture criterion for most metals apparently lies
between these two extremes, SDOBYREV [15].
For variable uni-axial stresses the integration of the relation (2.4) gives the
time-summation rupture condition
(2.6) 2(e)y=1,
where ¢, is the rupture time associated with the constant uni-axial stress o,.. The
extensive review by PENNY and MARRIOTT {1] of existing experimental data supports
the view that the relation (2.6) is satisfactory for stepped cyclic loading of the type
shown in Fig. 5 and, consequently, only proportional cyclic ioading is considered.
For those materials whose isochronous surface A (o;;) is proportional to the
constant energy-dissipation surface ¢ (g,;)=const, the constitutive relations are
given by

. K
2.7 G ? o,
;A
(2.8) S ",

For convenience, metals whose behaviour is described by Eqgs. (2.7) and (2.8} are
referred to as g-- ¢ materials, while others whose behaviour is described by Egs,
(2.3) and (2.4) are referred to as ¢ — A materials.

To account for the influence of elevated temperature and its changes on the creep
process, the constants n, K, v, 4, C;;; are assumed to be functions of temperature 6.
Two functions K and A are introduced becouse the temperature dependence of creep
and be failure may be different, these processes being characterized by different energies
of activation, The creep strain rate and damage rate at any instant are determined
by the actual stress state and temperature and depend on the structural state of
the material which is characterized by w. The introduced functions n, K, v and 4
will be determined from the results of technically possible experiments in the uni-
-axial stress state which were carried out by GLEN and Hazra [16] on steel specimens .
at loads from 2 to 28 T/in® and temperature from 450 to 575°C. Some results of
these tests are presented in Fig. 1, 2, 3; more information may be found in Ref.
Worewdnzkr [17]. Integration of Eqs. (2.7) and (2.8) for the uni-axial siress state
in which o=const and #=const yields

‘ t AL RS
(2.9) v=Ko m;“;')‘ [1——(1 AT—,) <l9
V t 1H(14v)
(2.10) : W:(l —t). s
(2.11) t,=1/[(1-+v} Ac*].

For =1, we have v=(K/A4) 6" */(1+v—n), where 1+v>nzv. If this restriction
cannot be satisfied for some materials it is possible to introduce more parameters
into the constitutive equations, see [10]. The expression (2.11) gives a linear relation-
ship between log o and log ¢, observed experimentally over a considerable siress
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Fic. 1, Uni-axial stress-time to rupture data for BS 1501-271 steel.
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Fig. 2. Creep curves to rupture for BS 1501-271 steel.
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range, Fig. 1, and therefore from this rupture curve the values of v and. A can be
obtained. Similarly, in the steady state creep condition, from a linear relation between
log w and log ¢, Fig. 3, the values of n and K can be calculated.” The determined
functions n, K, v and A in the temperature range 500-575°C and for lower stress
level have the following form: :

2.12)  p=—1333.1075 02—3.10"% 0+8.033,
= — : . 3 — i
(2.13) . K exp[ 37.9561032--47.003878- 10 (500 0)
+17 5180052 106( ! ! )2]
‘ P 500 0 :
214 - y=12.267-10"% 02 —143.200. 102 §+43,6133,

) ‘ 1 ] '
— — b . 3 — e ——
(2.15) A—exp[ 31.4431988 4 57.478940- 10 (500 6)

1 1\
—_ & ————
80.2612757- 10 (500 : e)]‘



520 SRR - W, WOJEWODZKI

Table 1. Values of functions », X, v and 4

‘0 K ' 1 4
-n KG\-"
Cl " . KG P . v ) B
cm? . cm?

500 3.2 3.28 .10~ 17 , 2.68 228101+
525 2.784 3.38085 .10~ 2,2443 2.5447 1012
550 2.35 3.0125.10— 13 1.96 ) 538-10-U
575 1,90 2285.10-1! 1.83 . 3.05.10-°

Table 2. The calculated values of rupture time for the specimens and the corresponding straing

- ‘ 300°C 550°C : 575°C
[KE] [i] t : v I v f v
em? ]’ Lin? [hr] [%]. fhr] ¥4 fhr] [%]

310 2 81300 8.47 32000 12.70
465 3 37000 9.84 15600 12.95
620 4 415000 9.001 22180 12.03 9190 13.10
930 6 139000 11.035 10000 13.52 4340 13.76

1085 7 . 7022 13.90

1240 8 61200 | 12.198 5404 14.63

1395 9 45950 13.35

1550 10 34574 14.074 3500

1860 12 21210 15.473 ‘

2170 14 14061 16.80

The values and dimensions of these functions for four levels of temperature are
given in Table 1. The values of the rupture times calculated from Egs. (2.11) and
(2.9) and the corresponding rupture strains for the investigated specimens are pre-
sented in Table 2. Also, the creep curves obtained from Eq. (2.9) are shown in Fig. 2
by a solid line. The broken lines represent the steady state creep. Equation (2.9)
takes no account of primary creep.Fairly good agreement with experiments can be
seen in the investigated range of stress and temperature.

