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NONLINEAR BENDING OF SYMMETRICALLY LAMINATED
AND HOMOGENEQOUS ANISOTROPIC PLATES

M.K. PRABHAKARA and C.Y. CHIA (CALGARY)

A large deflection analysis of symmetrically laminated anisotropic rectangular plates under
transverse load is presented with homogeneous anisotropic plates treated as a speciai case. Solutions
to the von Kdrmdn-type large deflection equations expressed in terms of trnasverse deflection and
force function are formulated in the form of double series for clamped and simply supported plates
respectively. Numerical results are graphically presented for symmetric angle-ply and homogeneous
graphite-epoxy square plates. In the case of small deflections the present results are in good agree-
ment with the existing sofutions, -

1. INTRODUCTION

As it is well known, the governing equations of symmetrically laminated ani-
sotropic plates are different from those of homogeneous anisotropic plates by constant
coéfficients. Thus the techniques developed for the latter can be applied to the former.
Basing on the linear plate theory some investigators have considered the elastic
problem of anisotropic plates. Green and HEARMON [1] have considered the buckling
of the plates with clamped and simply supported edges. The latter boundary condi-
tions have been satisfied by virtue of a procedure developed by Green [2] for clamped
isotropic plates. Using the same procedure WHITNEY [3, 4] has investigated the
bending, stability, and vibration of clamped and simply supported plates and Sun
[5] has considered the bending of simply supported plates. Utilizing the Ritz method
assoctated with a double sertes of beam eigenfunctions for the transverse deflection,
AsnatoN and WADDOUPS [6] have studied the bending, stability, and vibration of
the plates with several.sets of ‘boundary conditions. Except for clamped edges
the expressions for the deflection do not satisfy all the boundary conditions. The other
works on the subject are not mentioned herein. In addition, the large deflection of
rigidly clamped anisotropic rectangular plates has been considered by CriA [7] using
the perturbation technique and by TURVEY and WitTrick [8] using the dynamic
relaxation method. ‘

In this paper large deflections of symmetrically laminated anisotropic plates
under uniform transverse load are presented. The edges of both clamped and simply
supported plates under consideration are assumed to be free from the applied in-plane
forces. The von Karman-type large deflection equations are adopted in this work.
In the case of clamped edges, a solution is formulated on the basis of the double
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series solution [9] involving characteristic beam functions and satisfying -all the
* boundary conditions. In the case of simply supported edges the deflection is expressed
as a double sine series and the force function as a double series in terms of beam
functions. The solution satisfies the boundary conditions for the vanishing of deflection
and stresses but not those for the vanishing of normal bending moments. The latter
is satisfied by means of the procedure suggested by GREeN [2]. In both cases the cou-
pled nonlinear partial differential equations are reduced to a system of nonlinear
algebraic equations which are solved by an iterative process for the deflection and
force/ function coeflicients.

2. ANALYSIS

Consider a rectangular plate of the thickness A in the z direction which hies in
the region 0= x<a, 0< y<band is subjected to uniform transverse load of the inten-
sity ¢. The plate consists of r layers of orthotropic sheets perfectly bonded together.
Each layer has an arbitrary thickness, elastic properties and orientation of ortho-
tropic axes with respect to the plate axes. However, the Iayers are so arranged that
a mid-plane symmetry. exists. That is, for each layer above the mid-plane there is
a corresponding layer which is identical in thickness, elastic properties and orienta-
tion and is located at the same distance below the mid-plane. The differential equa-
tions governing the large deficction of the plate can be written in the nondimensional
form [9]

Q1) A5LF g A F, e+ 47 QAT+ A5e) F rom—
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where a comma denotes partial differentiation with respect to the corresponding
coordinates and where

sz/as ??*_”y/b: i:a/b: W=W/h,
F=®|d, 1*; Q=qb*[A,, 1, A=4"1,
(2.3) - Ay =Ayy Ay, Diy=DijfAnk? [(:7=1,2,6),
hl2

A D)= [ COUDE (=129
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In Egs. (2.3), & is the force function, C% are the anisotropic stiffness coefficients
of the &' layer of the plate.

