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PARAMETRIZATION OF THE ODQVIST'S ‘CREEP. LAW
IN THE CIRCULAR-SYMMETRICAL PROBLEM

L BIALKIEWICZ and S. PIECHNIK (KRAKOW)

This work presents function parametrization method which describes the state of stress in case
of the solution of plane axial symmetrical problems. In result of this parametrization for the simplified
law in which the member describing unsteady creep is neglected, the basic equation system can he
reduced to a hyperbolic form. In the general formulation of the Odqvist’s creep law however for the
case n=rn, iteration procedure will be used. The efficiency of calculation method will be illustrated
by an example of creep of the disk subjected to the action of pressure inside the hole.

1. INTRODUCTION

The theory of axial-symmetrical problems of circular stress state has an important
application in solving problems of practical use; therefore this is one of the better
known problems of the theory of clasticity and plasticity. Many structures having
discs with a circular hole as element work in raised temperatures, Hence there is
a need of considering the creep phenomena in analysis. The piesent paper takes
into consideration, among others, the change in disc thickness as the effect of the .
creep process. in this analysis the creep law given by Odqvist was adopted,
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where ¢, is a tensor of creep velocity, S;; a deviator _of stress e="y S;; S, — stress

intensity; whereas 64, 0., Ho, 71 are constants describing the properties of the material.
The symbol d/dt denotes the substantional derivative with respect to the time of
the expression in square brackets (unsteady state creep). Parametriaztion of the
described function of stress staie will be the starting point in working out a method
for solving axial symmetrical problems. This method will be given further on.

As a result of this parametrization, for the simplified Iaw (1.1) in which the mem-
ber describing unsteady creep is neglected, the basic equation system can be reduced
to a hyperbolic form. In the general formulation of the law (1.1) however for the
case n=n, iteration procedure will be used. The efﬁcwucy of the method of calcu-
Jation will be illustrated by an example of creep of the disc subjected to the action
of pressure inside the hole after programs have been elaborated for a digital com-
puter.
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2. FORMULATION OF PROBLEM

It follows from the assumption of axial-symmetry in circular stress state for
a polar system of coordinates {r, 6} that all the inquired magnitudes will be functions
of the radius r and time ¢. Only such boundary problems in which the radial and
circomferential directions are simultaneoulsy the main directions will be considered.
In this particular case the constitutive equation (1.1} in Euler’s description, after
substituting ¢;; by a radial constituent of creep velocity » (r, #) and §;; by radial and
circumferential stress respectively, takes the form

-~ dv 1 {d l( ae)"_“_llo‘,.—dg]_i_( o‘,g)"”1 2&,——03}
( ) ) 3!‘ - 2 dt TJg Tq i O, . Op !

0o . v 1 {d [( ae)""“l 20;,—0‘,]_}_( ae)"“l 20',,m0',,}
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where the intensity of stress o, is given by

(2.2a) 02=0g!—0,0,+0,.

For a full formulation of the axial symmetrical problem the retations (2.1) and (2.2)
should be completed with the equilibrium equation
l

do, 1 oh
(2.3) .

P -!-*}l— '3—;0',.'5"?‘(0’,—0’0):0

and the non-compressibility equation

; 1/éh 0Oh\ 6v o
(2.4) _h_(£+05;)+5;+r_=0’
in which % (r, £) is a function of change of thickness. Finally, the solution of an initial
boundary problem is reduced to the solution of a system of four nonlincar differential
partial equations of the first order, Egs. (2.1) to (2.4), with respect to the inguired
functions dependent on two variables r and ¢ _ '
The general idea of parametrization conists in reducing the number of equations
in the system to three in result of identical satisfaction of relation (2.2).
With this aim in view the stresses o, and o, are expressed- by the parametrizing

function
H—1 1
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As we shall see, the function f(r, 1) generally adopted in the formula (2.5) will be
different for particular cases of the creep law.