3. EXAMPLES OF ANALYSIS OF THE STRUCTURES

3.1. Two-bar structure

The structure shown in Fig. 4 enables to realize a desirable stress concentration
factor and to estimate the description of creep rupture behaviour of a structure
under variable temperature and loading conditions. The following cases of loading
will be considered, Fig. 5:

a) constant load (A=1) and temperature (40=0),

b) censtant load {(A=1) and cyclic temperature,

¢) cyclic load and constant temperature (A40==0),

d) cyclic load and temperature,
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In this situation the equations of equilibrium, compatibility and the constitutive
equations have the form

e for Ot
G.D h Gl+02_{ip for  pT<<T,
{3.2) G'TI-FI((WII)MSH ﬁ[dz +K(lazi)"sn ]
. e o= — — 7al>
E v gna, 0 " ENna,
. wil)“ - ,
(3'3) Ijliz _A(‘{'/i » Iz], 2,
‘ T
(3.4) %y A8+fK(EGl] “senc,di, i=1,2
. g=—"+1a — o dt, =1, 2,
i E ; ” ) 4

where y,==A,/4,, B,=L/l,, p=P/4;, E—modulus of elasticity. The values of #,
K, v and A are given by Egs. (2.12)-(2.15). It is assumed that the material is of the
p—¢ type and material damage occurs equally under tension and compression,
The initial conditions at the instant t=0 are determined by w,=1 and the behaviour
of elastic structure,

_ﬁlp-l_E(ﬁl_l)“'Ao _ p—y1 E(f—1) edf
e 2 . g,
Lty By . L4710 By

(3.5) oy

Equations (3.1) and (3.2) are valid until the first bar ruptures. Aftér this instant of
time f,, the structure became statically determinate but was able to sustain load
until the time f., when the second bar ruptured. The equations were integrated numer-
ically for the following values: p=620 kGjem?, f, =05, 8, =2°, A=u=0.5 T=
=24 hrs, «=1.10"% 1/°C, E=1.5-10° kG/cm?® Linear influence of temperature
on the modulus E was accounted for, taking the value for 500°C. Variable steps of
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calculations were adopted and after each step of time the equations of equilibriam
and compatibility were checked. The numerical results are given in Table 3. Also,
in Fig. 6, the creep strains over a day or cycle are presented.

p=cONMSt= p=cycl= | p=cycl=
2 702“-,00 &OKG/cm |620—310|(G/€m 620—30@&115
e T S B o Beconst=575C G=cycl =
p=const= =575-5Q0C 575-500C|
ke 620!(6/{:'“2-'_4@%.8.};( X \070
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FiG. 6. Cyclic sirains of the bar No 1.‘

3.2. Thick cylinder

We shall consider the axisymmetric problem of an infinitely long thick cylinder
subjected to internal constant or proportional cyclic pressure and to a constant or

cyclic temperature gradient, Figs. 7 and 5. In this sitva-
tion we have the following relationships:

do. o,—0,

09 =,
. on . u
3.7 %= Tp=

From the equation u,+ 2,=0 (,=0, the plane strain
conditions) we get an outward radial velocity

(3.8) i=C ()r.

WA

. oo I

B{b},

Fic. 7. Thick cylinders;
coordinates, dimensions and
loading.
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Assuming ¢=0,—0c, and using Egs. (2.7), (2.8), (3.6) and (3. 8) we obtain the basu:
set of equations (elastic strains are neglected)

1 Bcr,. _ C (1)t
(3.9) v G Kt
. : é(ra,)
(3.10) Tp= ar
1 .

(3.11) - 0: = (o +0,),

. ' ) C(f) )w‘rf
(3.12) e —A( % .
We will consider the steady heat flow described by the equation
3.13 0=+ 00
( . ) . (])_ (a) ln(b/a) n(}/a)}

where @ (a), 0 (b) are the temperatures of the infernal and external surfaces of the
tube, respectively. Thus the values of n, K, v and 4 at any radius are determined -
by Eqs. (2.12)~(2.15) and (3.13). This set of equations can be only integrated numeri-
cally with the use of a computer Two constants are determined by two boundary
conditions.

