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SHOCK' WAVE DISPERSION IN FLUIDS
WITH LOOSELY _DISTRI_BUTED RIGID BODIES

LS. e KRASINSKI, A KﬁOSLA and V. RAMES H (CALGARY)

G. L Tavior's [1,5] probabilistic approach to blast waves in turbulent air is extended for
shock waves propagating through randomly distributed solids in gas. The shock wave suffers disper-
sion and is changed to a train of weak waves spread over a longer positive time duration. If fric-
tional fosses are small, the impulse remains approximately constant and the standard deviation
of the attennated wave has been found to be of the form ‘

¢ = [4 exp (— kw)+B] l/w— 1 ]/ti .

This is for baffles with randomly aligned perforations. A similar expression has been found for
granulated materials in gas. The constants 4, B and / have been experimentally determined. The
above expression for standard deviation has been maximized with respect to the inverse of void
fraction of granules, Thus for thickness of baffles of 0,178 cms, w=1.18 and for an equivalent dia-
meter of granules of 0.068 cms, w=4.1 for maximum dispersion. Frictional losses neglected in this
study have been dealt with by the authors in a different paper {8

s ‘ 1. INTRODUCTION

Recent years have witnessed a growing interest in the propagation of waves in
non-homogeneous media. Stratified solids, foams and solids in gases belong to this
category. Shock wave attenuation is of considerable interest when waves move
in these media. An attempt has been made here to extend G.I. Taylor’s theory of
diffusion by continuous movements [1] to predict shock overpressure and positive
time duration for shocks propagating through randomly distrbuted solids in a gas.
Taylor’s theory [1] has been found to be very fruitful in many fields of fluid mechanics,
especially in understanding the behaviour of shock waves in turbulent atmosphere
{5] as well as atmospheric and temperature diffusion [2, 3, 4, 6].

Consider a plane one-dimensional shock-wave propagating through randomly
distributed solids in a gas. After a few collisions, the main wave is broken down
inio a train of weaker waves by the reflection and diffraction at each solid, intermixed
with vortices formed at the boundary of each solid. Onviously, afier a few collisions
a Lagrangian description of the wave front is impossible and only a statistical one
seems feasible. Figure 1 shows a normal shock wave thus reduced to a train of weak
waves after proceeding down a cylindrical vessel filled with spherical objects, The
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train of weak waves is generated by random reflections and diffractions. The shape
of such a wave as it moves down the media is shown on Fig. 3, the crest receding
slower than the base, as shown on Fig. 2. This situation is better termed as dispersion
rather than diffusion

Fia. 1. Sg:hlieren photograph of a train of waves.
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F1G: 2, An x—¢ diagram obtained from a shock wave moving between glass beads.

- If there is no appreciable friction at the boundaries, the impulse of the train of
weak waves will be approximately constant, but the maximum overpressure reduces
steadily, while the positive time duration increases Is. this paper a standard deviation
o is applied to the initial wave as proposed by G.I. Tayror [5] and an attempt
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Fic. 3. A p-1 diagram of a shock wave propagating between concentric perforated baffles.
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Fia. 4. G. T, Taylor’s method applied to a step-triangular wave,

is made to predict changes in the standard deviation ¢ as the wave moves down
the new media. An example of such calculation in terms of ¢/X is shown on Fig. 4,
where Y is the positive Iength of the wave and x/X is the relative distance.

© 2. IDIscuUssioN OF TAYLOR’S APPROACH

Taylor’s apbroach is briefly outlined here so that it can be applied to shock
waves propgating through solids in a gas, The key to his solution [5] was to estimate
the standard deviation ¢ of a blast wave due to atmospheric eddies as a function
of distance. Using this method he botained an approximate shape of the diffused
wave at any position. In his previous paper [1], he showed that

Tt
@.1) ' o*=2[u?] [ [ Redzar,
o0

In an evenly turbulent medinm [4'?] is constant and represents the mean energy of
rubulent motion. If a particle starts moving with a uniform velocity »' and after
a time 7 suddenly makes a fresh start either forward or backward, this particle will
move a distance d=u’" 7. The coeflicient of correlation R between such two motions
is a function of time only and falls to zero when time £— oo, For very short times,
te. {0, R—1, The following important cases may be distinguished:

a) The total time 7" is small R, does not appreciably differ from unity, then

22 o =[u'*] T2,
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b) The total time is comparatively large in the limit f R.d¢ is finite, say I, then
' 0

(2.3) _ o? =2 [w'*IT.
As w'?=(dfz)* and T/ is the number of events n, it follows that
2.4 e?=2d*IVn.

