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Induction motors (IMs) have a crucial and significant role in various industrial sectors.
With the prolonged operation of IMs, faults tend to develop that can be classified into five
major categories, i.e., broken rotor bars, stator winding faults, air-gap eccentricity, bearing
faults, and load torque fluctuations. If the faults go undetected, it may lead to catastrophic
failure. Hence, the predictive-based condition monitoring technique has evolved as a real-time
fault diagnosis that exploits the revolutionary idea of cyber-physical system (CPS). Further-
more, motor current signature analysis (MCSA) is a non-invasive fault diagnosis technique of
a motor that can be used to investigate the presence of five fault types. However, the major
constraint that industries face today is the on-field implementation of MCSA-based fault diag-
nosis involving CPS-based architecture, executed in an automated manner. Hence, the present
article depicts algorithms that aim at real-time monitoring of IMs through a CPS framework.
The proposed methodology is automated, does not involve any human intervention, and has
been validated with real-time experiments, depicting its effectiveness and practicality.
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1. Introduction

The industrial and commercial sectors mainly depend on induction motors
(IMs) as major prime movers for running equipment due to their robust struc-
ture, simplicity, and efficiency [1]. However, with continuous usage, the occur-
rence of faults in IMs is inevitable. An unexpected appearance of fault, if left
undetected, leads to production loss and catastrophic events that can take a toll
on the lives of plant personnel [2, 3]. Thus, to increase the reliability of the
machines and maintain machine uptime, it is of utmost importance to imple-
ment real-time monitoring of motor health condition via a framework involving
a cyber-physical system (CPS) [4–6]. The IM is connected to the internet by
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means of a sensor to measure the physical parameters such as current, tem-
perature, vibration, voltage, etc. The measured parameter is then analyzed to
scrutinize the motor health status and develop an effective maintenance sched-
ule. The computational resources and motor interlink using standard internet
protocols for real-time monitoring.

Goundar et al. [7] used a temperature sensor (thermistor), accelerome-
ter (MEAS), and microcontroller (Waspmote PRO) to record temperature and
acceleration data from a motor. The recorded physical parameters (tempera-
ture/acceleration data) were transferred to the Esri cloud computing platform.
The Waspmote PRO was able to maintain the maximum sampling frequency
(Fs) of 1 kHz. The fast Fourier transform (FFT) of the acceleration data was
computed to investigate the vibration spectrum wherein the frequency range
was observed till 500 Hz.

A CPS-based condition monitoring technique for motors was presented by
Civerchia et al. [8]. Standard internet protocols (IPs) were used viz. IEEE
802.15.4, 6LoWPAN (IPv6 over Low Power Wireless Personal Area Networks),
and CoAP (Constrained Application Protocol) for data transmission between
the transducers and a microcontroller (CC2538). The link layer was managed
by IEEE 802.15.4, the network layer is aided by 6LoWPAN and the application
layer is organized by CoAP. The vibration data of the machine was captured
by a microcontroller (CC2538), where Fs is set at 800 Hz. The machine health
status was inspected by tracking the change in the RMS (root mean square)
value of vibration data.

Wu et al. [9] ventured into the implementation of wireless sensors, machine
learning, and cloud computing. A pump driven by a motor was used for ex-
perimental analysis from which the current and vibration data were measured
using a tri-axial accelerometer and a current sensor (CTRS 501). The analog
signal was received by the microcontroller (Arduino), which converts the analog
to a digital signal. The digital signal is then communicated to the Predix com-
puting platform via the ZigBee module. However, the technique involved in the
fault detection of the machine was omitted.

A microcontroller (myRIO-1900) and a vibration sensor (ADXL345) were
used by Ganga and Ramachandran [10] to record vibration data. A serial
device interface was used to transfer the recorded vibration signal to SIMATIC
IoT2040 Gateway. The vibration amplitude was monitored at different time
periods. The microcontroller (myRIO-1900) can attain a maximum Fs value
of 800 Hz.

A Raspberry Pi coupled with a MEMS (micro-electro-mechanical system)
sensor was maneuvered to capture vibration data from a pump driven by a mo-
tor, as presented by Jung et al. [11]. The RMS value of vibration data and the
power spectral density (PSD) were examined to ascertain the vibration level in
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the pump. The frequency resolution of the PSD was compromised since the data
was recorded for a time duration of 0.25 s.