The strains and radial displacement are given by

- C e
O G s f © 4
¥ : .

(3.14) B

‘ZJm S
0 .
It can be seen from Eq. (3.12), for a constant temperature {A0=0), that w will
become zero first at the inner boundary, r=a. Let us introduce a new floating bound-
ary at r=s, so that w=0 for r<s. In a general case where the temperature gradient
exists, ¥ may become zero first for the arbitrary value of a<{r<b. Tt depends, for
a given geometry of tube, on the value of pressure, temperature gradient and its
direction. In such cases the integration will be terminated at the instant when w =0,
while for the situation where y becomes zero first at r==a, the integration will be
carried out in full. For a cylinder made of the p— ¢ material the stress o, may take
negative values in the regions near the inner boundary at the time just before the
the first rupture and before the next ruptures. These values of o, are, in general,
smaller than o,. so the basic set of equations was assumed to remain valid in such
sitnations,.
- For conventence we introduce the following quantities:

(3.13) E=rja, {=sfa, h=bla, c@®)=C(1)a.
The basic Egs. (3.9)}-(3.14) then become

316 ‘ 1 do, _(c)”" 1

(310) y & K| g
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(o,
(3.17) o= f;),

1
(3.18) : 0. =5 (o, +0,),

. ¢ vin
3.19) l!lw—«—A(“KE?) ,
O(m—0(1)
{3.20) 8(&y=01( l)+———~1—;1————l né, whenw>0  everywhere,
0)~0(1) ‘
(3.21) 0(6)=é(1)%w-ln(é/6) when =0  for  {<{,
[+

(3.22) o= fgz : _u:aéf?dx,

The boundary condltlons then are
. ——P for O<t<puT
. )= ’
(3.23) o, () 1ﬁAP for pT<i<T,
_|-P for 0=t T,
(3'2.4) ()= |—AP  for pl'st<<l,
The problem was solved numerically by means of a CDDC computer for the following
values: P =310 kG/fem?, 1=0.4, p=2/3, T=24 hours, h=1.5 and for the tempera-
ture range 500-575°C, The step of time was taken equal to 2 hours and the thickness

o,(h)=0  when >0 everywhere,

o, (=0 when w=0 for &<(.

Bla)=575°C

AN 9{c)=500°C
1200 B{h)=575°C

800 8{)=675°C

600 - /ﬁB(b).: 575;/

PNEAB(E-550°C
1000 §(a)- 500G
800 - [ P{h):w
€00 =t :

400
200

-200F St

Fra. 8. Stress distribution in the steady state creep conditions in a thick cylinder for different
temperature gradients®
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. (o,
(3.17) o= fg),
1

(3.18) _ ' a‘,-=—2"-(0',+a¢),

. c vin
(3.19) 1[I=—A("K“&?) s

g —e(1)
(3.20) 8(&H=8( I)~l———~l——l;-———l né, whenw>0  everywhere,
0 ~0(1) |
(3.21) 0(€)=é(1)+w‘1n(éff) when w=0 for ¢<(,
c

(3.22) o= fa;z o =aof?ds,

The boundary conditions then are
J=r for Ot T,
Hl AP for uT<i<T,
- P for O<iCuT,
(3'2,4) a’(c)%l—lP for ,uTgtgﬂT,
The problem was solved numerically by means of a CDC computer for the following
values: P =310 kG/em?, A=04, u=2/3, T=24 hours, h=1.5 and for the tempera-
ture range 500-575°C, The step of time was taken equal to 2 hours and the thickness

(3.23) o, (1) o,(h)=0  when w>0 everywhere,

g, (=0 when yw=0 for &<(.

B(@)=575°C

g G(u} =500°C

9@)=575°C
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Frc. 8. Stress distribution in the steady state creep conditions in a thick cylinder for different:
temperature gradients®
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The upper bounds are:
~for a constant load (£;=const.)

(4.1 tu= V/[A(1+v)f A*(53)) dV]
for cyclic loading (Pl[y (), w.ﬁ‘ere _ y )=y (1+1).

(4.2) ty= /[A(1+v) f o (r)dx f 4 (&u)dV}

where t=xT, T is the length of cycle, V—denotes the volume of a component, &,
is the steady state solution for a hypothetical body identical in shape to that under
consideration and subjected to traction P;. The material of this body is an elastic
creeping material with the constitutive relations . .

(4.3) e,-j=(j;jk[ Ty 5 ,;)U_‘:KAV—I 3A/'30'”.

