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The paper demonstrates a new technique of obtaining the approximate solution of the
two- and three-dimensional elasticity problems. The system of equations of elasticity can be
converted to the system of wave equation. In this case, as solving functions (Trefftz functions),
the so-called wave polynomials can be used. The presented method is useful for a finite body
of a certain shape. Then the obtained solutions are coupled through initial and boundary con-
ditions. Recurrent formulas for the two- and three-dimensional wave polynomials and their
derivatives are obtained. The methodology for solution of systems of partial differential equa-
tions with common initial and boundary conditions by means of solving functions is presented.
The advantage of using the method of solving functions is that the solution exactly satisfies
the given equation (or system of equations). Some examples are included.

Key words: elasticity, Trefftz method, wave equation, wave polynomials.

1. Introduction

The method of solving functions applied for linear partial differential equa-
tions has been developed recently. The key idea of the method is to determine
functions (polynomials) satisfying a given differential equation and fitted to the
governing initial and boundary conditions. In this sense it is a variant of the
Trefftz method [1, 2].

The method was first described in the paper [3] where it was applied to one-
dimensional heat conduction problems. Heat polynomials were used for solving
unsteady heat conduction problems in [4]. The method is continued in the Carte-
sian coordinate system in [5, 6], describing heat polynomials for the two- and
three-dimensional case. Application of heat polynomials in polar and cylindri-
cal coordinates is shown in the papers [7–9]. Application of this method to in-
verse heat-conduction problems is described in [5–11]. Reference [12] contains the
highly interesting idea of using heat polynomials as a new type of finite-element
base functions.
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The work [13] deals with numerous cases involving other differential equations
such as the Laplace, Poisson, Helmholtz and one-dimensional wave equations.
Dimensionless wave polynomials for solving the two-dimensional wave equation
are presented in [14, 15] and three-dimensional wave equation in [16, 17]. The
wave functions can be obtained by using symbolic operations (for example in
Maple or Mathematica) or inverse operations. These techniques are described
correspondingly in [19, 20] and [21, 22]. Basically a linear differential equations
(or system of equations) can be solved by means of various methods. Some of
them are better for infinite bodies and others are suitable for finite bodies but
of simple shape. The method presented here is useful for finite bodies but the
shape of the body can be more complicated.

In Sec. 2 two- and three-dimensional wave polynomials and their properties
in the Cartesian coordinate system are considered. Section 3 contains equations
of elasticity. The method applied for a system of equations is presented in Sec. 4.
In Sec. 5 some examples are discussed. Concluding remarks are given in Sec. 6.

2. Wave polynomials

The elasticity problems will be solved by means of wave polynomials. The
papers [14, 16] show the way to obtain two- and three-dimensional wave equation
for dimensionless wave equation. In engineering practice it is often convenient to
use the dimensional wave equation. Analogously to the papers mentioned above,
the dimensional wave polynomials can be obtained. There are two methods to
obtain the wave polynomials. The first one is using a “generating function”.
The second one (giving the error estimator) is the expansion of the function
satisfying the wave equation in Taylor series. Both methods lead to equivalent
wave polynomials.

2.1. Two-dimensional wave polynomials

2.1.1. Generating function. Let us consider the wave equation

(2.1)
1

v2

∂2w

∂t2
=
∂2w

∂x2
+
∂2w

∂y2
.

By using the separating variables method, we get a function called a generating
function for wave polynomials

(2.2) g = ei(ax+by+cvt)

satisfying Eq. (2.1) when c2 = a2 + b2. The power series expansion for (2.2) is

(2.3) ei(ax+by+cvt) =
∞∑

n=0

n∑

k=0

n−k∑

l=0

S(n−k−l)kl(x, y, t)a
n−k−lbkcl,

where S(n−k−l)kl(x, y, t) are polynomials of variables x, y, t containing v.



WAVE POLYNOMIALS IN ELASTICITY PROBLEMS 131

Substituting c2 = a2 + b2 in (2.3), we obtain

(2.4) ei(ax+by+ct) =
∞∑

n=0

n∑

k=0

n−k∑

l=0

l<2

R(n−k−l)kl(x, y, t)a
n−k−lbkcl.

The real and imaginary parts of polynomials R satisfy Eq. (2.1) and are called
wave polynomials:

(2.5)
P(n−k−l)kl(x, y, t) = ℜ(R(n−k−l)kl(x, y, t)),

Q(n−k−l)kl(x, y, t) = ℑ(R(n−k−l)kl(x, y, t)),

e.g.

(2.6)

P000(x, y, t) = 1, Q000(x, y, t) = 0,

P100(x, y, t) = 0, Q100(x, y, t) = x,

P010(x, y, t) = 0, Q010(x, y, t) = y,

P001(x, y, t) = 0, Q001(x, y, t) = vt,

P200(x, y, t) = −x
2

2
− v2t2

2
, Q200(x, y, t) = 0,

P110(x, y, t) = −xy, Q110(x, y, t) = 0,

P101(x, y, t) = −vxt, Q101(x, y, t) = 0,

P011(x, y, t) = −vyt, Q011(x, y, t) = 0,

P020(x, y, t) = −y
2

2
− v2t2

2
, Q020(x, y, t) = 0, . . .