A methodology involving fog layer architecture for real-time predictive main-
tenance of motors was presented by Xenakis et al. [12]. The RMS, crest factor,
and kurtosis values of the vibration data were evaluated to investigate the mo-
tor vibration levels. However, the technique discussed was not corroborated with
real-time experimentations.

Magadán et al. [13] utilized a temperature sensor (HDC1000) and an ac-
celerometer (MPU9250) that aided in recording temperature and vibration data
through a microcontroller (Raspberry Pi 3 Model B+). The maximum value of
Fs was set at 1 kHz. The temperature and vibration data were then conveyed
to the ThingSpeak analytics platform for motor analysis. The vibration spec-
trum was analyzed for any abnormalities by scrutinizing spectrum data until
500 Hz.

The vibration data of a motor was collected by adopting a piezoelectric
sensor, as cited by Firmansah et al. [14]. The process was guided by using
a microcontroller (NodeMCU) that later communicated the vibration data to
the cloud using a router. However, the methodology involved in motor fault
diagnosis and the value of Fs to record the data were not presented.

Kunthong et al. [15] used ADXL345, ACS712, and DS18B20 to record vi-
bration, current, and temperature parameters for motor health diagnosis. A mi-
crocontroller (ESP8266) was positioned to interface the sensor data into Node-
Red cloud-based platform. The motor fault was detected by monitoring any
abrupt change in the waveform of the time-stamp signal.

A temperature sensor (LM35) and a current sensor (ACS712) were used to
record the physical parameters of the motor for condition monitoring, as shown
by Choudhary et al. [16]. The sensor data was acquired using a microcontroller
(Arduino), next transmitted to the Cayenne analytics platform for the data post-
processing . The computational analysis was done in Cayenne, and the RMS
values of the measured signals were monitored. If the RMS value of the measured
signal overshooted the threshold value, a signal was sent to the microcontroller,
which then communicated a command to the relay to disengage the motor from
the power supply.

A microcontroller accompanied by a current sensor (ACS712) was installed to
record the current data, as presented by Khan et al. [17]. The current data was
then transferred to the ThingSpeak server for further analysis. The RMS value
of current data was measured and thus the motor health status was assessed.

A potential transformer, a current sensor (ACS712) and a temperature sen-
sor (LM35) were implemented to record voltage, current, and temperature data,
as presented by Ashmitha et al. [18]. The data recording was aided by a mi-
crocontroller (Arduino) and sent to the ThingSpeak website, where the RMS
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values of the recorded data were calculated. If the RMS value detected showed
abnormal behaviors, then the microcontroller sent a feedback signal to the relay,
and the motor functioning was terminated to avoid further loss.

STM32 microcontroller was used by Zhang and Kang [19], which helped
in obliterating the purpose of using a central processing unit (CPU) to connect
the input/output peripherals of sensors and the microcontroller. The vibration
data were recorded by using a vibration sensor (MMA7455L) by maintaining
the value of Fs at 5 kHz from a rotating machine by deploying direct memory
access (DMA). However, latency in recording the data was created with DMA
usage since the packets of data were recorded consecutively. Thus, a time delay of
a few milliseconds led to erroneous results in recording the data. Microcontrollers
that work on embedded systems form the foundation for data acquisition. The
general-purpose input/output (GPIO) pins present on the microcontroller and
the input/output peripherals of the ADC (analog to digital converter) module
interact with each other by the operating system (OS) of the microcontroller.
The OS reads and writes the data in the peripheral’s register (or memory) at
every time step. As a result, random jitters start appearing at the core of the
OS of the microcontroller when the Fsis set above 500 Hz. Furthermore, faults
occurring in IMs can be divided into five major categories viz. broken rotor
bars, stator winding faults, air-gap eccentricity, bearing faults, and load torque
fluctuations [20–26]. The research work that makes use of microcontroller as
prescribed in the literature does not classify the five fault types. Motor current
signature analysis (MCSA) is a potential non-invasive fault diagnostic method-
ology [27–29] that is used to differentiate the five fault types by interpreting the
characteristic fault frequencies (CFFs) [30, 31] in the motor current spectrum
observed in the frequency range of 0–5 kHz [32–34]. Hence, the Nyquist sam-
pling frequency, for current data acquisition, should be at least 10 kHz. Thus,
due to random jitters in microcontrollers, the motor fault diagnosis using MCSA
is infeasible.