This material does not suffer material deterioration. The results in Egs. (4.1) and (4.2)
may be expressed in terms of representative rupture stresses which give the time
to rupture for a uni-axial specimen equal to thetime to rupture for the structural
component, Thus the stryctural performance can readily be related to the material
behaviour. For a constant load, the representatwe rupture stress is o, and for
cyclic loading, a, y (#) where

4.4) _ o'[,:[f A (& )dV/V]I""

In the case of the v—9 matemal the symbol 4 in Eqs {4.1)- (44) should be replaced
by ¢.

The lower bounds are not of such generality as the upper bounds. They are
limited to kinematically determinate structural components. However, LECKIE and
HAYHURST [14] have shown' experimentally that these bounds satisfactorily predict
the life of the structure which are not stnctiy kinematically determinate and subjected
to a constant load. The lower bourds for ¢ — ¢ material are:

for constant load (Leckie and Havnurst [14])

@.5) = [ ot @y avf|aa [ ot i@ av],
¥ v .

where g3 is the steady state stress distribution:
for eyclic loading

(4.6) o= f Gdv /[A(1+v) f @ f 97(05) dde],

where o= f it (61") dx, o is the steady—state cyclic stress dlStl‘lbuth]l In situations

where the cycie time 7 is small in relation to the working life of the structure, 7=
=dy,+pyy, Where al , is the elastic stress distribution in equilibrium. with the cyclic
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The corresponding representative rupture stresses are: for a constant load, g, for
cyclic loading, o, y (t), where

@.15) %= I8+ D) (e pHO D 1y,

Now, the lower bounds on rupture life will be given. Finding the steady state
distribution o7, and inserting it into Egs. (4.5) and (4.7), we obiain for the case of
a constant load the following expressions for the lower bound on rupture time and
the representative rupture stress:

= (71 ﬁt'f"'*' r?
+0) AP G AT )
Cap (p BOTIRHD)N
P G e |
For the case of cylic loading it is necessary to know the cyclic steady-state stress
distribution ¢3¢ (£)=a{, ()+p;;. This state is found by choosing p to minimize thé

X}
expression for the energy dissipation D over a cycle

(4.16)

417

b 4 ( ﬂl )u+1 ( 1 p)n+1]
418) ———r= [—— LT R S e B S
R R A L] Iy PO R i BAl 2

7 ﬁi A )n+1 ( A i)ud—ljl
+(1wu)[_1(?1 514‘1—‘0 * ?’1131+1+2 ’

where p=—p,/p is a measure of the self-equilibrating stress ficld. On using this
minimum value p and the expression (4.6), we arrive at the formula for the rupture

time
M__,__E}___,__ )uﬂ &(_1—— f_)n+1]
#{(?115)14‘1 r +?1 3’151+1+ 2 -
Aﬁl B )n+1 ﬁ( A —p_)n+1]
@.19) 1= +(1_ﬂ)[(}’1 Bi+1 d - y1 \p B+l * 2
. 1

) , ﬁl B )n+1+v _ﬁ_l_( 1 i)n+1+v]
(1) 4p {#[('thlJrl ’ * 149 ?1ﬁ1‘|‘1+ *

2
. . Aﬂ1 n+ 14y fi( A i)n+1’+u]}
”l_"‘)[(mﬁﬁl”’) T\ mT 2

The corresponding representative rupture stress is o, y (f), where
o
(4.20) - = U+ Ap 6 Lt 2 (L=

The above expressions are valid for the two-bar structure which operates at constant
temperature. Data for the computations are given in Sect. 3.1 and the numerical
results are presented in Table 5. It was found that the values p=0.214; 0.170; 0.135
minimized the energy dissipation, Eq. (4.18), for §=>500; 550; 575°C, respectively.
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The upper bounds are:
~for a constant load (£;=const.)

(4.1 tu= V/[A(1+v)f A*(53)) dV]
for cyclic loading (Pl[y (), w.ﬁ‘ere _ y )=y (1+1).

(4.2) ty= /[A(1+v) f o (r)dx f 4 (&u)dV}

where t=xT, T is the length of cycle, V—denotes the volume of a component, &,
is the steady state solution for a hypothetical body identical in shape to that under
consideration and subjected to traction P;. The material of this body is an elastic
creeping material with the constitutive relations . .

(4.3) e,-j=(j;jk[ Ty 5 ,;)U_‘:KAV—I 3A/'30'”.