¢) There is no correlation between two subsequent motions and /=t/2, which,
inserted into Eq. (2.4), gives
5 o o*=dn _

This special case also represents the deviation in the .random walk” problem.

d) A certain functional value is assumed for the correlation coeflicient R to
fit the observed data better. Thus SUITGN [4] assumed R=[a/|u| £]* and showed
that for large scale turbulence the size of the “effective eddy” is not constant, as
suggested by Taylor, but grows with distance.

_One notes from the above discussion that i) the reasoning behind this approach
is very appropriate to a moving shock wave interacting with randomly dispersed
solids, ii) the treatment can be adapted to a variety of circumstances, iii) the cases
b) and c) reduce to a general statement:

(2.6) a.Vn,
where o, =deviation due to one event and o =(deviation due to one event) x (square
root of number of events). If both the expressions on the right hand side of Eq.
(2.6) could be defined for the case of randomly distributed solids, then the standard
deviation ¢ in conjunction with a ‘Gaussian distribution would provide the answer.

G.I. TAyLoRr [5]in the study of a shock wave progressing in turbulent atmosphere
assumed that there was no correlation between motions (case ¢). If the turbulent
atmosphere is composed of eddies of diameter L, the wave progressing at the speed
of sound ¢ will take a time L/c to cross one eddy. If the oscillating velocity produced
by the eddy is +’, then the deviation per eddy on one event is o, = Lu’[/¢c. The number
of events in proceeding a distance is x/L. The standard deviation in crossing a dis-
tance x is then '

2.7 , o=

Ly . x
c L

Figure 4 shows the result of a computation using Taylor’s method for a flat top

shock wave in terms of o/cT,=a/X where T, is the positive time duration of the

wave (or X positive length). The impulse of the wave remains constant, which is

physically correct and mathematically implies that the probability integral is unity

between +-oo.

3. EXPERIMENTAL APPARATUS AND PROCEDURE

Figure 5 is a schematic of the apparatus used. It consisted of a 2" diameter
L-shaped shock tube with the driver section in the horizontal arm. The solids to
be tested were distributed in the vertical arm. Pressure signals from Kistler pressure
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transducers were amplified by Kistler Charge amplifiers Model 504-A and recorded
on a 14 track Hewlett-Packard magnetic recording system HP 3955 at a tape speed
of 60 inches per second. The data was reproduced at tape speed of 3-3/4 inches
-per second on a Honeywell 1508, 6 channel Visicorder, The direct print photographic
paper speed was 20 inchesfsecond. Time marks, a milli-second apart, were also
printed on the paper from an external source.
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Fic. 5. Shock tube layout.

Incident shock velocity was determined by timing the shock arrival at transducers
1 and 2 which were 58.8 cms apart. A Hewlett Packard Universal counter 5325A
was used for this purpose.

Normal shock tube techriques were followed for the experiments. About 100 cms
of the vertical arm of the shock tube was filled with randomly distributed solids.
Transducers 3 to 7 were mounted in this medium. A 0.005'" cellophane was used as
the diaphgram. The pressure in the driver section was about 800 mm of mercury
(gauge) and that in the driver section atmospheric (average 660 mm Hg), this combi-
nation of pressures gave a time interval of shock arrival at transducers 1 and 2
of about 232 psecs. Experiments on various solids were repeated and Figs. 1, 2 and
3 show typical results.
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4, (GEOMETRICAL ASPECT

In. discussing the case of a shock passing through a medium of solids distributed

in a gas, the following simplified geometrical model clarifies some of the ideas used.

~Consider a vessel of uniform cross-section, volume ¥ and height 4. It is filled

with a solid to a height ¢ and the remaining s—g=p with the fiuid. The relative
amount of fluid is -

4.1) w=pi(p+q)
and solid
4.2) - l—a=p/(p—q),

o is termed the void fraction and (1 —e) the solidity ratio,

Now if the solid content in the vessel is distributed randomly throughout the
vessel instead of being in one place, the void fraction or the solidity ratio is not
-changed. In particular, if the solid is in & slices, distributed in the vessel so that
the average thickness of the slices is ¢ and the average gap g, then g/h is proportional
to o/N and #h to (1 —o) N. Furthermore it can be stated that the number of events

1 is proportional to N and

3y Mot )
(4.3) e~ ~o:g~( ga)t.