The objective of the present work is to implement CPS-based fault diagnostic
strategy of motors using MCSA to scrutinize the five fault types, without any
human intervention, by using an industrial mini-computer (IMC). The Fs of
the data acquisition (DAQ) system is set at 10 kHz, and the current data is
transferred to IMC across a wireless network. Furthermore, the IMC is used
to process the current data and detect the presence of the five types of faults.
The motor health status is recorded as a Boolean value of 1 when a fault is
present, and the value is 0 when the fault does not occur. The Boolean value,
along with the corresponding current spectrum data, is stored in two separate
CSV (comma-separated values) files, which are then transferred to Google Cloud
Storage (GCS) form, where the plant personnel can assess the files and chalk
out the maintenance schedules.
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This paper is organized as follows: Sec. 2 deals with an explanation of the
proposed CPS based framework for fault diagnosis. It focuses on the process
flow and algorithm developed for real-time fault diagnosis of IMs. Section 3
demonstrates the experimental test setup. The results arediscussed in Sec. 4,
and the conclusions are presented in Sec. 5.

2. Proposed architecture for CPS-based real-time
fault diagnosis of IMs

CPS is a strategic approach that involves interlinking the physical compo-
nent, i.e., IM with the internet to track the real-time condition of the motor, as
reported by Humayed et al. [35]. The architecture for fault diagnosis proposed
in the present paper is depicted in Fig. 1. The CPS framework consists of an
induction motor, clamp-type current transducer (CT), DAQ compatible with
the Wi-Fi module, IMC with Wi-Fi connectivity, and GCS.

Fig. 1. Framework of the real-time CPS-based fault diagnosis of IMs by applying MCSA.

The Wi-Fi-based DAQ system demonstrates the feasibility to record current
data and transfer it to IMC from any location across a wireless network. The
DAQ unit is developed by National Instruments (NI) and involves a DAQ card
NI 9215 C series voltage module and NI 9191 cDAQ chassis. Initially, the DAQ
chassis is connected to the IMC through an Ethernet cable. The Wi-Fi net-
work is enabled in the chassis using the Dynamic Host Configuration Protocol
(DHCP). After successfully connecting the DAQ chassis with IMC across the
Wi-Fi network, the Ethernet cable is removed. LabVIEW environment is used
to record the current data in IMC as described in Algorithm 1. The procedure
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Algorithm 1. Generate current time signal for 20 s in the LabVIEW environment.

1. Set the channel name of the DAQ card in LabVIEW.

2. Specify the range as −10 V to 10 V.

3. Set the sensitivity of the channel as 32.4 mV/A.

4. Set the sampling frequency (fs) as 10 kHz.

5. Read the current signal (I) for 20 s.

6. Transfer the signal to IMC across a wireless network.

7. Save the current signal in TDMS (technical data management streaming) file format.

to acquire motor current data is presented in Fig. 2. The sampling frequency
(Fs) of each channel, the duration of the current data recorded (T ), the sensi-
tivity of the sensor, and the voltage input range of the DAQ module, are set in
the LabVIEW environment. The total number of data points (N) recorded is
expressed by Eq. (2.1)

(2.1) N = T · Fs.

Fig. 2. Flowchart depicting procedure to acquire current data in IMC.

The fault diagnosis algorithm, developed in the Python environment, deals
with encountering CFFs in the current spectrum array without any human
intervention. While recording the motor current signal (I), a constant bias may
appear in the current signal since the DAQ module operates in “DC Coupling”
mode. The corrected signal (Icorr) is obtained by removing the bias, which is
expressed by Eq. (2.2)

(2.2) Icorr = I − Imean,
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where Imean is the mean value of I. The time domain signal Icorr is converted
to the current spectrum by computing the absolute FFT in a linear scale. In
order to enhance the dynamic range, the linear FFT is converted to a loga-
rithmic scale by considering 1 A as the reference value. A Hanning window is
applied to avoid the leakage effect and enhance the computation of spectral
data as depicted in Algorithm 2a. The current spectrum value, i.e., frequency
vs. current amplitude, is stored in a current array, forming an integral part of
the Python workspace. Supply frequency and motor speed are detected based

Algorithm 2a. Calculation of the supply line frequency fs.