Notice that here R002 does not appear, because l < 2 (see Eq. (2.4)).

2.1.2. Partial derivatives of wave polynomials. To obtain the recurrent for-
mulas of partial derivatives for wave polynomials we follow analogously as in [14].
Because function (2.4) is analytical, the Taylor series on the right-hand side of
(2.4) is convergent. Therefore we can differentiate consecutive terms

∂g

∂x
= iag =

∞∑

n=0

n∑

k=0

n−k∑

l=0

l<2

∂R(n−k−l)kl

∂x
an−k−lbkcl,

hence

∞∑

n=0

n∑

k=0

n−k∑

l=0

l<2

iR(n−k−l)kla
n−k−l+1bkcl =

∞∑

n=0

n∑

k=0

n−k∑

l=0

l<2

∂R(n−k−l)kl

∂x
an−k−lbkcl,
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and
∂R(n−k−l)kl

∂x
= iR(n−k−l−1)kl,

so that finally

(2.7)

∂P(n−k−l)kl

∂x
= −Q(n−k−l−1)kl,

∂Q(n−k−l)kl

∂x
= P(n−k−l−1)kl.

Similarly we get

(2.8)

∂P(n−k−l)kl

∂y
= −Q(n−k−l)(k−1)l,

∂Q(n−k−l)kl

∂y
= P(n−k−l)(k−1)l,

and

(2.9)

∂P(n−k)k0

∂t
= −vQ(n−k−2)k1 − vQ(n−k)(k−2)1,

∂P(n−k−1)k1

∂t
= −vQ(n−k−1)k0,

∂Q(n−k)k0

∂t
= vP(n−k−2)k1 + vP(n−k)(k−2)1,

∂Q(n−k−1)k1

∂t
= vP(n−k−1)k0.

The starting values for the derivatives (2.7), (2.8) and (2.9) are obtained either
from (2.6) or directly by putting zero instead of the polynomial, in which any of
its subscripts takes a negative value.

2.1.3. Recurrent formulas for wave polynomials. In numerical practice the
recurrent formulas are very useful. Theorem 1 enables us to obtain the two-
dimensional wave polynomials.

Theorem 1: Let P000 = 1, Q000 = 0 and P(n−k−l)kl = Q(n−k−l)kl = 0 when
any subscript is negative. Then, the polynomials

(2.10) P(n−k)k0 =
1

n
(−xQ(n−k−1)k0 − yQ(n−k)(k−1)0

− vtQ(n−k−2)k1 − vtQ(n−k)(k−2)1),
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(2.11) P(n−k−1)k1 =
1

n
(−xQ(n−k−2)k1 − yQ(n−k−1)(k−1)1 − vtQ(n−k−1)k0),

(2.12) Q(n−k)k0 =
1

n
(xP(n−k−1)k0 + yP(n−k)(k−1)0

+ vtP(n−k−2)k1 + vtP(n−k)(k−2)1),

(2.13) Q(n−k−1)k1 =
1

n
(xP(n−k−2)k1 + yP(n−k−1)(k−1)1 + vtP(n−k−1)k0),

satisfy the wave equation (2.1).

P r o o f. For relation (2.10) we assume that all polynomials on the right-
hand side either satisfy Eq. (2.1) or equal zero. Substituting (2.10) in (2.1)
we get

x




1

v2

∂2Q(n−k−1)k0

∂t2
−
∂2Q(n−k−1)k0

∂x2
−
∂2Q(n−k−1)k0

∂y2
︸ ︷︷ ︸

=0





+ y




1

v2

∂2Q(n−k)(k−1)0

∂t2
−
∂2Q(n−k)(k−1)0

∂x2
−
∂2Q(n−k)(k−1)0

∂y2
︸ ︷︷ ︸

=0





+ vt




1

v2

∂2Q(n−k−2)k1

∂t2
−
∂2Q(n−k−2)k1

∂x2
−
∂2Q(n−k−2)k1

∂y2
︸ ︷︷ ︸

=0





+ vt




1

v2

∂2Q(n−k)(k−2)1

∂t2
−
∂2Q(n−k)(k−2)1

∂x2
−
∂2Q(n−k)(k−2)1

∂y2
︸ ︷︷ ︸

=0





+
2

v

(
∂Q(n−k−2)k1

∂t
+
∂Q(n−k)(k−2)1

∂t

)
= 2

∂Q(n−k−1)k0

∂x
+ 2

∂Q(n−k)(k−1)0

∂y
,

hence

∂Q(n−k−2)k1

∂t
+
∂Q(n−k)(k−2)1

∂t
= v

(
∂Q(n−k−1)k0

∂x
+
∂Q(n−k)(k−1)0

∂y

)
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and according to (2.7), (2.8) and (2.9), we obtain

vP(n−k−2)k0 + vP(n−k)(k−2)0 = v(P(n−k−2)k0 + P(n−k)(k−2)0).

This proves the theorem. The proof for (2.11), (2.12), and (2.13) is similar.
Starting values of the polynomials (2.10)–(2.13) can be obtained either from

(2.6) or directly by putting zero instead of the polynomial in which any of its
subscripts takes a negative value.