This is a more general expression than the one used in Eqgs. (4.1) and (4.2) and stresses
the importance of « and infroduces ¢, g, # and & into the argument.

When the solid material is very densly packed, i.e. «—0, the number of events’
n~hft; also the gap decreases to a very small value and the ratio «/g remains finite.
Similar reasoning holds for the other extreme when ¢-—1. From the experimental
point of view, for a densly packed material, say 0 <a20.5, like for example granulated
solids, it is easier to assess the diameter of the particles corresponding to this than
- the distance between them. For a loosely arranged solid, say (0.5-0.57)Zw<1,
like a series of perforated baffles, it is more convenient to measure the distance
between the obstacles corresponding to the gap g. In all cases it is comparatively
simple to estimate the void fraction « by immersion in a liquid. Thus, during the
experiments the ratio of gas to solid for each case was determined by inserting a num-
ber of the solids in a graduated jar and pouring a predetermined volume of water
into it. If the volume of solids and air was V/,, that of water poured in was ¥, and
the final volume of water and solids was V;, then the ratio of gas to (gas-}solid)
is o=V = V3+ Vo)V,

It is experimentally possible to estimate the standard deviation of the dispersive
wave. Figure 3 shows a dispersive wave plotted in the p—¢ coordinates. As explained
before (Sect. 1), the crest of the wave C recedes with time in relation to 4 and the
deviation in time is measured by the mean value AT, between 4 and B. Knowing
the velocity of propagation W, o=WA4T,. . : -

iIf the above reasoning relating the geometrical relations with the number
of events is cosrect and Taylor’s a'rgument holds, then, for a given configura-

. '\%
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tion (which includes some finite value of the . integral of the correlation
coefficient R)

1 -
am_ﬁ for a densly packed material

and i
ox—— for loosely arranged obstacles.
]/ g

Figure 6 shows such a plot {corrected for effects of varying «) obtained from typical
experiments performed in a shock tube filled with spherical objects and also with
randomly perforated concentric baffles. The agreement is satisfactory and the relation
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Fig. 7. Standard deviation as function of I/; .

is linear. Again if the same argument is true for all the cases, o= ]/ distanc?f:z'i/ x.
Figure 7 shows such a plot for baflles. Again the agreement is good as it gives a straight
line.
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5. THE DEVIATION FUNCTIONS

The arguments given above must be further generalised to give valid results
in a variety of circumstances. It is obvious that both the correlation coefficients
integral as well as the void fraction should be included. Following Eq. (2.6), one must
try to define some deviation function S~ g, such that for 0<ea<0.5,

]/77
(5.1 o=s) -

and for 0.5%a<1

(5.2) o=8 ) -
. (=3

The function S which is proportional to the standard deviations o, of one event
would depend upon the void fraction ¢, the internal geometry of the solid materal,
and would also have to include the integrated value of the correlation coefficient R.
Although the task of defining such a function seem formidable, one is helped with
some simplifying assumptions,

As discussed before for a weak correlation (Eq. (2.3))

4
(5.3) ' f Rdé=1,
Q

where / is some constant value. In the case of a void fraction «, one rhay assume that
R=f(¢, o) and '

[ 7
(5.4) f [ R o) déda=1().
0 ¢=0 3

The expression I/t of Eq. (2.4) would enter into the function S. Also this function
would have the dimension of length and would be expected to differ for vatious
geometrical configurations such as baffles with various randomly distributed holes,
or granulated material of various shapes and sizes, etc. In all cases, however, it appears
that whatever its variations due to the correlation coefficient R, the distribution of
the solid material S would have to decrease monotonically with the decrease of a.
At this point one may recall Eq. (2.7) where the standard deviation due to one event
was o,=~Lfcu’. When the wave reflects between the solids, u#'=0[c] and g,~L
which again has the dimension of length and which in its generalised form is the
deviation function § discussed above. If a new variable y is introduced such that
¥ =1/u then w—oco when a—0. As S (i) would also decrease monotonically with
the increase of y one may postulate that dS/dy <0. One also may imply from physical
consideration that the second derivative d S/dy> always has to be positive. For such
a general statement a differential relation may be ventured in the form