If the membrane forces are denoted by Ny, N,, N,,, the nondimensional mem-
brane forces N, N, Ny, are related to the nondimensional force function F by

4. . Ny=F.,, Ny=F /3 Ny=—F A
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in which
(25) {NI;:anN{n}:(bZ/Azzhz) {Nsty:Nw}:

The bending moments, M, M, and M., are also written in the nondimensional form

M, [DiJ# Dy, DifA] [-Wa
26 M, |=|DL/¥ Doy DilA} | =W |

My | | Di6/?* Dp Dgelt) | —2W,
where : '
@7n (M, My, My} =074, 1) (M, My, M.},

Equations (2.1) to (2.7) governing the nonlinear bending of a symmetrically la-
minated rectangular ainsoiropic plate under transverse load are teduced to those
of a homogeneous rectangular anisotropic plate when the thickness, elastic pro-
perties and orientation of all the layers are taken to be identical with one another.

If the edges of the plate are. free from in-plane forces, the boundary conditions
are, for a clamped plate,

. W=W =F ,=F ;=0 at {=0,1,

@.8)
W=VV’-,1=E;¢:F:M:O at - nzos i,

and for a simply supported plate

W=M,=F ,=F,=0 at (=01,

(2.9)
WﬁM":.F"C,::I?',:,TEO at 11=0, 1 .

_ Equations (2.1) and (2.2) are to be solved in conjunction with the appropriate
boundary conditions given by Egs. (2.8) or (2.9). The solutions are respectively
formulated for these two sets of boundary conditions.

2.1. Clamped plate .

In this case the two variables & and W are assumed to be of the form

2.10) | F= 3 M F X, (0 Yal)
@11 | W= 3 W, X, ) Y. ().

In Egs. (2.10) and (2.11) the beam eigenfunctions, X; and ¥;, and their properties
are given in Ref, 9. It can be shown that Fand W satisfy all the boundary conditions
given by Egs. (2.8). Substituting Egs. (2.10) and (2.11) into Egs. (2.1) and (2.2),
multiplying the resulting equations by X; ({) ¥; (1), integrating from 0 to 1 with
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respect to { and g, and using the properties of beam eigenfunctions, the system of
coupled nonlinear algebraic equations is obtained as follows:

@12)  Fylof ds,+ i g Al 1 D) ) Fan 120w, oAl KE'LY —

mn n

— A2 o By KS' LY QA5+ Age) + 22% o B A KLY =
=2 3V NT NN W W [ o BBy KLY — o} BT KL,
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(2.13) Wy lafD}, +A* 81 D1+ D) Y Wooldhal DY KT L+
P q

+24%af i K LD}, +2D5) + 447 0, 7 D K L]~
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where ¢,,, fi,, K, and L, (p=1, 2, 3, 4, 5) are given in [9] and where
2.14) 0= Y QX Yu().
P q

2.2, Simply supported plate

The two dependent functions F and B in this case are assumed to be of the
form,

@15) F=) Y FuXu@ Y, (),
(2.16) | W= 2 Z W ,.sin pr{ singny ,

in which X,, ({) and ¥, (%) are the beam eigenfunctions as those in Eq. (2.10) satis-
fying all the prescribed in-plane boundary conditions in Egs. (2.9). Equation (2.16)
for W satisfies the edge condition for the vanishing of the transverse deflection but
not the edge condition for the vanishing of the normal bending moment. In order to
satisfy the latter boundary condition the method suggested by Green [1, 2] is used
herein. In the present case Eq. (2.16) cannot be differentiated term by term beyond
W . with respect to {, and W, with respect to #. Assume that W, . can be represented
by a cosine-sine series. The Fourier cofficients in the series can be determined by
integrating by parts and then using Eq. (2.16). Thus the series can be written as

r=2,4 a

@17y W= Z a,singnn+ Z 2 a,cos prlsingmn -+

+ Z 2 b, cos pr singrn— 22;} 72 qucospnismqmy,

p=1,3 1
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'

where

1 |
a,=4 [ W) =W, @ nisingmdy,
1}
(2.18) —
bo=—4 [ W, (1, 1)+ W, 0, n)] sin g dy
0

A similar procedure is applied to W ,,, which leads to two sets of constants ¢, and
d,. Substituting W, from Eq. (2.16) into the condition that M,=—D}, W /i*—
—2D%4 W ,/A=0 at {=0, 1, adding these equations, multiplying the resulting
equation by sin iny, integrating from 0 to 1 and uvsing Egs. (2.18), the coefficients
b, can be expressed in terms of W,.. If subtraction is carried out instead of addition
in the calculation, @; can be determined. Similarly, ¢; and 4, can be obtained. The
result is

a=@aD1eD1)) ) Y] par® Wy H,  p=odd,
r g :

b;=(8AD¢/D},) 2 2 pqr* W, H?, p=even,
n q

(2.19)

e =8D36/AD3,) D1 > pan? Wy HY,  g=odd,

b aq

di =(8D;6/A‘DZZ) 2 2 P(i'ﬂ’z quHip ] q=e\’€l1,

. P q
in which

H{"=0 if  m-+n=ecven,

(2.20)