2.1.4. Expansion of the function satisfying wave equation in Taylor series.
Another way to obtain the wave polynomials is to expand the function satisfying
the wave equation in Taylor series. Similarly as for other equations [13] and
for dimensionless wave equation [14], the wave polynomials can be obtained by
means of Taylor series for the function w. Let the function w(x, y, t) satisfy
the wave equation (2.1). We assume that w ∈ CN+1 in the neighborhood of
(x0, y0, t0). Let x̂ = x − x0, ŷ = y − y0, t̂ = t − t0. Then, the Taylor series for
function w and for N = 2 is

(2.14) w(x, y, t) = w(x0, y0, t0) +
∂w

∂x
x̂+

∂w

∂y
ŷ +

∂w

∂t
t̂+

∂2w

∂x2

x̂2

2

+
∂2w

∂y2

ŷ2

2
+
∂2w

∂t2
t̂2

2
+

∂2w

∂x∂y
x̂ŷ +

∂2w

∂x∂t
x̂t̂+

∂2w

∂y∂t
ŷt̂+R3.

Eliminating the derivative
∂2w

∂t2
by Eq. (2.1) we obtain

(2.15)

w(x, y, t) = w(x0, y0, t0) +
∂w

∂x
x̂+

∂w

∂y
ŷ +

∂w

∂t
t̂+

∂2w

∂x2

(
x̂2

2
+
v2t̂2

2

)

+
∂2w

∂y2

(
ŷ2

2
+
v2t̂2

2

)
+

∂2w

∂x∂y
x̂ŷ +

∂2w

∂x∂t
x̂t̂+

∂2w

∂y∂t
ŷt̂+R3.

The coefficients following the derivative terms on the right-hand side represent,
within the accuracy of a constant, the non-zero wave polynomials (2.6). As a so-
lution of (2.1) we take a linear combination of wave polynomials. Therefore the
constants in the polynomials are insignificant. Similarly, we get polynomials for
N = 3, 4, ....

The procedure described above is important. If w is the solution of the prob-
lem described by Eq. (2.1) and the corresponding initial and boundary condi-
tions and if w is analytical, then we can control the accuracy of approximation by
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the properties of Taylor series. Moreover, using this procedure we can separate
the stationary and nonstationary parts of expansion. For example, substituting
∂2w

∂x2
=

∂2w

v2∂t2
− ∂2w

∂y2
into (2.14) we obtain

w(x, y, t) = w(x0, y0, t0) +
∂w

∂x
x̂+

∂w

∂y
ŷ +

∂2w

∂y2

(
ŷ2

2
− x̂2

2

)
+

∂2w

∂x∂y
x̂ŷ

+
∂w

∂t
t̂+

∂2w

∂t2

(
x̂2

2v2
+
t̂2

2

)
+
∂2w

∂x∂t
x̂t̂+

∂2w

∂y∂t
ŷt̂+R3.

The coefficients 1, x̂, ŷ,
ŷ2

2
− x̂2

2
, x̂ŷ are harmonic polynomials and satisfy the

Laplace equation (stationary part) and coefficients t̂,
x̂2

2v2
+
t̂2

2
, x̂t̂, ŷt̂ satisfy

the wave equation (nonstationary part).

2.2. Three-dimensional wave polynomials

The wave polynomials for three-dimensional wave equation

(2.16)
1

v2

∂2w

∂t2
=
∂2w

∂x2
+
∂2w

∂y2
+
∂2w

∂z2

we obtain in a similar manner. Recurrent formulas for partial derivatives of wave
polynomial are

(2.17)

∂P(n−k−l−m)klm

∂x
= −Q(n−k−l−m−1)klm,

∂Q(n−k−l−m)klm

∂x
= P(n−k−l−m−1)klm.

(2.18)

∂P(n−k−l−m)klm

∂y
= −Q(n−k−l−m)(k−1)lm,

∂Q(n−k−l−m)klm

∂y
= P(n−k−l−m)(k−1)lm,

(2.19)

∂P(n−k−l−m)klm

∂z
= −Q(n−k−l−m)k(l−1)m,

∂Q(n−k−l−m)klm

∂z
= P(n−k−l−m)k(l−1)m,
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(2.20)

∂P(n−k−l)kl0

∂t
= −vQ(n−k−l−2)kl1 − vQ(n−k−l)(k−2)l1 − vQ(n−k−l)k(l−2)1,

∂P(n−k−l−1)kl1

∂t
= −vQ(n−k−l−1)k0,

∂Q(n−k−l)kl0

∂t
= vP(n−k−l−2)kl1 + vP(n−k−l)(k−2)l1 + vP(n−k−l)k(l−2)1,

∂Q(n−k−l−1)kl1

∂t
= vP(n−k−l−1)kl0.

Theorem 2 enables us to obtain the three-dimensional wave polynomials
P(n−k−l−m)klm) and (Q(n−k−l−m)klm.