This material does not suffer material deterioration. The results in Egs. (4.1) and (4.2)
may be expressed in terms of representative rupture stresses which give the time
to rupture for a uni-axial specimen equal to thetime to rupture for the structural
component, Thus the stryctural performance can readily be related to the material
behaviour. For a constant load, the representatwe rupture stress is o, and for
cyclic loading, a, y (#) where

4.4) _ o'[,:[f A (& )dV/V]I""

In the case of the v—9 matemal the symbol 4 in Eqs {4.1)- (44) should be replaced
by ¢.

The lower bounds are not of such generality as the upper bounds. They are
limited to kinematically determinate structural components. However, LECKIE and
HAYHURST [14] have shown' experimentally that these bounds satisfactorily predict
the life of the structure which are not stnctiy kinematically determinate and subjected
to a constant load. The lower bourds for ¢ — ¢ material are:

for constant load (Leckie and Havnurst [14])

@.5) = [ ot @y avf|aa [ ot i@ av],
¥ v .

where g3 is the steady state stress distribution:
for eyclic loading

(4.6) o= f Gdv /[A(1+v) f @ f 97(05) dde],

where o= f it (61") dx, o is the steady—state cyclic stress dlStl‘lbuth]l In situations

where the cycie time 7 is small in relation to the working life of the structure, 7=
=dy,+pyy, Where al , is the elastic stress distribution in equilibrium. with the cyclic



534 ' W. WOJEWODZKI

and the representative rupture stress o, for a constant load and o, ¥ (¢) for a cyclic
load,

wm geafool-f A )

Now, the lower beunds on rupture life will be given. In order to use the formulae
(4.5) and (4.7), it is necessary to know the steady-state stress distribution o7;. This
state is easy to obtain from the solutions (4.21)-(4.24) on putting- there v=n+1.
Thus for a constant load the expressions for the lower bound on rupture time and the
representative rupture stress have the form

=gyt
(4.28) L= (5) AT— (a/b)z(w Dy
_ oy 2 1—(afb)? 0+ Din 1
4.29) P n {(1 +7) [i_ (a/b)*"T'* 1}

For cyclic loading we first find the steady-state cyclic stress distribution, ¢}}=
=a;, (1)+py;. The linear elastic solution is given by
(b/ry— (b/f)2+1 e e
Glay =1’ oo=P(t )(b/ =1 or=V(o7+0,).
For the optimum lower bound we require a residual stress state p;; which satisfies
the equilibrium equation

(4.30)  ¢°=—P(l) i

dpy  pa=pr _
(4.31) — =0

and boundary conditions _ _
(4.32) 2(@=0, p(B)=0.

Further, the energy dissipated over a cycle will be minimized if the accumulated
creep strains over the cycle due to 67{=07],;+ p,; are compatible, and therefore deriva-
ble from an increment of the radial dlsplacement field u (»). If we denote by »,, v,,
v, the accumulated creep strains over a complete cycle, then from the condition
2,49, +v,=0. (v,=0) and the relations v,—dufdr, v,=u/r we obtain a differential
~equation which has the solution

(4.33) u=u (@) afr,

where u {a) is a constant to be determined.. Assuming p=0% —a}°, integrating Eqgs.
(2.3) for w=1 accounting for Eq. (4‘32) we get S ;

{4.34) ‘ u_(a)_a_ fK(a -0 —I—pq, p,)"dz‘

For the prescribed history of P (t), Fig. 5 and Egs. (4.30), Eq. (4.34) has the form

u(a)a 2P b \? n 21P b2 T
(435) KTr? = [(b/a)z ( ) + P pr] +(1 M)[(b/a)z (T) “E‘Pq,—P,] .

To solve this equation for p,— p,., we.ap ply to the parenthetical expressions Newton’s
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The corresponding representative rupture stresses are: for a constant load, g, for
cyclic loading, o, y (t), where

@.15) %= I8+ D) (e pHO D 1y,

Now, the lower bounds on rupture life will be given. Finding the steady state
distribution o7, and inserting it into Egs. (4.5) and (4.7), we obiain for the case of
a constant load the following expressions for the lower bound on rupture time and
the representative rupture stress:

= (71 ﬁt'f"'*' r?
+0) AP G AT )
Cap (p BOTIRHD)N
P G e |
For the case of cylic loading it is necessary to know the cyclic steady-state stress
distribution ¢3¢ (£)=a{, ()+p;;. This state is found by choosing p to minimize thé

X}
expression for the energy dissipation D over a cycle

(4.16)