1. Read the current signal (I) from the TDMS file format that has been saved in IMC.

2. Calculate the mean value of I represented as Imean.

3. Remove constant bias from I denoted as Icorr = I − Imean.

4. Apply the Hanning window on Icorr denoted as IHann.

5. if T = 20 s and Fs = 10 kHz then

6. Frequency resolution = df = 1/T = 0.05 Hz.

7. Number of data points in time signal = N = T · Fs = 200 000 data points.

8. Number of spectral lines = Ns = N/2 = 100 000 spectral lines.

9. Compute the absolute FFT of IHann in logarithmic scale by considering 1 A as
the reference, denoted by the current vector (CV), which is represented as:

CV =

{
20 log10

[ 2
N |FFT (IHann)|

1

]}
100 000×1

.

10. Create a frequency vector (FV) with df = 0.05 Hz that is designated as:

FV = {f}100 000×1 .

11. Create a 2D array designated by current spectrum (CS), which is denoted as:

CS = [FV,CV]100 000×2.

12. Locate the maximum value of amplitude in 2nd column of CS:

Max−CS = max [CS2nd col].

13. Supply line frequency (fs) is responsible for driving the induction motor.

Hence, fs has the highest amplitude in the current spectrum.

∴ fs frequency value in [CS1st col] corresponding to Max−CS.

14. else

15. Do not analyze the current time signal due to an insufficient number of data
points in the current signal (I).
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on Algorithm 2a and Algorithm 2b, respectively. The CFFs [36–42] are then
calculated by using Eqs. (2.3)–(2.6), that correspond to BRBs (fBRBs), stator

Algorithm 2b. Calculation of the motor speed fm.

1. Calculate fs from Algorithm 2a.

2. The actual synchronous speed (fsyn) of the motor is given as:

fsyn =
fs
p
,

where p is the number of pole pairs.

3. The rated supply frequency
(
fs−rat

)
and rated motor speed

(
fm−rat

)
can be found

on the motor nameplate.

∴ The rated synchronous speed of the motor is denoted as: fsyn−rat =
fs−rat

p ,

∴ Rated slip = srat =
fsyn−rat−fm−rat

fsyn−rat
.

4. Considering the load factor as 1.5, the maximum slip is determined as:

smax = 1.5× srat.

5. Hence, the minimum speed the motor can attain is given as:

fm−min = (1− smax)× fsyn.

6. Hence, the range of actual motor speed is represented as:

fm−min ≤ fm < fsyn.

7. In the CS array (from Algorithm 2a), peak frequencies can be established in the
below frequency range:
• upper sideband range for motor speed (USBR−MS):(

fs + fm−min

)
≤ (fs + fm) < (fs + fsyn) ,

• lower sideband range for motor speed (LSBR−MS):(
fs − fm−min

)
≥ (fs − fm) > (fs − fsyn) .

8. Locate the maximum value of amplitude in USBR−MS and LSBR−MS:

Max−USBR−MS = max [CS2nd col]range: USBR−MS,

Max−LSBR−MS = max [CS2nd col]range: LSBR−MS,

∴ Max−MS = max[Max−LSBR−MS, Max−USBR−MS].

9. ∴ fm = frequency value in [CS1st col] corresponding to Max−MS.

10. The actual motor slip (s) that has been attained by the induction motor is de-
noted as:

s =
fsyn − fm
fsyn

.
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faults (fSFs), eccentricity (fFcc), and bearing faults (fBrg) and are discussed in
Algorithms 2c–2g:

fBRBs = (1± 2skfs),(2.3)

fSFs = (2k + 1) fs,(2.4)

fEcc = fs ± fm,(2.5)

fBrg = fs ± k fBrg CFFs,(2.6)

where k = 1, 2, 3, ..., fs is the supply line frequency, fm is the motor speed,
fBrg−CFFs is one of the characteristic fault frequencies of the bearing viz. ball
spin frequency, fundamental train frequency, ball pass frequency outer race, and
ball spin frequency inner race. For Algorithm 2c, the threshold value of BRBs is
−50 dB, as per ISO 20958 [43]. In Algorithms 2d–2f, the threshold values used
in the present study are based on the knowledge of the healthy state of the motor
current data. If the motor current data from the healthy motor is unavailable,
then a mathematical model of a healthy motor needs to be prepared, as shown
by Pal and Mohanty [39]. Based on the analysis of the current data of healthy
motor, the threshold values can be ascertained.