HY =dmfr(m?*—n*) i mi+n=odd,
By virtue of Bqgs. (2.19) it can be shown that
(2.2 DL [G3)s even+(iB,); aaa] + D32 2% [(J6)) even+ (i) ; oaal +

+4n* 2 Y| N WoopqHY (Dl p*+ D5 A q?) =
”n i
=214 DT N W, pqH P H DT (D 124 p)+ D 22 (1% + 4}
r a .
bl

Now the fourth derivatives of the deflection function W in Eq. (2.2) except
for W, can be obtained through term-by-term differentiation of W ., and W .
as given by Eq. (2.17). Substituting these derivatives and Egs. (2.15) and (2.16) into
Egs. (2.1) and (2.2), multiplying the first of the resuiting equations by X, ({) ¥, ()
and the second by sin ir{ sin jzy, integrating from O to 1 with respect to { and #
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and using the properties of beam eigenfunctions [9] and Egs. (2.19) and {2.21), the
following system of equations is obtained after some manipulation:

222 Fy et dl 4 B AT 1= D D) Fon 12665, o 3 KY" LY~
m n
— 2ol BRKY LY QA3+ Age) + 2% o, B Ao KV L] =

=g2at 3 SN N W Wiy [rskIRY™ ST - K2 5> RET ST,
r N k 1 :
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where «;, fi;, K, L; (j=1, 2, 3) Ry and S, (k=3, 4,7, 8) are givén in Ref. 9 and where

{0, n even, 0, m+n even,

0,  neven, _ =
11, # odd, 4 11, mn odd,

H22{4/mr, nodd, I3
(2.24)

Q= Z Z Q,,Sinprl sinmy .

Equations (2.12) and (2.13) for a clamped plate or Egs. (2.22) and (2.23) for
a simply supported plate constitute an infinite system of coupled nonlinear algebraic
equations which are to be solved for coefficients W,, and F,, for a given set of ma-
terial properties, orientation angle and aspect ratio. As sbon as these coefficients
are determined, the deflection, membrane forces and bending moments can be
obtained from Egs. (2.11) [or (2.16)], (2.4) and (2.6) respectively.

3. RESULTS AND DISCUSSIONS

Numerical results are presented for square symmetric angle-ply and homogeneous
anisotropic graphite-epoxy plates. The elastic constants with respect to the material
orthotropic axes are taken to be Ep/E;r=40, Gi7/Ex=0.5, vir =0.25, in which E;
is the tensile modulus in the filament direction, £y the tensile modulus in the direction,



NONLINEAR BENDING OF LAMINATED AND HOMOGENEOUS ANISOTROPIC PLATES 35455

:

"perpendicular to the filaments, vyr the Poisson’s ratio and Gy the shear
modulus. In the case of a symmetric angle-ply plate the number of layers
considered are n=1, 3,5 and 7. The orthotropic axes of the layers are
alternately: oriented at +45° and —45° with respect to the plate axes and all the
layers are of equal thickness. For homogeneous anisotropic plates the angle of orien-
tation, @, between the material axes of symmetry and the plate axes is taken as 0°,
15°, 30° and 45°. Tn these cases the nondimensional constants 4}, and D}, (7, j=1, 2, 6).
in Egs. {2.3), (2.3) and (2.7) can be simplified by replacing A, in these equations by
Er k. The pondimensional load parameter also simplifies to Q=gb*/E, h*. This
change will not affect the form of other equations. The largest value of the trans-
verse load parameter is so selected that the maximum deflection does not exceed
three times the thickness of the plate.

The system of nonlinear algebraic equations (2.12) and (2.13) or (2.22) and (2.23)
is solved by an iterative procedure. The value of the deflection coefficient Wi, is
prescribed and the values of transverse load parameter @, other deflection coeflicients
W,;; and force function coefficients F;; are then determined from the system of equa-
tions. Once the value of W, is prescribed and an initial guess for W;; (i1, j#1)
is made, Egs. (2.12) or (2.22) become linear and are solved for the F;; coefficients,
These F;; coefficients are then substituted into Eqgs. (2.13) or (2.23) and the resulting
set of linear equations are solved for Q and W; (i#1, j#1). These values of Wy,
and the prescribed value of Wy, are now used in Eqgs. (2.12) or (2.22) to determine
the new values of the Fj; coefficients. These, F, ; coefficients are now used in Egs.
(2.13) or (2.23) to determine new values of @ and W;; (i#1,j#1) and the process
s continued undl the desired accuracy is achieved. The criterion for the con-
vergence of the jterative process is that the difference between the final value of
the central deflection and the average of the values in the previous five iterations
is less than one percent.