Theorem 2: Let (P0000 = 1) and (Q0000 = 0). Let (P(n−k−l−m)klm =
Q(n−k−l−m)klm = 0) when any subscript is negative. Then, the polynomials

(2.21) P(n−k−l)kl0 = − 1

n
(xQ(n−k−l−1)kl0 + yQ(n−k−l)(k−1)l0

+ zQ(n−k−l)k(l−1)0 + vtQ(n−k−l−2)kl1 + vtQ(n−k−l)(k−2)l1

+ vtQ(n−k−l)k(l−2)1),

(2.22) P(n−k−l−1)kl1 = − 1

n
(xQ(n−k−l−2)kl1

+ yQ(n−k−l−1)(k−1)l1 + zQ(n−k−l−1)k(l−1)1 + vtQ(n−k−l−1)kl0),

(2.23) Q(n−k−l)kl0 =
1

n
(xP(n−k−l−1)kl0 + yP(n−k−l)(k−1)l0

+ zP(n−k−l)k(l−1)0 + vtP(n−k−l−2)kl1 + vtP(n−k−l)(k−2)l1

+ vtP(n−k−l)k(l−2)1),

(2.24) Q(n−k−l−1)kl1 =
1

n
(xP(n−k−l−2)kl1 + yP(n−k−l−1)(k−1)l1

+ zP(n−k−l−1)k(l−1)1 + vtP(n−k−l−1)kl0)

satisfy the wave equation (2.16).

We prove Theorem 2 similarly to Theorem 1.
For example, from formulas (2.21)–(2.24) we get

(2.25)
P0000 = 1,

Q1000 = x, Q0100 = y, Q0010 = z, Q0001 = vt,
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(2.25)
[cont.]

P2000 = −x
2

2
− v2t2

2
, P1100 = −xy, P1010 = −xz,

P1001 = −vxt, P0200 = −y
2

2
− v2t2

2
, P0110 = −yz,

P0101 = −vyt, P0020 = −z
2

2
− v2t2

2
, P0011 = −vzt, . . .

and

Q0000 = P1000 = P0100 = P0010 = P0001 = Q2000 = Q1100 = Q1010

= Q1001 = · · · = 0

Notice that there is no R0002 because m < 2.

3. Equations of elasticity

In general, elasticity problems are described by the following system of equa-
tions [18]:

(3.1) µ∇2u + (λ+ µ)grad div u + X = ρü

where u – displacement vector, X – body force vector, ∇ – nabla operator, µ, λ, ρ
– constants. If we omit the body forces, we obtain

(3.2) µ∇2u + (λ+ µ)grad div u = ρü.

Equations (3.2) are completed by initial and boundary conditions for displace-
ments and/or stresses. The relationship between the displacements and stresses
is given by Hooke’s law:

(3.3) σij = 2µεij + λδijεkk

where εij =
1

2

(
∂ui

∂xj
+
∂uj

∂xi

)
– strain tensor. The system of equations (3.2) can

be simplified by substitution:

(3.4) u = grad φ+ rot Ψ

Then we obtain

(3.5)

(
∇2 − 1

v2
1

∂2

∂t2

)
φ = 0,

(3.6)

(
∇2 − 1

v2
2

∂2

∂t2

)
ψi = 0, i = 1, 2, 3
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where v2
1 =

λ+ 2µ

ρ
, v2

2 =
µ

ρ
. The Eqs. (3.5) and (3.6) are wave equations, but

for a finite domain they are still coupled by initial and boundary conditions. The
main purpose of this work is to solve the system of (3.5), (3.6) by means of to
solve functions’ method.

4. Method of solving functions

The wave-polynomial method discussed below belongs to the class of Tre-
fftz methods. As a solution of each wave equation (3.5), (3.6) we take a linear
combination of the corresponding wave polynomials. The succeeding non-zero
polynomials satisfying Eqs. (3.5) and (3.6) we denote correspondingly by V 0

n

and V i
n, i = 1, 2, 3

As approximations for the solution of Eqs. (3.5) and (3.6) we take corre-
spondingly

(4.1) φ ≈ φ̂ =
N∑

n=1

c0nV
0
n

and

(4.2) ψi ≈ ψ̂i =
N∑

n=1

cinV
i
n, i = 1, 2, 3.

Then

(4.3) u ≈ û = grad φ̂+ rot Ψ̂.

Because polynomials Vn satisfy the corresponding wave equation, also the linear
combination satisfies this equation. The coefficients cn in (4.1) and (4.2) are
chosen so that the error of fulfilling the given boundary and initial conditions
corresponding to Eqs. (3.5) and (3.6) is minimized (see examples).

5. Examples

Some examples presented in this section show the application of the method
of solving functions in elasticity. The first two concern the two-dimensional and
the next two the three-dimensional elasticity problems. In all examples presented
here the constants are established as follows: λ = 1011 [Pa], µ = 8 · 1010 [Pa],
ρ = 8000 [kg/m3].
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5.1. Example 1 – two-dimensional problem in a square

First we consider the plane state of strain when the strain tensor depends
on time and two variables εij = εij(x, y, t), (i, j = 1, 2) and εi3 = 0, (i = 1, 2, 3).
Then

u = [ux(x, y, t), uy(x, y, t)]

=

[
∂φ(x, y, t)

∂x
+
∂ψ(x, y, t)

∂y
,
∂φ(x, y, t)

∂y
− ∂ψ(x, y, t)

∂x

]
,

(5.1)

σxx = (2µ+ λ)
∂ux

∂x
+ λ

∂uy

∂y
, σxy = µ

(
∂ux

∂y
+
∂uy

∂x

)
,

σyy = λ
∂ux

∂x
+ (2µ+ λ)

∂uy

∂y
, σzz = λ

(
∂ux

∂x
+
∂uy

∂y

)
.