' s
5.5 ' — = - —
(5.5) v Cexp(—ky),
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where the parameters C and & would include the integral values of the correlation
coefficient R, the particular geometrical characteristics of the configuration, etc.
1t follows that '
(5.6) ' S=%exp(—kw)+B:Aexp(~—ky/)+B.
The new constant of integration B indicates that when w—oo the function
" may reach some limiting value. The three constants A4, B and 4 require experimental
determination and may vary from material to material and various solid configu-
rations. The generality of one representation of § is of importance for a better
understanding of the processes involved and has interesting practical aplications,
It follows from Sect. 4 that when 1.75%w < oo, i.e. for a densely paéked material

: x
(5.7 o =[A exp (—ky)+B] ]/7 .
and when 1<wZ1.75, i.e. for a loosely packed material like perforated baffles
— ,
(5.8) : og={Aexp(—ky)+B] ? .
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Fic. 8. Experimental and analytical values of deviation function S for baffles and granulated
material.

The analysis of the. available data seems to justify the above assumptions. It
was found that the experimentally-calculated deviation function S was practically
constant and independent of the distance x travelled by the wave. Using Eq. (5.6)
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for the case of baffles and granulated materials, the following expressions- were
derived respectively:

(5.9 ' C S =3533 exp{— 6.3} +2.44 [cm]
and
(3.10) S=6.2exp(—0.5¢) [cm],

Figure 8 shows the experimental points together with the fitted curves of the assumed
nature and the agreement is good. It appears that for the granulated materials the
constant B can be taken as zero.

6. OPTIMIZATION OF THE STANDARD DEVIATION

The argument can be pursued further. In the case of baffles Eq. (4.3) indicates
that for a certain number N of those and the distance travelled by the wave A, there
i$ a unique relation between the gap g, thikness 7.and void fraction o Using w=1/n
one readily obtains that g/t~ 1/(w - 1). On the other hand, for a ceratin shock strength
one cannot reduce the thickness ¢ beyond certain limits and a limiting ¢, hias to be
adopted from stress considerations. Thus the gaps so defined, g,~¢, (w—1) when
this expression is inserted in Eg. (5.8), for any distance x travelled by the wave

(6.1) Tope [A exp(—ky)+ Bl Yy T,

which indicates that the standard deviation passes through a maximum for some
value of Wopimm- An approximate numerical solution can be found immediately
assuming B=0. Then :

1+2k
Wopt ™ "__jr

Using k from Eq. (5.9), one gets @op =1.08, o, =0.976. Taking B=2.44, a slightly
larger value for y,,, is required, i.e. yy, =1.18, 2,,=0.847. Using Eq. (4.2) one
can also deduce that with a baffle thickness of 0.178 cm, the optimum gap would
be £,,=0.989 cm for this type of baffle perforations. :

A similar discussion can be drawn for granulated materials. According to their
shape, hardness, etc., an empirical relation can be assumed between the grain diame-
ter o and the parameter y (In Eq. (5.7) 7 should be substituted by ). For the tested
granulated materials an adequate expression was found in the form

(6.2) d=ay~,

in which a could be understood as a hypothetical diameter for w=1.0, where the
range of y does not apply anymore. The measured data gave d=22y~*! cm. Sub-
stituting Eq. (6.2) in (5.7) with d=r and B=0, one obtains

(6.3) Tope~-A exp (—ky) W"’zl/; R
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This function passes through a maximum when

_ n
Wopt 216

which for n=4.1, a=22 and k=0.5 from Eq. (5.10) gives W‘,mw4l tlops =0.244
and d,,,=22x0.0031 =0.0682 cm.

7. CONCLUSIONS

It appears that not only can a better understanding of shock wave dispersion
be derived from this approach but also important practical applications are available.
An area of further research should be explored like, for example, scaling the thickness
of the baflies, changing the size of their perforations, etc. It appears from Fig. 8
that in many respects the perforated baffles are superior to granulated materials
thinking in terms of Egs. (6.1) and (6.2), especially when breathing is required through
the passages where the shock wave is dispersed. 1t may also be possible to extend
this reasoning to other cases like foams which present a very interesting case of
shock wave dispersion, waves in detonating mixtures, etc. -

The support given by the Canadian Govermental Grant Agencies and the De-
partment of Mechanical Engineering of the University of Calgary are gratefully
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STRESZCZENIE