 ‘Table 1. Comparison of 25-term solution with 49-term solution

Clamped homogenegous Simply supported five-layer
graphite-epoxy plate, graphite-epoxy laminate,
6=30°, A1=1.0 §=-+45° 1=1.0
o Q
WA WA
25 terms 49 terms 25 terms 49 terms
0.60 469,0 - 466,0 0.49 173.0 174.0
1.20 968.0 961.0 0.97 354.0 357.0
1.75 15200 1503.0 1.45 5530 557.0
230 2133.0 2106,0 2.38 1026.0 " 1030.0
2.83 2815.0 . 27790 2.82 1303.0 1310.0

In order to investigate the convergence of the present series solution, calculations
for two typical cases were made by the use of 25-terms (7, j=1, 2, ..., 5) and 49-terms
(i, j=1, 2, ..., 7) in the series for F and W. The results are presented in Table 1 in
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which W, is the nondimensional deflection W at the center of the plate. These
results indicate that the two series both converge rapidly and that the 49-term
solution should be reasonably accurate for engineering purposes.

In the case of small deflections the numerical resulis obtained from the present
solution for the central deflection of an anisotropic plate with various values of & agree
very well with those of WHITNEY [3] and Asuron and Wapoues [6] for clamped
edges and of Sun [5] for simply supported edges but are different from those pre-
sented by WinTNEY [4] for simply supported edges by the amount of five per cent.

3.0
8 =450
8 =30%.
2.0 g=15° 7]
=
~
3 "
1 —
1.Gp % :2
CA///.A/”‘\B
g =
8 =0 a Bé—\—v-g
o i ! !
0 1000 2000 3000
4 4
Q=qgb /E;h

Fic. 1. Load deflection relations for clamped square anisotropic plate with different fiber
orientations,

- 200

-100

Fic, 2, Bending moments at the mid-points of the edges ({ =#=0) for clamped square anisotropic
' plate with different fiber orientations.

Calculations were carried out by using a CDC-6400 computer. Numerical results
are graphicaily presented in Figs. 1 to 3 for clamped anisotropic plates, in Figs, 4
to 7 for simply supported anisotrpic plates and in Fig. 8 for a simply supporied
symmetric angle-ply plate. The relation between load and central deflection w,
is shown in Fig. 1 for a clamped anisotropic plate with various values of 6. It may
be observed that for a fixed load the central deflection increases as @ increases with
the orthotropic plate having the smallest deflection. In Fig. 2 bending moments
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at the mid-points of the sides are presented for various values of 6. The largest
be nding moment M, in magnitude occurs at the mid-points of sides, {=0, 1. The
relation between load and membrane forces at the center of a clamped plate is
shown in Fig. 3. As # decreases, the membrane force N, increases whereas N, decrea-
ses. At #=45°, N, and N, are equal to each other. In Fig. 4 the relation between
the load and central deflection of a simply supported anisotropic plate is presented

» 1000 2000 2000
Q

Fic. 3. Membrane forces at the center of clamped square anisotropic plate with different fiber
: orientation,

3.0
8 =320°
2.0— = 45° ]
\ g = 15°
=
\4
g N
1.0— g = 0* e |
o 1 1 I
0 200 400 600 800

Q=qb*/E.n?

Fic. 4. Load-deflection velations for simply supported square anisoiropic plate with different
! : fiber orientations.

for various values of #. For a given load the central deflection increases with increa-
sing & as in the case of clamped edges and the central deflection of a simply suppor-
ted plate is larger than that of a corresponding clamped plate. Figure 5 shows the
variation of central bending moments with transverse load for an anisotropic plate.
As § increases, the bending moment M, decreases but M, increases. These two bending
moments are equal to each other for #=45°. The distribution of the bending moment
M along the central line, #=0.5, of an anisotropic plate with 8=45° is shown in
Fig. 6 for various values of load Q. For large values of @ the maximum bending mo-
ment is no longer at the center of the plate but shifts toward the edges. This indicates




i

Fi1G. 5. Bending moments at center of simply supported anisotropic sguare plate with different fiber
orientations.

Fie. 6. Distribution of ?bending moment M; along center line, #=0.5, of simply supported square
anisotropic plate (#=45°) with various values of transverse load.