The system of equations (3.5) and (3.6) has the form:

(5.2)
1

v2
1

∂2φ

∂t2
=
∂2φ

∂x2
+
∂2φ

∂y2
,

(5.3)
1

v2
2

∂2ψ

∂t2
=
∂2ψ

∂x2
+
∂2ψ

∂y2
.

Let us consider the two-dimensional elasticity problem in a square (x, y) ∈ [0, 1]×
[0, 1], described by the system of Eqs. (5.2)–(5.3) and conditions:

(5.4) ux(x, y, 0) = ux0(x, y) = − x

10000
, uy(x, y, 0) = 0,

(5.5)
∂ux(x, y, 0)

∂t
=
∂uy(x, y, 0)

∂t
= 0,

(5.6) ux(0, y, t) = uy(0, y, t) = 0,

(5.7)
σxx = σxy = σyy = 0,

for x = 1, y = 0, y = 1.
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1

y

Fig. 1. Fixation of the square.

The problem described by relationships (5.2)–(5.7) can be solved approxi-
mately by means of the method of solving functions. Let us denote the non-zero
two-dimensional wave polynomials (2.6) by

V 0
1 = 1, V 0

2 = x, V 0
3 = y, V 0

4 = v1t, V 0
5 = −x

2

2
− v2

1t
2

2
, V 0

6 = −xy,

V 0
7 = −v1xt, V 0

8 = −v1yt, V 0
9 = −y

2

2
− v2

1t
2

2
, . . .

V 1
1 = 1, V 1

2 = x, V 1
3 = y, V 0

4 = v2t, V 1
5 = −x

2

2
− v2

2t
2

2
, V 1

6 = −xy,

V 1
7 = −v2xt, V 1

8 = −v2yt, V 1
9 = −y

2

2
− v2

2t
2

2
, . . . .

As the approximations for the solutions of Eqs. (5.2)–(5.3), we take correspond-
ingly

(5.8) φ ≈ φ̂ =

N∑

n=1

c0nV
0
n .

and

(5.9) ψ ≈ ψ̂ =
N∑

n=1

c1nV
1
n .

The coefficients cn in (5.8) and (5.9) are chosen so that the error of fulfilling
the boundary and initial conditions (5.4)–(5.7) is minimized. After applyting the
least squares method, the functional describing this error can be written in the
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time interval (0,∆t) as:

I = wu

1∫

0

1∫

0

{ [
ûx(x, y, 0) − ux0(x, y)

]2
+
[
ûy(x, y, 0)

]2
︸ ︷︷ ︸

cond.(5.4)

}
dydx(5.10)

+ wu

1∫

0

1∫

0

{[∂ûx(x, y, 0)

∂t

]2
+
[∂ûy(x, y, 0)

∂t

]2

︸ ︷︷ ︸
cond.(5.5)

}
dydx

+ wu

∆t∫

0

1∫

0

{ [
ûx(0, y, t)

]2
+
[
ûy(0, y, t)

]2
︸ ︷︷ ︸

cond.(5.6)

}
dydt

+ wσ

∆t∫

0

1∫

0

{ [
σ̂xx(1, y, t)

]2
+
[
σ̂xy(1, y, t)

]2
︸ ︷︷ ︸

cond.(5.7)

}
dydt

+ wσ

∆t∫

0

1∫

0

{ [
σ̂yx(x, 0, t)

]2
+
[
σ̂yy(x, 0, t)

]2
︸ ︷︷ ︸

cond.(5.7)

}
dxdt

+ wσ

∆t∫

0

1∫

0

{ [
σ̂yx(x, 1, t)

]2
+
[
σ̂yy(x, 1, t)

]2
︸ ︷︷ ︸

cond.(5.7)

}
dxdt.

The constants µ, λ are large. They appear in the second power by conditions
connected with stresses. Therefore in functional I we have to introduce weights
by each condition. The sum of all weights equals one. Because in functional (5.10)
there are six conditions connected with stresses and six conditions connected with
displacements, the weight wσ = 1/(6 · 1024).

The necessary condition to minimize the functional I is

(5.11)
∂I

∂c01
= · · · =

∂I

∂c0N
=

∂I

∂c11
= · · · =

∂I

∂c1N
= 0.