417

b 4 ( ﬂl )u+1 ( 1 p)n+1]
418) ———r= [—— LT R S e B S
R R A L] Iy PO R i BAl 2

7 ﬁi A )n+1 ( A i)ud—ljl
+(1wu)[_1(?1 514‘1—‘0 * ?’1131+1+2 ’

where p=—p,/p is a measure of the self-equilibrating stress ficld. On using this
minimum value p and the expression (4.6), we arrive at the formula for the rupture

time
M__,__E}___,__ )uﬂ &(_1—— f_)n+1]
#{(?115)14‘1 r +?1 3’151+1+ 2 -
Aﬁl B )n+1 ﬁ( A —p_)n+1]
@.19) 1= +(1_ﬂ)[(}’1 Bi+1 d - y1 \p B+l * 2
. 1

) , ﬁl B )n+1+v _ﬁ_l_( 1 i)n+1+v]
(1) 4p {#[('thlJrl ’ * 149 ?1ﬁ1‘|‘1+ *

2
. . Aﬂ1 n+ 14y fi( A i)n+1’+u]}
”l_"‘)[(mﬁﬁl”’) T\ mT 2

The corresponding representative rupture stress is o, y (f), where
o
(4.20) - = U+ Ap 6 Lt 2 (L=

The above expressions are valid for the two-bar structure which operates at constant
temperature. Data for the computations are given in Sect. 3.1 and the numerical
results are presented in Table 5. It was found that the values p=0.214; 0.170; 0.135
minimized the energy dissipation, Eq. (4.18), for §=>500; 550; 575°C, respectively.
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formula for a binomial with arbitrary exponent which expresses an infinite series

‘and retain only two terms. This series is absolutely converging if | p|<{ h where

\ A
o 2p b?
(436) ﬁ—(b/a)z—l P P=Po—Pr-
We get the following equation:
u{a)a
(4.37) e Elut = X pt (L) 2,

_from which we determine

u(a) a— KTH" [u+ (1= p) A7) r*
KTr? n [+ (l— ) /'an-l-]ﬁllfl -

{4.38) =
Equations (4.31) and (4.32) yield the condition
(4.39) i f " dr=0,

from which we calculate u (¢) and insert into E'.q. (4.38). We thus obtain

2P [+ —p) 2 [ (n—-2) (B2 "=D () ]

(440) . pp= [t (L= ) =11 1= (afby2 =2 (bja—1

Now, the condition for convergence of the considered series was checked numerically
to be satisfied throughout the thickness of the tube. Using again Egs. (4.31) and (4.32)
we finally get the following expressions for the components of the residual stress-state:

_ Pla+(1—p) 2] [(r/a)“"‘”—i (a/r)2~l] |

(e -
@4 = f P T e G | Gl eI -1 @y -1

Pl (1— ) 2] l (2n—3) (Hay 0-D 1) L @y ]

{4-42) o PeT "[#“F(l‘“".u) An—i] (b/a)2 (n-2)_1q (a—b)z'—i

5

which, together with Eqs. (4.30), determine the stress distribution 75, The functions
# i @ have the form
| QPY TRV (n—2) [p-(1— ) 2]

r[blay 11~ [ a6y @21 *

(443) ' u

2P(1) (3 )2+2P[;¢+(1—y)ﬂ,"] [(n—z)(f-/b)2<"f~2> (b/r)? ]

G I ) TRk G 2L 1@y e a1
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Having determined the function ¢, Eq. (4.44), the formulae (4.6) and (4.8) for the
lower bound on the rupture ttme ¢, and the representatwe rupture stress o, y (¢)
have the form

51
I [ rdxdr
(4.45) (= o
(L+nA [ ([t dquo dx) Jd.r
Q 0
Bl 1 1}y
[(f o"* ' dx [ ¢* dx) rdr
(4.46) A 0

b 1
P\'[ﬂ+lv(l—ﬂ]ff§9,1+l I'dxd]' .
a 0

In general, the exponents in Egs. (4.45) and (4.46) are not integers, so according
to Chebyshev’s theorem they cannot be expressed by means of elementary functions.
Therefore, as earlier, the expressions under the integrals were expanded into series
using Newton’s formula for a binomial and three terms were retained. Further
ntegration and checking of the convergence condition of the series were performed
numerically. The computed values for the data given in Sect. 3.2 are listed in Table 6 .