Algorithm 2c. Detection of the presence of BRBs.

1. Calculate fs from Algorithm 2a.

2. Calculate s from Algorithm 2b.

3. The values of pole pass frequencies around the supply line frequency can be obser-
ved at:

fBRBs = (1± 2skfs),

where k = 1, 2, 3, ...

4. Locate fBRBs in the 1st column of CS.

5. Locate the current amplitude in the 2nd column of CS that corresponds to fBRBs,
denoted as CSBRBs.

6. Compute the difference in amplitude between CSBRBs and Max−CS, denoted as
∆CSBRBs.

7. Set the threshold value of −50 dB for detection of BRBs as per ISO 20958.

8. if ∆CSBRBs > −50 dB then

9. BRBs exist.

10. Set the Boolean value for BRBs as ‘1’.

11. else

12. BRBs do not exist.

13. Set the Boolean value for BRBs as ‘0’.
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Algorithm 2d. Detection of the presence of stator faults (SFs).

1. Calculate fs from Algorithm 2a.

2. The values of odd harmonics of the supply line frequency can be observed at:

fSFs = (2k + 1) fs,

where k = 1, 2, 3, ...

3. Locate fSFs in the 1st column of CS.

4. Locate the current amplitude in the 2nd column of CS that corresponds to fSFs,
denoted as CSSFs.

5. Compute the difference in amplitude between CSSFs and Max−CS, denoted as
∆CSSFs.

6. Set the threshold value for detection of SFs as −20 dB for the present motor under
study.

7. if ∆CSSFs > −20 dB then

8. SFs exist.

9. Set the Boolean value for SFs as ‘1’.

10. else

11. SFs do not exist.

12. Set the boolean value for SFs as ‘0’.

Algorithm 2e. Detection of the presence of eccentricity faults.

1. Calculate fs from Algorithm 2a.

2. Calculate fm from Algorithm 2b.

3. In a practical scenario, static and dynamic eccentricity coexist together, which is
a case of mixed eccentricity. Mixed eccentricity fault tends to excite the sidebands
at fm around fs. Hence, the frequency component indicating the presence of ec-
centricity fault is represented as:

fEcc = fs ± fm.
4. Locate fEcc in the 1st column of CS.

5. Locate the current amplitude in the 2nd column of CS that corresponds to fEcc,
denoted as CSEcc.

6. Compute the difference in amplitude between CSEcc and Max−CS, denoted as
∆CSEcc.

7. Set the threshold value for detection of eccentricity as −25 dB for the present
motor under study.

8. if ∆CSEcc > −25 dB then

9. Air gap eccentricity exists.

10. Set the Boolean value for eccentricity as ‘1’.

11. else

12. Air gap eccentricity does not exist.

13. Set the Boolean value for eccentricity as ‘0’.
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Algorithm 2f. Detection of the presence of bearing faults.

1. Calculate fs from Algorithm 2a.

2. The frequency component indicating the presence of bearing fault is represented as:

fBrg = fs ± kfBrg−CFFs.

3. Locate fBrg in the 1st column of CS.

4. Locate the current amplitude in the 2nd column of CS that corresponds to fBrg,
denoted as CSBrg.

5. Compute the difference in amplitude between CSBrg and Max−CS, denoted as
∆CSBrg.

6. Set the threshold value for detection of bearing fault as −40 dB for the present
motor under study.

7. if ∆CSBrg > −40 dB then

8. Bearing fault exists.

9. Set the Boolean value for bearing fault as ‘1’.

10. else

11. Bearing fault does not exist.

12. Set the Boolean value for bearing fault as ‘0’.

Algorithm 2g. Detection of the presence of overload torque.