The problem of steady and unsteady state creep as well as the problem of the
combined effect of the two constitnants for n=ny will be solved separately.
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3. STEADY STATE CREEP

Basing upon parametrization in Eq. (2.5) the so}ﬁtion- of steady state creep is
very simple. :
Equations (2.1) and (2.2) will be in this case

d_ 1 (o-e)"" 20, —
(3.1) | T 7\, P

o 1 ((re)"‘1 2a,—a,
(3.2) o2 o, g,
The algebraic relation (3.2) is here identically satisfied by Eq. (2.5) if £(r, D=2 (r, £,
hence,

n—1 1
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It follows that the subsequent equations of the system describing the steady state
creep with regard to the expressions o, and o, by the relation (3.3} will take the form
the equilibrium equation

azp[l V3 sing+3cosy ( n) ) ( n)]
(34) arln ‘/§cosy;~3 siny/cos LAY e 6 +
n)[l do 1 1 oh 1] 1
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the constitutive relation (3.1)
n 4
2 cos (y/ - 7{)— cos (1// ++6~)
7 Ty’
2 cos (w+?)—cos (W—?)
the non-compressibility condition
4 .4
1 (3]1 Bh) v °°?(”’_"6_)+°°S("’+?)

(3.6) T \a 'zﬁg

: 37;_ o
(3.5) . Eo
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According to Courant’s classification [2] this system is not fully hyperbolic. Along
three line of the characteristics: double f=const and dr-odt=0 two differention
telations can be derived for f =const

‘ i + n
dv_ o 2003( ?) cos(:,u : —6—)
(3.7) _ o

F 5 +75 AW
cos |y 6 cos( 6)
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and for dr—odt=0

7 + + n
| 7 i h cos(y/ 6) cos(w ~6~)
3.8) i p= Z\
' cos(w,l “?)—ZCOS(W+F)

The existence of the third missing relation along the characteristic {=const is,
however, indicated by the form of the equilibrium equation (3.4). The unknown func-
tions occuring in it which are differential only with respect to the radial variable
will permit to assign to this equation the character of a relation along the characteri-
stic curve f=const. After eliminating the velocity v (r, £) in Eq. (3.4). by substituting
Eq. (3.5), it will be for t=const .

dyr

39 =

7 L —

m\| ! 2""3("’ %)'COS(W 6) A 3h+1 1 ( +7r)

o8 6) Hy R ” & or R L
2cos V’+E —cosjy T

( n) 1 ( )1/3smw+3005qf
sin{y ¢ cos\v 6 /Y3 cosy—3siny

i
In this form the system of equations (3.4) to (3.6) will be considered further on
as hyperbolic since the solution of the problem is reduced to the integration of
the simple equations (3.7) to (3.9) along respective characteristic directions.

. plt) This is similar to the case of axial-symme-
CzzzzA=— | AU, trical problems of the theory of plasticity {4].
Li-i@-— Ryt) The way of formulating the initial boundary .
T & conditions will be shown in the example of disc
Fig. 1. creep under the influence of. pressure exerted

inside the hole according to the scheme in Fig. 1.
Boundary conditions for the radial stress function are established both on the
external edge where o, (Ry,?)=0 and the internal edge of the disc where
O (rD’ t)"‘ —-F (t)
Basing upon parametrization in Eq. (3.3), the first of the conditions for the
circumferential tensile stress (,>0) yields

@10 w(Roy =5 7

The second, on the other hand, yields the relation which, after transformation, takes
the form

n—1 -
3) 2 - —p(® " ro (/3 cos o —3sin o)
G- ol 0=(T) ( n) 4 ,
G'C_COS ljo__

6
where yo =y (ro, 9.
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The conditions (3.10) and (3.11) form the so-called double — point problem for
Eqgs. (3.7) and (3.9). It consists in choosing such values y (r,, /) on the internal edge
in the expression (3.11) so that after integration of Egs. (3.7) and (3.9) the function
w (r, t) satisfies simultaneously the boundary condition (3.10).

For the purpose of choosing the values w (ro, ), the linear interpolation method
was used in the paper. It proved to be of rapid convergence even in the case of
satisfying the condition (3.10) with very good accuracy. Using the known distribution
of the function values  (r, ) for a determined moment 1, we solve Eq. (3.8) along
the characteristic dr—odt=0 with the initial condition

(3.12) B, 0)=ho (7).