The linear system of equations (5.11) can be written as

(5.12) AC = B

where C = [c01, . . . , c
0
N , c

1
1, . . . , c

1
N ]T and

A =

[
A1 A2

A3 A4

] } ∂I
∂c0i

} ∂I
∂c1i

︸︷︷︸
c0j

︸︷︷︸
c1j

.
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For example, the elements of matrix A2 are

a2
i,j = wu

1∫

0

1∫

0

{
∂V 0

i (x, y, 0)

∂x

∂V 1
j (x, y, 0)

∂x
− ∂V 0

i (x, y, 0)

∂y

∂V 1
j (x, y, 0)

∂x

+
∂2V 0

i (x, y, 0)

∂x∂t

∂2V 1
j (x, y, 0)

∂y∂t
− ∂2V 0

i (x, y, 0)

∂y∂t

∂2V 1
j (x, y, 0)

∂x∂t

}
dydx

+

1∫

0

∆t∫

0

{
wu

(
∂V 0

i (0, y, t)

∂x

∂V 1
j (0, y, t)

∂y
− ∂V 0

i (0, y, t)

∂y

∂V 1
j (0, y, t)

∂x

)

+ wσ

(
2µ

(
(2µ+ λ)

∂2V 0
i (1, y, t)

∂x2
+ λ

∂2V 0
i (1, y, t)

∂y2

)
∂2V 1

j (1, y, t)

∂x∂y

+ 2µ2∂
2V 0

i (1, y, t)

∂x∂y

(
∂2V 1

j (1, y, t)

∂y2
−
∂2V 1

j (1, y, t)

∂x2

))}
dtdy

+ wσ2µ

1∫

0

∆t∫

0

{
µ
∂2V 0

i (x, 0, t)

∂x∂y

(
∂2V 1

j (x, 0, t)

∂y2
−
∂2V 1

j (x, 0, t)

∂x2

)

−
(

(2µ+ λ)
∂2V 0

i (x, 0, t)

∂y2
+ λ

∂2V 0
i (x, 0, t)

∂x2

)
∂2V 1

j (x, 0, t)

∂x∂y

+ µ
∂2V 0

i (x, 1, t)

∂x∂y

(
∂2V 1

j (x, 1, t)

∂y2
−
∂2V 1

j (x, 1, t)

∂x2

)

−
(

(2µ+ λ)
∂2V 0

i (x, 1, t)

∂y2
+ λ

∂2V 0
i (x, 1, t)

∂x2

)
∂2V 1

j (x, 1, t)

∂x∂y

}
dtdx.

From Eq. (5.12) we obtain the coefficients cn. In practice it turns out that

this system of linear equations is indeterminate. Nevertheless, for different val-

ues of the parameter we get the same solution. In the time intervals (∆t, 2∆t),

(2∆t, 3∆t),. . . , we proceed analogously. Here, the initial condition for time inter-

val ((m − 1)∆t,m∆t) is the value of function u at the end of interval

((m− 2)∆t, (m− 1)∆t). All results below have been obtained for ∆t = 0.00016.

Then v1∆t = 0.91214034, v2∆t = .5059644256. We obtain an approximation

in the entire time interval (0,∆t). For example, Fig. 2 shows an approxima-

tion of displacement ux by polynomials from order 0 to 9 for times a) t = 0,
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b) t = 0.00008, c) t = 0.00014. Figures 2 show that the initial and boundary

conditions for displacement ux are well approximated
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Fig. 2. Approximation of displacement ux for time a) t = 0, b) t = 0.00008, c) t = 0.00014.
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Fig. 3. Approximation of displacement uy for time a) t = 0, b) t = 0.00008, c) t = 0.00014.

Figure 3 show an approximation of displacement uy by polynomials from

order 0 to 9 for times a) t = 0, b) t = 0.00008, c) t = 0.00014. Figures 2 and 3

shows that the the physical character of the displacement is preserved.

In approximations (5.8) and (5.9) we take all wave polynomials of orders

from 0 to K. Table 1 shows the value of functional I which depends on the order

K. The error decreases when the number of polynomials in the approximation

increases.

Table 1. I dependence of the polynomial order.

Order K 1 2 3 4 5

I 0.139 · 10−9 0.234 · 10−13 0.233 · 10−13 0.211 · 10−13 0.166 · 10−13
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5.2. Example 2 – two-dimensional problem in a triangle

The majority of analytical methods used for solving partial differential equa-

tions are effective for simple shapes of the body (square, circle, cube or sphere).

Solving functions’ method can be applied for more complicated domains. The

only difficulty for such a shape may be the calculation of the integrals

determining the coefficients cn – for most shapes this does not create any

problem.

Similarly as in Sec. 5.1, we consider a plane state of strain when the strain

tensor depends on time and two variables. Let us consider the two-dimensional

elasticity problem in a triangle 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 − x, described by the

system of Eqs. (5.2)–(5.3) and conditions:

(5.13) ux(x, y, 0) = ux0(x, y) =
y(1 − y)(1 − x− y)

1000
, uy(x, y, 0) = 0,

(5.14)
∂ux(x, y, 0)

∂t
=
∂uy(x, y, 0)

∂t
= 0,

(5.15) ux(x, 0, t) = uy(x, 0, t) = ux(x, 1 − x, t) = uy(x, 1 − x, t) = 0,

(5.16) σxx(0, y, t) = σxy(0, y, t) = 0.

@
@

@
@

-

6

���������

���������
1 x

1

y

Fig. 4. Fixation of the triangle.