Fic. 7. Membrane forces at center of simply sﬂpi)orted;square anisotropic plate IWiil:h different fiber
E ' orientations. : SRERAR ‘

!

15681
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the development of a boundary layer in the bending moment distribution. In Fig. 7
the membrane forces at the center of an anisotropic plate are presented for various
values of 6. The membrane force N, increases but &, decreases as § decreases and
N is equal to N, for 0=45°. The load deflection relations for a simply supported

Tic. 8. Effect of number of layers on load-deﬂection relation for simply supported 4-45° symmetric
angle-ply square plate.

symmetric angle-ply anisotropic plate having different number of layers is shown
in Fig. 8. It is found that the central deflection for a fixed value of the transverse
load decreases. with an increase in the number of layers.-For n=7 the central deflec-
tion of the plate is very close to that of a special orthotropxc plate {0=+45",
A16=426 ‘“Dm =D,6=0).

-4, CONCLUSION

A theoretical solution for the large deflection of homogeneous and symmetrically
laminated rectangular anisotropic plates. under transverse load is presented for
clamped and simply supported edges. «

“Numerical resulis are presented for homogeneous graphite-epoxy plates having
different orientations of the material axes of symmetry with respect to the plate axes
and for a simply supported symmetric angle-ply plate with various values of the
number of praphite-epoxy sheets, In the case of homogeneous anisotropic plates
the central deflection, bending moment M, and membrane force N, increase with
increasing 6, whereas M, and N, decrease. For a given value of transverse load the
central deflection is the smallest for an orthotropic plate (#=0°) and the largest
for #==45°. In the latter case M, is equal to M, and N, is equal to N,, at the center
of the plate. In the case of symmiteric angle-ply plate, the central deflection decreases
when the number of layers increases, as in the small deﬂectlon theory of unsymmetri-
cally laminated anisotropic plates.

The results presented in this work were obtaihed in the course of research spon-
sored by the National Research Council of Canada.
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STRESZCZENIE

NIELINIOWE ZGINANIE SYMETRYCZNIE LAMINOWANYCH 1 JEDNORODNYCH
PLYT ANIZOTROPOWYCH :

W pracy przedstawiono analizg duzych ugieé symetrycznie laminowanych anizotropowych
plyt prostokataych, poddanych dziataniu obcigzenia poprzecznego, Plyty jednorodne anizotropowe
sq traktowane jako przypadek szczegGlny. Rozwigzania rownan duzych ugieé typu Karmana
zapisanych w funkcii ugiecia poprzecznego i sity nogélnionej przedstawiono w postaci szeregow
podwojnych, odpowiednio dia plyt zamocowanych i ptyt swobodnie podpartych. Wyniki nume-
ryczne przedstawiono graficznie dla symetrycznych katowo zwitych {angle-ply) i jednorodnych
grafitowo-epoksydowych plyt kwadratowych, W przypadku matych ugigé wyniki obecne pokry-
waja sig 2 dotychezas istniejacymi rozwigzaniami.

PesmomMe

HEJIMHERHAIA M3rUE CHMMETPHYECKY TAMAHUPOBAHHBIX 1 O,EIHOPOI_I,HBIX
AHH3O0TPOITHBIX TIIAT

B paGoTe upemcrasmen anany3 GONMBmAX OPOTHOOB CHMMETPHYECKHM JAMHHUPOBABHEIX,
- AHM30TPOIEEIX, NPHMOYTONbHBIX TWIAT TMOZBEPrHYTHIX NelCTBHIO onepenHol Harpyskda. Opno-
POJTHbIE, ARMIOTPONHEIE TNHTHL TPRKTYIOTCS KaK YacTHul cuydalt. Pemepms ypapHeHH GONBIIHX
nporubon THira Kapmdna, 3anmcapibiX B (GYHKLURM OOHEPEYHOrO NpOrmds u o6o0HICHROH CRIILY,
TIPEJICTABIEHLl B BHOE NBOUHEIX PATOB COOTHBETCECHHO 7ANA SAKPENNICHHLIX INTAT M TUTAT CBO-
Gomoe MOATEpTHIX. UHCHEHHbIE pe3yNbTATHl TPEACTABNCHBI IpalHuecKd A CHMMETDRMHELX
YTTIOBOCBEDHYTRYX M ONHOPOAHEX TIPA(GET-SNOKCHIELIX KBafpaTHHX oimT. B cnydae MATBIX
nperatoe Hacrosume pe3yisTaTel COBIANANOT ¢ CYIISCTBYIONMME AO CHX NOD POWCHHAMH,
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