A disc of const initial thickness A, (r)=const was adopted in calculation; this did
not limit the generality of solution. Passing over to the next stage of the creep pro-
cess ¢=const, small displacements are admitted. Depending on the adopted material
constants the magnitude of the assumed displacements of particles will have an
influence on the duration of the motion.

In the subsequent stage of the process the solution for the system of equations
(3.7) to (3.9) with the conditions (3.10) to (3.12) is again undertaken. Performing
a sufficient number of calculation steps one can finally achieve optionally big defor-
mations. ' )

Hence the stress state and creep velocity will be related at each time with the
existing advance state of the deformation process of the disc [5].

The numerical example was solved for a disc made of soft carbon steel o=
=17584 kGem~2hY/5, n=>5 at a temperature of 450 C with the initial dimensions
fo =60 mm, Rq =80 mm assuming the pressure inside the hole to be p () =6 kG/mm?.
The calculated net of characteristics is presented in Fig. 2. Thick lines correspond
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to the domain of the characteristics #=const. Thin lines on the other hand present
the trajectories of the chosen disc particles in time of creep, describing at the same
time the second domain of the characteristic dr—odr=0.

In Figs. 3, 4 and 5 areas of stress, velocities and changes of the disc thickness
in various stages of a creep process are presented, Continuous lines present the
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course of the function for the cstablisheﬂ moment of time #=const whereas broken
ones refer to the history of described magnitudes in individual particles during
the deformed process.

It should be stressed that the solution can be obtained for optionally big strains;
nevertheless it has a physical sense until the cohesion or stability has been disturbed.
In the presented example the domain of solution was limited to the moment in which
the internal radius of the disc increased its length by 10 mm.

4. UNSTEADY STATE CREEP

‘The solution of the problem, if only unsteady state creep is considered, is presented
in a similar way. After a suitable simplification and bilateral integration with respect
to time, Egs. (2.1) and (2.2) take the form

du 1 (o‘e)"“_l 20, —ay

@1 a2 \a, P
H 1 {a\""! 20,—0,
(4.2) 7“?(;) .

where u (r ,t) is the radial constituent of displacement. The relation (4.2) is satisfied
identically if the stresses o, and o, are expressed by

np—1 1

N B R E = e
“.3) a)] \3 7o (/3 cosy —3siny) COS\W 6 |-
The inguired magnitudes do not depend in this case evidently on time, hence the
basic system will be described after parametrization in Eq (4.3) with ordinary diffe-

rential equations: ; n . N . ?
du u Feosty 6) cos(yf 6)

(4.4) : df“ = T EAY TN
2cos y/+~é~- ~— oS A

dh_h COS("” 6) COS(*” _, “6“)

@ d cos( ——ﬁ—)*flcos(w+f—),
o & 6
(4.6) T
7 7
_E 2cos(w—%—)-cos(w+g) L a1 i .
cos(w-g) nTr p= . vl +E3; (..OS(!/I+6)
Zcos(y/+g)—cos(w—~€)

( n) 1 ( );/33m!,r/+3003y1
sin 6] n "V s y3cosy—3siny
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The solution of Egs. (4.4) to (4.6), with the boundary conditions

5

@n  vRH=73m,

Mot '

: 342 —p(1) ™ ro (/3 COS W — 3 Sin wo)
(48) H (rOa f) = (4) - ( n ) 4 - 3
To COS{Wo™ "~

(4.9) h{r, 0)=hy =const '
for a disc as in the foregoing example (Fig. 1) under the assumption that 7, =6 and
. 6,=3380 kGjcm?, are presented in Figs. 6 and 7. In an analogous way, as in the
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case of unsteady state creep; the conditions (4.7) and (4.8) form the double-point
- problem for Eqs. (4.4) and (4.6), the solution of which given the distribution of
the values of the function w {(r 1) and the magnitudes of immediate displacement
u (r, t). In Fig. 6 particular curves present the change of radial stress along the radius
for various pressures p lodding the internal edge of the disc p=2, 4, 6, 8, 10 kGjmm?,

The values of instant displacement corresponding with curves were plotted in
Fig. 7. The illustration presenting the change of the disc thickness was neglected.