Similarly as in Sec. 5.1, approximations for the solution of Eqs. (5.2)–(5.3)

we take correspondingly (5.8) and (5.9). The coefficients cn in the linear com-

binations are chosen such that the error in fulfilling the boundary and initial

conditions (5.13)–(5.16) is minimized. The functional describing this error is
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similar to (5.10). Here we have other domains for integrals:

I = wu

1∫

0

1−x∫

0





[ûx(x, y, 0) − ux0(x, y)]

2 + [ûy(x, y, 0)]2
︸ ︷︷ ︸

cond.(5.13)





dydx(5.17)

+ wu

1∫

0

1−x∫

0






[
∂ûx(x, y, 0)

∂t

]2

+

[
∂ûy(x, y, 0)

∂t

]2

︸ ︷︷ ︸
cond.(5.14)





dydx

+ wu

∆t∫

0

1∫

0

{[ûx(x, 0, t)]2 + [ûy(x, 0, t)]
2

︸ ︷︷ ︸
cond.(5.15)

dxdt

+ wu

√
2

∆t∫

0

1∫

0

[ûx(x, 1 − x, t)]2 + [ûx(x, 1 − x, t)]2︸ ︷︷ ︸
cond.(5.15)

}dxdt

+ wσ

∆t∫

0

1∫

0

{[σ̂xx(0, y, t)]2 + [σ̂xy(0, y, t)]
2

︸ ︷︷ ︸
cond.(5.16)

}dydt

There are two conditions connected with stresses and eight conditions con-

nected with displacements. Therefore in functional I the weight wσ = 2/1023.

The sum of all weights equals one. We obtain the coefficients cn in the same

manner as in Sec. 5.1. All results below have been obtained for ∆t = 0.00016[s].

Figure 5 shows the initial condition for displacement ux a) the exact solution,

b) an approximation by polynomials from order 0 to 9, c) the difference between

a) and b). Figure 5 shows that the initial condition for displacement ux is well

approximated. Figure 6 shows an approximation of displacement uy(0, y, t) in

time by polynomials from order 0 to 9. Let uK denote the approximation of

uy(0, y, t) by polynomials of order from 0 to K. We define the average, relative

difference between solutions uK and uK−1:

D(K) =

√√√√√√√√

∆t∫

0

1∫

0

(uK(0, y, t) − uK−1(0, y, t))2dydt

∆t∫

0

1∫

0

(uK−1(0, y, t))2dydt
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Fig. 5. Initial condition for displacement ux: a) exact, b) approximation, c) difference.
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Fig. 6. Approximation in time of displacement uy(0, y, t).

Table 2 shows the difference D(K) which depends on the order K. The error

decreases when the number of polynomials in the approximation u increases. It

suggests that the method is convergent.

Table 2. Error dependence of the polynomial order.

Order K 3 5 7 9
D(K) 201.2 1.235 1.256 0.558

Stresses can be calculated by means of formula (3.3). For example, Fig. 7

shows the approximation of stress σxx by polynomials of order from 0 to 9 for

times a) t = 0.00001, b) t = 0.00008, c) t = 0.00011. Figures 6 and 7 show that

the physical character of the displacements and stresses is preserved.
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Fig. 7. Approximation of stress σxx for times a) t = 0.00001, b) t = 0.00008, c) t = 0.00011.

5.3. Example 3 – three-dimensional problem in a cube

The method presented here can be also applied to three-dimensional elasticity

problems. Let us consider the elasticity problem described for a cube (x, y, z) ∈
[0, 1] × [0, 1] × [0, 1] by the system of Eqs. (3.5)–(3.6) and conditions:

(5.18)

ux(x, y, z, 0) = 0, uy(x, y, z, 0) = 0,

uz(x, y, z, 0) = ux0(x, y, z) = − z

10000
,

(5.19)
∂ux(x, y, z, 0)

∂t
=
∂uy(x, y, z, 0)

∂t
=
∂uz(x, y, z, 0)

∂t
= 0,

(5.20) ux(x, y, 0, t) = uy(x, y, 0, t) = uz(x, y, 0, t) = 0,

σxx(0, y, z, t) = σxy(0, y, z, t) = σxz(0, y, z, t) = 0,

σxx(1, y, z, t) = σxy(1, y, z, t) = σxz(1, y, z, t) = 0,

σyx(x, 0, z, t) = σyy(x, 0, z, t) = σyz(x, 0, z, t) = 0,(5.21)

σyx(x, 1, z, t) = σyy(x, 1, z, t) = σyz(x, 1, z, t) = 0,

σzx(x, y, 1, t) = σzy(x, y, 1, t) = σzz(x, y, 1, t) = 0.

The problem described by relationships (5.18)–(5.21) can be solved approxi-

mately by means of the method of solving functions. Let us denote the non-zero
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two-dimensional wave polynomials (2.25) as

V 0
1 = 1, V 0

2 = x, V 0
3 = y, V 0

4 = z, V 0
5 = v1t, V 0

6 = −x
2

2
− v2

1t
2

2
,

V 0
7 = −xy, V 0

8 = −xz, V 0
9 = −v1xt, V 0

10 = −y
2

2
− v2

1t
2

2
,

V 0
11 = −yz, V 0

12 = −v1yt, V 0
13 = −z

2

2
− v2

1t
2

2
, V 0

14 = −v1zt, . . .

and

V i
1 = 1, V i

2 = x, V i
3 = y, V i

4 = z, V i
5 = v2t, V i

6 = −x
2

2
− v2

2t
2

2
,

V i
7 = −xy, V i

8 = −xz, V i
9 = −v2xt, V i

10 = −y
2

2
− v2

2t
2

2
,

V i
11 = −yz, V i

12 = −v2yt, V i
13 = −z

2

2
− v2

2t
2

2
, V i

14 = −v2zt, . . . i = 1, 2, 3

Notice that we take the same polynomials for Eqs. (3.6). As approximations for

the solution of Equations (3.5)–(3.6) we take correspondingly

(5.22) φ ≈ φ̂ =
N∑

n=1

c0nV
0
n .

and

(5.23) ψi ≈ ψ̂i =
N∑

n=1

cinV
i
n, i = 1, 2, 3.