Table 6. Thick cylinder. Bounds on rupture time and representative rupture stresses

Constant Joad Cyclic loading
Temper-
ature Lower bound Upper bound Lower bound Upper bound
(4.28), (4.29) (4.25), (4.27) (4.44), (4.45) (4.26), (4.27)
£=22.4312.10* 1,=24.0340 -10* 1,==32.4631 -10* 1,=34.5679 .10
500°C N=9346 N=1014 N=13526 N=14403
0 [P=2.49045 a,fP=2.42657 o, [P=2.48476 o[ P~=242657
h==1,3617-10* f.=1.4811.10* £:;=1.9007 -10* f,=2.0515.10*
550°C N=3567 N=617 N=1792 ) N=855
ofP=2.50251 G,=[P=2.39729 o/ P=2.49258 o, /P=2.39729
- £,=0.5895-10* =0.6506 10" £,=0.8116 -10* £,==0.8925 -10*
575°C N==246 N=271 N=338 N=3T72
o[ P=2.51889 6, /P=238674 o/ P=2.51397 o, /P=2.38674

[hr], N — Number of days or cycles

P=310 KGjem?, 1=04, p=2/3, T=24hrs, bja=1.5, £, , —

6. CONCLUSIONS

The aim of this paper was to show the possibilities of a useful description of the
creep behaviour of material at elevated constant and variable temperature and under
proportional cyclic loading. Thus, only such functions are introduced into the consti-
tutive equations which may be determined from the results of technically possible
experiments in the uni-axial stress state, i.e. # and K from the creep curve for the
steady state conditions, A4 and v from the rupture curve. The theoretical curves obtain-
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ed from Egs. (2.9) and (2.11) coincide with the experimental results for the investi-
gated steel BS 1501-271 in the temperature range from 500°C to 575°C (Figs. 1
and 2). Also, a comparison of the values of strains to rupture for the two-bar struc-
ture, Table 3, with these given in Table 2 confirms the suitability of the description.
Particular analysis of numerically computed strains in a cycle has shown that after each
step down the loading and temperature the strain is initially constant or insignificantly
decreases but after that, the strain begins to be on the slow increase. This depends
on the value of a jump and an advanced crepp process. Next, after a step up of loading
and temperature, an acceleration of creep occurred. These phenomena, are observed
in the experiments. In Figs. 6 (the two-bar structure) and 9 (the thick cylinder, v,
u assign the velues over the cycle) the significant acceleration of the creep process
ean be noticed when the time approaches the time to rupture. In Fig. 9 the stress
redisfribution and the propagation of the damage front are shown for the case of
constant pressure and constant temperature. In Figs. 11, 12 and 13 the stress redistri-
bution for the case of constant pressure and a constant or cyclic terperature gradient
is presented. The stress redistribution is particularly visible in Fig. 8 where the signif-
icant infiuence of non-isothermal conditions on the stress distribution for ‘steady
state is also shown.

* Pepending on the temperature gradient, the value oI pressure and the dimensions
of the cylinder, the first rupture can appear at rzza. For example, in some cases the
values r/a=1.05-+1.085 were obtained for the first rupture, Table 4.

The experimental 1esults [16] and the numerical results for the structures show
a significant influence of the elevated temperature and its fluctuations on the failure
time. For the two-bar structure under a constant load and the temperature 550°C
we get the rupture time 25 times shorter and at the temperature 575°C 64 times
shorter than for the temperature 500°C. Similar results are obtained for cyclic changes
of temperature. For example, for a constant load cyclic changes in the range 500
_550°C shorten the rupture life 13.5 times and cyclic changes in the range 500-575°C
to 33 times in comparison with the result for a constant temperature of 500°C. Table 3.
For a thick cylinder subjected to constant pressure the following results are obtained,
for example: for a constant temperature 0 (a)=48 (b)=575°C the time to the first
rupture is about 5 times shorter than at & (@)=575°C—-#8 {b)=>500°C. For a constant
gradient 48=75°C [8 (a)=575°C—0 (b)=500°C] the time to the first rupture is
1.6 times shorter in comparison with the result for 460=>50°C [# (a) =550°C—0 (b)=
=500°C] and 1.4 times shorter than for the case of a cyclic temperature gradient
AD=T5°C [0 (a)=575°C— 8 (B)="500°C], Fig. 5. In the case of a constant temper-
ature gradient A0=75°C [ (g)="575°C—8 (b)=>500°C], the time to the first rupture .
for the proportional cyclic pressure is about 1.4 times longer as compared with the
time for constant pressure, Table 4.