=

5. FULL OpOVIST'S LAW

In the general formulation of the Odqvist’s creep law, for the case n=n, after
substituting Eq. (2.5) to Eq. (2.2) the following is obtained:

(5‘1) ' . W+7}§;+f(a,—‘-‘i:“)=ag,
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og\" o .
where w—,(a(’.) . The solution of Eq. (5.1) with respect to f(r, f) can be reduced

to the integration of the ordinary equation

df o
(5.2) —"‘*'f( )zcw,
alona the characteristic dr—vdi=0 with the initial condition
(5.3) Jlr, Oy=cue(r, 0).

The function u (r, 0) describes the magnitudes of instant displacement of particles
during unsteady state creep. As a result of the solution (5.2) with the initial condition
(5.3) we get

! " 0
(5.4) : 1, t):-a[ f % s dt+”:'(;)))]-re-ﬂ,

where r (0) is the radius of the particle considered at the moment 7=0. At last, the
expression (2.5) satisfying identically Eq. (2.2) for n=n, will have the form

u(r,0 1
n—-1 4( ( ) f_ rxt df) —at n
s g,}_ ( 4)T~ r©) x
(3-3) 6] \3 o ]/3008!//—-33111!;/ : COS(W_&- 6)'

The other equations of the basic system, after substituting Eq. (5.5), will be written
in sequence of the calculations carried out in the iteration method suggested further

© on, i.e.
constitutive equation (2.2)
do v u(r 0 de
0 b P U Fea 6 |
where ]/ 3 cos y+3 siny
plr, )= ‘

]/§ cos w—3siny’
non-compressibility condition :
6n ' e

and equilibrium equation

6wl.( n) I /3siny+3cosy ( 71:)]
G8) o 6 ?]/§cosw—3sinwcos el

) f(iﬁz—;—)e b 1 du(r,0) u(r0)

( - ra r o 2(0) 1311 1
=cos\y—~— : —1-
6 n(f @ . +u(r’0)) h 3!‘ r
ATIRTO)

1 +7£
T cos(y/ -6)'_
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The symbols djdf and dfdr determine differentiation along the direction dr —vd =0.
Hence the considered problem describes the system of three differential-integral
equations (5.6) to (5.8) with three unknown functions. However, there are many
difficulties in solving this system directly. With regard to this the method of successive
approximation based upon the observation that the inquired function should differ
state creep is presented in Point 3.

Owing to this the solution of the system of equations (3.7) to (3.9) can be faken
as a first approximation. The calculated value y (r, #) will be substituted into Eg.
(5.6). This results to the relation for one unknown function # (», #) which should be
solved on a full area for an established moment of time f=const. The function
u (r, 0) describes the instant displacements for the moment of time ¢ =0 from the state
of unsteady state creep. Its value can be calculated from the solution: of the initial
boundary problem for the system of equations (4.4) to (4.6). The velocity function
o (r, 1) determined through numerical integration in Eq. (5.6) is subsequently intro-
duced into the relation (5.7) which, after integration along the direction dr—vdr=90,
gives the next function /% (r, £). The calculated functions o (r, ) and A (r, 1) are used
in Eq. (5.8) which, as in the case of Eq. (5.6), is integrated in the full solution area
for a given moment of time 7=const; consequcnt]y, the second approximation of
the function w (r, £) is obtained.

This procedure should be repeated in order to obtain for the succeeding approx-
imation sufficiently close results.

The previously established boundary conditions (3. 10} and (3.12) for the
disc under the effect of pressure inside the hole remain valid provided that Eq.(3.11)
takes now a slightly changed form. From the condition o, +(ro, )= —p {£) we obtain

for =0 \
I—-n
1{4)\?2 —p® P
(5.9) u(ry, 0)=£(?) ro (0) ey S Y (]/3 CO8 Yy — 3 siny,),
accos(y/‘,—ﬁ)
6
and for >0
1—n
i e N
v 1{4)?2 —p () "o
5' ) =—— pt — i —_
(5-10) fro(t)ea at 4&(3) € ( n) (/3 cosy, —3sinyo)
o o, C08 y/c,"——ﬁ—
/ _H(?‘o,@
ro(0)

' The numerical example solved for the previously given values ¢, and o, and under
the assumption that n=wn,=>5 indicates that the method is rapidly convergent,
Differences between the second and third approximations lie within the limits of
the error of numerical integration. Good agreement of calculation was obtained
after aplying in the solution ordinary differential equations of Rungc-Kuttys 5]
method of higher order.