1. Calculate the RMS (IRMS) value of the current signal (I).

2. Note the rated current (Irat) as seen in the motor nameplate.

3. if IRMS > Irat then

4. Load torque overload exists.

5. Set the Boolean value for overload torque as ‘1’.

6. else

7. Load torque overload does not exist.

8. Set the Boolean value for overload torque as ‘0’.

The presence of CFFs describes the existence of a fault in the motor, and
a Boolean value of 1 or 0 is assigned against the type of fault as described in
Algorithm 2h. After the fault diagnosis algorithm is processed, the motor health
status, denoted by the Boolean value and the current spectrum, is saved in two
separate CSV files in the IMC, as depicted in Fig. 3. The names of the report
files are denoted by the time during which the motor was analyzed, which helps
the plant personnel to track the time of fault creation.

A GCS account is created, and an algorithm is developed for transferring
files from IMC to GCS in the Python environment, as described in Algorithm 3.
In order to automate the process without any human intervention, windows task
scheduler (WTS) is used, which is an inbuilt functionality of Windows 10 OS.
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Algorithm 2h. Save Boolean and spectrum data.

1. Note the present date and time of analysis.

2. Compile Algorithms 2a–2g.

3. Save the Boolean value in a CSV file corresponding to the fault classified as:

Fault type
Boolean value

If fault exists If there is no fault

Broken rotor bars (BRBs) 1 0

Stator faults (SFs) 1 0

Air gap eccentricity 1 0

Bearing faults 1 0

Load torque overload 1 0

4. Save spectrum data in a CSV file.

5. Name the Boolean and spectrum file based on the present date and time of analysis.

B

Fig. 3. Flowchart depicting the fault diagnostic algorithm.

Algorithm 3. Transfer the Boolean and spectrum CSV files to GCS.

1. The Boolean and spectrum CSV files have been generated on the local computer,
as mentioned in Algorithm 2h.

2. Create a bucket in GCS.

3. Move the Boolean and spectrum CSV files from the local computer to GCS.

4. Delete the current time signal from the local computer.

For every motor, the analysis is completed in three stages, as shown in Fig. 4.
In the first stage, Algorithm 1 is compiled which triggers the DAQ to record
current data from any one of the phases of IM. The second stage involves the
execution of Algorithms 2a–2h to carry out fault diagnosis, which generates
Boolean and spectrum CSV files called report files. Eventually, in the third stage
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Fig. 4. Methodology applied to automate the fault diagnostic operation.

of WTS, the report files are transferred to GCS by compiling Algorithm 3, from
where the plant personnel can access the motor health information. If all five
fault types have a Boolean value of 0, then the motor status is declared to be
healthy. Therefore, the plant personnel can assess the real-time information of
the motor health condition.

3. Experimental test rig

Three-phase IMs (M0, M1) and single-phase IMs (M2, M3) were used to
experimentally monitor the real-time status of motor health conditions through
CPS-oriented fault detection methodology. The motor nameplate details are
presented in Table 1. The experimental test rig is illustrated in Fig. 5. The

Table 1. Motor nameplate parameters.

Parameter Unit M0 M1 M2 M3

Rated power HP 0.33 1 1.02 1.5

Rated speed RPM 2850 2830 2700 1440

Rated voltage V 190 415 230 190

Rated current A 2 1.65 4.5 8.8

No. of poles – 2 2 2 4

Rated supply frequency Hz 50 50 50 50

No. of phases – 3 3 1 1

Bearing number – 6203 6004 6203 6203
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Fig. 5. Experimental setup for the real-time fault diagnosis of IMs.

motor M0 is used as a faulty motor (BRBs), whereas M1, M2, and M3 are
healthy motors. The BRBs condition was artificially emulated in motor M0
by drilling three holes through the rotor bars near the end rings. A variable
frequency drive was used to operate the motors M0 and M1. A direct online
starter was used to operate the motors M2 and M3. A split-core non-invasive
current transducer (SCT-013-030) with a sensitivity of 32.4 mV/A was used
to measure the instantaneous current drawn by the stator winding. The DAQ
system comprises of voltage input module (NI-9215) and a Wi-Fi-enabled chassis
(NI-9191). Intel NUC (Next Unit of Computing) was used as an IMC in the
present experiment. The digitized current signal data is acquired in IMC across
a wireless network by compiling Algorithm 1 developed for the DAQ system.
Later, the acquired current data is further processed by passing the current
time signal through the fault diagnostic Algorithms 2a–2h. The report files are
generated for a motor that consists of a Boolean and spectrum file in CSV
format. Eventually, Algorithm 3 is compiled to transfer the CSV files to GCS via
Hypertext Transfer Protocol (HTTP) subjected to parallel composite uploads
that make the CSV files get uploaded to GCS in the shortest possible time.