The cyclic change of temperature causes the strains to rupture to increase in
comparison with corresponding values for constant lower temperatute m a cycle.
However, for constant temperature the cyclic proportional changes of loading dimin-
ish the strains to rupture as compared to the values for constant fower loading in
a cycle, Tables 3 and 4.
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The methods for bounding the rupture life used in this paper are valid for the
structures which operate at constant tempratures. For the two-bar structure subjected
to a constant load the lower bounds differ from the exact values from 0.7% to 4%
and the upper bounds frem 14%] to 17.6%. Howsver, for cyclic loading the lower
estimates differ considerably from the exact solutien, namely from 67% to 53%
(it is so far the worst result obtained for this structure) and the upper estimates from
17.4% to 19%, for the temperature range 500-575°C, Tables 3 and 5. For a thick
cylinder under constant temperature the exact sclution was calculated only for 8 (4) =
=0 (b)=575°C. The lower bounds differ from this exact result less than 1% and the
upper bounds about 9%, for both cases of loading, constant and cyclic, Tables 4
and 6. It can be seen from Tables 4 and 6 that the obtained estimates of rupture life
are precise enough for design purposes (except perha.ps for the two-bar structure
under cyclic loading). It is worth mentioning that all bounds were computed by means
of a pocket calcu!at01 while for the exact solution it was necessary to use-a CDC
compuier.

In this work the effects of high temperature fatigue are ignored. This can be
Jjustified by the fact that the maximum operating stress levels are small fractions
of the yield stress and for the cycle periods selected the matetial deformations dre
predominantly that of creep. The cases of the structures under combined loadings
are considered in the papers PIECHNIK and CHrzANOwsKI [22], Zyczkowskr and
SKRZYPEK [23]. B '

Concluding, the obtained results clearly show the substantial influence of elevated -
temperature, temperature gradients, its cyclic flucutuations and cyclic proportional
loading upon the stress redisiribution, the magnitude of deformation, the propagation
of the damage front and the rupture life.

The introduced description of the creep rupture behaviour of a material and the
methods for bounding the rupture life of structures indicate the possibilities of solu-

tions to the practical problems encountered, for example in structural mechamcs of
reactor technology.
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STRESZCZENIE

ZNISZCZENIE PELZAJACE KONSTRUKCII W PODWYZSZONYCH TEMPERATURACH
I OSZACOWANIE CZASU ZNISZCZENIA

Zaproponowano opis zniszczenia pelzajacego w-podwyzszonej temperaturze. Funkcie wystg-
pujace w rownaniach konstytutywnych okredlono na podstawie mozliwych technicznie do przepro-
wadzenia dodwiadczes w jednoosiowym stanie naprezenia. Wykazano, Ze zaproponowany opis
jest wygodny do badania wplywu podwyzszonej temperatury, gradientéw temperatury, jej cyklicz-
nych fluktuacji i cyklicznego proporcjonainego obciaZenia na rozktad naprezenia, wielkosé odksztal-
cenia, propagacjg frontu pekniecia i czas zniszezenia konstrukcji. Wykorzystujac metody osza-
cowania czasu zniszezenia konstrukcji, otrzymano rowniez dolne i gdrne oszacowanie dla prostych
konstrukeji i poréwnano je z podanymi rozwigzaniami $cistymi,
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t PezwomMme

TONM3YUECTs KOHCTPVKITMI B TTOBBIIEHHOM TEMITEPATYPE APHUBO/TANAST
K PAPVUIEHUIO K OIIEHKA 'BPEMEHHW A0 PA3SPYIHEHWSA

B craTee maeTcd onMcanie NOM3YUCCTH APUBOAAINSH K pa3pymeHHIC B YCIOBUSX NOBLILHEHHOH
TeMITepaTypel. PYHKIHH BBeleHHBIC B YPABHREHHA COCTOSHUS OIPEASICHRl H3 DEIYILTATOR FEXHn-
YecKd BO3SMONKHBIX SKCHCPHMCHTOB B ONHOOCHOM HANPKEHHOM cocrosHum, Tlokasamo, ¥TO npn-
MEHAA ONHCAHNE, MOXHO WMCCNE0BATE BIMSHAS NOBLIMIESHHON TEMIESPATY P, IPAAHSHTOR TEMEEA-
TYPbI B MX IMKIMYCCKEX A3MCHEHIH, a TaiKe BIMIHAES IIPOICPIUORAIIBHON IyKIHYecKoH Harpy3Ky
HA HM3MCHEHME HanpsiKeHmi, Benmymry ethopmaumif, pacmpocTpadenue PpoHIa paspyloeHEs o
BpEMEHH 10 PaspymleHys KOHCTPYkUuH. Mcenonbp3opasb Talke METOub onpeﬂénenuﬂ fIpeNeaos.
BpeMeHE JID pa3pyHIeHHd KORCTPYKUIHHA, OIpeferleHb] Al 1IPOCTEIX KOHCTPYKIKE HIKHBIE M BepX-
HHE OPEAEnbl H CPABHEHDI ¢ OaHHBIM TOTHBLIM DEILCHHEM. ¥
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