The coefficients cn in (5.22) and (5.23) are chosen so that the error for fulfill-

ing the boundary and initial conditions (5.18)–(5.21) is minimized. Further we

progress as in Secs. 5.1 and 5.2. Of course, here we have more conditions. There-

fore the functional I and matrices A, C and B are “bigger”. In functional I we

introduce weights by each condition. In this case there are fifteen conditions

connected with stresses and nine conditions connected with displacements – the

weight wσ = 15/1022.

All results below have been obtained for ∆t = 0.00016. Figure 8 shows an

approximation of displacement uz(x, 0.5, z, t) by polynomials from order 0 to 4

for time a) t = 0, b) t = 0.0001, c) t = 0.00016. Figures 8 show that the initial

and boundary conditions are well approximated.

Figure 9 shows an approximation of displacement ux(x, y, 0.5, t) by polynomi-

als of order from 0 to 4 for times a) t = 0, b) t = 0.0001, c) t = 0.00016. Figures

8 and 9 show that the physical character of the displacement is preserved.
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Fig. 8. Approximation of displacement uz(x, 0.5, z, t) for time a) t = 0, b) t = 0.0001,
c) t = 0.00016.
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Fig. 9. Approximation of displacement ux(x, y, 0.5, t) for time a) t = 0, b) t = 0.0001,
c) t = 0.00016.

5.4. Example 4 – three-dimensional problem in a triangular prism

Let us consider the elasticity problem described in a triangular prism

0 ≤x≤ 1, 0 ≤ y ≤ 1 − x, 0 ≤ z ≤ 1 by the system of Eqs. (3.5)–(3.6) and

conditions:

(5.24)

ux(x, y, z, 0) = 0, uy(x, y, z, 0) = 0,

uz(x, y, z, 0) = ux0(x, y, z) = − z

10000
,

(5.25)
∂ux(x, y, z, 0)

∂t
=
∂uy(x, y, z, 0)

∂t
=
∂uz(x, y, z, 0)

∂t
= 0,
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(5.26) ux(x, y, 0, t) = uy(x, y, 0, t) = uz(x, y, 0, t) = 0,

(5.27)

σxx(0, y, z, t) = σxy(0, y, z, t) = σxz(0, y, z, t) = 0,

σyx(x, 0, z, t) = σyy(x, 0, z, t) = σyz(x, 0, z, t) = 0,

σzx(x, y, 1, t) = σzy(x, y, 1, t) = σzz(x, y, 1, t) = 0,

σxx(x, 1 − x, z, t) = σxy(x, 1 − x, z, t) = σxz(x, 1 − x, z, t) = 0,

σyy(x, 1 − x, z, t) = σyz(x, 1 − x, z, t) = σzz(x, 1 − x, z, t) = 0.

The problem described by relationships (5.24)–(5.27) can be solved in the

same manner as in Secs. 5.1, 5.2 and 5.3. In this case we have other domain for in-

tegrals in functional I where there are fourteen conditions connected

with stresses and nine conditions connected with displacements – the weight

wσ = 14/1022.

All results given below given have been obtained for ∆t = 0.00016.

Figure 10 shows the approximation of displacement ux(x, y, 0.5, t) by poly-

nomials of order from 0 to 4 for times a) t = 0, b) t = 0.0001, c) t = 0.00015.

Figure 10 shows that the physical character of the displacement is preserved.

Figure 11 shows an approximation of displacement uz(x, x, z, t) by polynomi-

als of order from 0 to 4 for times a) t = 0, b) t = 0.0001, c) t = 0.00016.

Figures 11 shows that the initial and boundary conditions for uz are well ap-

proximated.
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Fig. 10. Approximation of displacement ux(x, y, 0.5, t) for time a) t = 0, b) t = 0.0001,
c) t = 0.00015.
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Fig. 11. Approximation of displacement uz(x, x, z, t) for time a) t = 0, b) t = 0.0001,
c) t = 0.00016.

6. Concluding remarks

As a rule, the elasticity problems are difficult. A new simple technique for
solving these two- and three- dimensional problems has been developed. The
method of solving functions presented in this paper is a straightforward method
for solving elasticity problems in finite bodies. This method is also useful when
the shape of the body is complicated. We must calculate the integrals deter-
mining the coefficients cn. For most shapes this does not present any problem.
The simple examples presented in this paper show that in the obtained approx-
imations, the physical character of displacements and stresses is preserved. The
solution, which is a linear combination of wave polynomials, satisfies exactly
the wave equation and approximately – the initial and boundary conditions.
The next step of the research should be the application of this method to ther-
moelasticity problems. Moreover, wave polynomials can be used as finite-element
base functions.
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