4. Results

After the experimental set-up is ready, the WTS is activated, which carries
out a three-stage procedure for each motor, as shown in Fig. 4. In the first
stage of WTS for motor M0 (motor with BRBs), current data is captured for
20 seconds of time duration by compiling Algorithm 1. During the second stage
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of WTS, the recorded current signal in the time domain is then converted into
the frequency domain by computing the absolute FFT in a logarithmic scale,
which is further subjected to Algorithms 2a–2h. Motor M0 is operated using
a variable frequency drive whose supply frequency is detected as fs = 50 Hz by
Algorithm 2a. The motor speed is computed to be 49.65 Hz; hence, s = 0.007
by using Algorithm 2b. By applying Eq. (2.3) and Algorithm 2c, the expected
CFFs for BRBs are calculated as fBRBs1 = 49.3 Hz and fBRBs2 = 50.7 Hz. In
the current array (CS), the fBRBs1 and fBRBs2 with the corresponding amplitude
values are encountered at (49.3 Hz, −40.98 dB) and (50.7 Hz, −45.26 dB), re-
spectively. As a result, the motor M0 is declared to have BRBs. The report files
are generated, which contain the Boolean and spectrum data (until 5000 Hz)
in a CSV format and are depicted in Figs. 6 and 7a, respectively. A part of
current spectrum data in a graphical format showing CFFs for BRBs of motor
M0 is shown in Fig. 7b. Finally, in the third stage of WTS, the report files that
are generated for motor M0 are then transferred to GCS by compiling Algo-
rithm 3. Since the IMC has Intel Core i3 processor and 8 GB RAM (random

Fig. 6. Boolean report file in CSV format for motor M0.

a) b)

Fig. 7. Spectrum report file in CSV format (a), and part of spectrum plot around supply
frequency indicating CFFs for BRBs for motor M0 (b).
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access memory), the three-stage procedure of WTS requires 2 minutes for each
motor.

Likewise, the proposed three-stage procedure of WTS is repeated for mo-
tors M1, M2, and M3. A bucket is created in GCS where the report files viz.
Boolean and spectrum CSV files, for all the motors, are uploaded and shown
in Figs. 8 and 9, respectively. The plant personnel can easily access the report
files for any motor, from any given location, at any instant of time, which aids
in accomplishing the real-time analysis of IMs.

Fig. 8. Boolean report files for motors M0, M1, M2, and M3 uploaded in GCS.

Fig. 9. Spectrum report files for motors M0, M1, M2, and M3 uploaded in GCS.

5. Conclusions

This paper presented an integrated framework that shows the significance
of real-time analysis of induction motors. The process is based on data transfer
across a wireless network, which forms a part of the CPS infrastructure with
minimal human intervention. The methodology proposed incorporates the use
of a clamp-type current transducer that can be put on one of the phase windings
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of input terminals of the motor. The OS of a microcontroller used in embedded
systems tends to create random jitters when the sampling frequency of the DAQ
unit is set above 500 Hz. Since the range of defect fault frequency is 0–5 kHz,
the expected sampling frequency should at least be set at 10 kHz. As a result,
an industrial minicomputer is chosen as the best feasible tool to address the cri-
teria of maintaining sampling frequency at 10 kHz. The algorithm for the data
acquisition unit is developed in the LabVIEW environment, which is intendedto
record current data for a time duration of 20 s from each motor. The recorded
current data is then passed through an algorithm that aims to investigate the
presence of CFFs and assigns a Boolean value as 0 (fault does not exist) and 1
(fault exists) against the fault type. After the analysis is completed, the Boolean
and spectrum information is stored in two separate CSV files. The HTTP pro-
tocol is implemented to transfer the files to GCS. The naming of the CSV files
signifies the time during which the motor was analyzed. In the present article,
four motors were used for experimental analysis. The plant personnel can re-
ceive the report file of every motor in GCS and assess the real-time information
of the motor health condition. The holistic methodology proposed in the pre-
sented paper helps the plant maintenance engineers to increase the reliability of
the motors under operation by scheduling maintenance tasks.
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