The relations of displacement of the interial edge of a disc in time for various
values of pressure inside the hole are presented in Figs. 8a, b and c.
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6. FINAL REMARKS
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This paper presents the function parametrization method which describes the
state of stress in solving plane axial symmetrical problems. In all the three considered
cases we have taken as an example the pressing of a ring by pressure evenly applied
on the hole surface. The solution of the case of steady state creep on the basis of Fig. 4
presenting the distribution of the velocity field has allowed us to draw conclusions
on the increase of creep velocity with the progress of the strain process. This phenom-
ena is by no means accompanied by significant changes in the radial stress distribu-
tion, We can say approximately that the radial stress distribution curves for the fixed
moment of time ¢=const are parallel (Fig. 3). This is caused by a small yet at the same
time steady decrease of thickness of the plate during creeping (Fig. 5). The numerical
results obtained in the case of unsteady state creep are also worth noting, e:g. inter-
dependence of the instant displacement values and the pressure applied (Fig. 7). This
relation can be treated as a condition for defining the permissible pressure which
limits the value instant strain. By adopting the above condition as a design condition
we. can considerably limit the need for the iteration procedure for the complete
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Odgvist’s law. This procedure could become the starting point for an exact analysis
of the stress and strain states. However, in case of insignificant changes in the geom-
etry of the plane — coured by instant strains — it will be possible to limit the solu-
tion to those describing only steady state creep.

The applicability of the analysis presented above is connected with frequent
cases of the work of planes at high temperatures. . The planes can function as a con-
struction element of reactor heat exchangers or rocket hozzles. Each of the examples
considered requires an exact analysis of stress and strain state. On the basis of this
analysis we can establish suitable design conditions which would assure safety and
proper functioning of the structure over a long period.
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STRESZCZENIE

PARAMETRYZACIA PRAWA PELZANIA ODQVISTA DLA ZAGADNIEN
OSIOWO-SYMETRYCZNYCH

Przedstawiona w pracy metoda parametryzacii funkcji opisujacych stan naprezenia dotyczy
rozwiazan plaskich zagadnien osiowo-symetrycznych, W wyniku tej parameiryzacji dla uproszczo-
nego prawa, w ktGrym pamija sig wyraz opisujacy pelzanie nieustalone, podstawowy uklad réwnan
mozna sprowadzié do postact hiperboliczncgf. W ogblnym natomiast sformulowaniu prawa pefzania
Odqvista dla przypadku #=n, postuzono si¢ procedura iteracyjna. Efektywnoéé metod obliczenio-
wych zilustrowano przykladem pelzania piericienia poddanego dziataniu ci$nienia wewnatrz
otworu, ’

PessomMe

TIAPAMETPI3ALIMA 3AKOHA TTOJBVUECTH OAKBUCTA
I OCECUMMETPHIHBIX 3AAY

Ipepcrannennsii B pafoTe METOH HAPAMETPH3ALUEH (YHKITHHA, ONHMCLIBAIOIIAX HAISDKCHIOE
COCTOSMEE, KACAETCH PeileHHii ONOCKHX, OCECHMMETPMYHBEX 3anatd. B pesynerare stol napa-
METPU3ANUM IS VIPOIMEHBOIO 3aKoHd, B KOTOPOM npeHe(peraercd 4ICHOM ONMCHIBATOLIAM
HEYCTAHEBRBEIYIOCH NOI3Y9ECTh, OCHOBHYIO CHCTEMY YpapHEHHH MOXHO CBECTH X raGepCona-
yeeKOMy BANY. B ofmed xe GOPMYTEPOBKE 3akoHA moiaytecTH OAXBHCIA JUIA CIy¥as H=T
TOCAYRUBAIOTCA HTCPAUHOHAOHE Tponeaypol. Dd{exTHRHOCTS PacdeTHEIX METOMOB MILHOCTPHPO-
BAEA TPUMEPOM MON3YYSCTH KOJbLA HOOBEPIHYTOTO AeHCTBHIO ,uann'cmm BHYTPH OTBEPCTHA
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