DYSPERSJA FALI UDERZENIOWE] W CIECZACH 7 LUZNO ROZLOZONY MI
SZTYWNYMI WTRACENIAMI

Probabilistyczne podejicie’ G. I. Taylora [1,5] do fal typu wybuchowego w furbulentnym
powietrza rozszerzono na przypadek fal nderzeniowych rozprzestrzeniajacych sie przez rozloione
w sposob przypadkowy sziywne wiracenia w gazie. Fala uderzeniowa ulega dyspersji i zostaje
zamieniona na ciag fal stabych rozchodzgcych sie przez dtuzszy okres czasu. Jedli straty wskutek

Rozprawy Iniynierskie - 8
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tarcia sa male, to impuls pozostaje w przyblizeniu staly i standardowe odchylenie fali thimionej,

Jjak wykazano, jest postaci
— X
o=[Aexp(—kw)+-B] ]/v/ -1 ]/:t— .

Wzor ten zachodzi dla przegréd z przypadkowo rozlozonymi perforacjami wzdiuznymi. Podobne
wyrazenie otrzgmano dla materiatéw ziarnistych w gazie. Stale 4, B i k zostaly okreslone doswiad-
czalnie. Powyzszy wzdr dla odchylenia standardowege zostal zmaksymalizowany ze wzgledu
na odwrotno$é crefci pustej, y, dla danej grubodci przegrody i rOwnowainej $rednicy ziaren, Zatem
dla grubosci przegrody 0,178 cms, w=1.18, a dla rdwnowaznej érednicy ziaren 0,068 cms, w=4.1
przy maksimum dyspersii. Straty wskutek tarcia zaniedbane w tej. pracy zostaly podjete przez
aatoréw w innym opracowaniu,

Pesome

JHCTIEPCHS VIAPHOI BOJIHEI B SXKMAKOCTAX C PBIXJIC PACIIPEAEJIEHHLIMHY
KECTEKHMMHW BKIIOHYEHWAMK

Mpobabmmaermecknit nogxon T, H. Teiinopa {1, 5] x BonsamM B3pHBHOTC THOR B TYPOYNEHT-
HOM BO3AYXE PAacHIEpEH Ha cNy9ail yOAPHEIX BOJNH PacHpOCTPAHMIONIHXCA CKBO3b KECTXHE, pacipe-
IHenedAre  clyYal#HRM 06pazoM BKTOYCHAS B Ta3¢, ¥IAPHAA BONHZ HCIBITHIBACT MACIEPCHIO
M 3aMEeRSeTCS Ha A7l cHabhIXx BOSH PECHIPOCTPAMMONIEXCA 4epe3 IJIETONbHEIR NePHON BPEMEHH,
Fcrme DOTepE BCISACTBHEe TPEHHS Manpl, TOTOR AMIYIC OCTAacTes B NPEONMMEHMH HOCTOAHHBIM
H CTAHNAPTHOS OTKIOHCHAC 3aTyXaroniel BOMELI, KAK DOKA3AHO, HMEET BRI

o={A oxp (— ) + B} w —1 ]/;—

Zra bopMyTa MMeeT MeCcTo I Eperpai o Clyvaiino pacopereneHHbIMY IPORONLHBIMHA Iep-
dopammmy. AmamormyHoe BLIDAKCHHE HOIYYSHO MM 3ePEUCTHEIX MATepHanoB B rase. Ilocto-
AHuble A, B H &k onpefeleHs axcrepuMeATalbHO. BrlMenpubengHHOe BBIPDAMEHHE AN CTAH-
DRPTHOTO OTKJAOHCHWA MAKCHMM3K[OBAHG W3-32 06paTHON BPEMHYMHLI MyCcTOH YacTH, W, JUIA Jan-
HOM TONIMsIG, DPErPaibi H SXBHBANCHTHOTO IMaMeTpa 3epeH. Mrak s TOMINHMHEL IPerpajst
0,178 on, w==1,18, a mns sxEEBANEHTHOTO JauaMerpa 3cpeH 0,068 oM, w=—4,1, OpH MaxcAMyM
mucnepcnd. IToTepM BCHEACTBES TPEHHA, KOTOPHIME mpeHeSperaercs B maHnoit paGore, obcym-
HeHB! apropaMu B APYTHX paspaboTEax.
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