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SAINT-VENANT'S PROBLEM FOR HETEROGENEOUS ELASTIC SOLIDS

D. TESAN (IASSY)

This paper gives a method for solving Sazint-Venant’s problem in the case of inhomogeneous
and isotropic elastic cylinders when the elastic coefficients are independent of the axial coordinate.
The cross-section of the cylinder is assumed to be occupied by different inhomogeneous and iso-
tropic elastic materials. The problem is then generalized to the case when the cylinder is subjec-
ted to body forces and to surface tractions on the lateral surface. ’

1, INTRODUCTION

The importance of Saint-Venant’s celebrated memoirs [I, 2] what has long
since become known as Saint-Venant’s problem, requires no emphasis. Most of
the papers dealing with Saint-Venant’s problem are 1estricted to homogeneous or
piecewise homogeneous cylinders. However, some investigations (see, e.g., [3-6))
are devoted to Saint-Venant’s problem for inhomogeneous cylinders where the
elastic coeflicients- are independent of the axial coordinate, those being prescribed
functions of the remaining coordinates. In this case the problem is entirely solved
only ‘when Poisson’s ratio. is constant. : :

This paper gives a solution to Saint-Venant’s problem for inhomogeneous
and isotropic elastic bodies, without considering the mentioned restriction. More-
over, we study the case of a tomposed cylinder where the generic cross-section is
occupied by different inhomogeneous and isotropic elastic materials. We also consid-
er a generalization of the preceding problem to the case when the cylinder is sub-
jected to body forces and to surface tractions on the lateral surface and to appro-
priate stress resultants over its ends. o

2. STATEMENT OF THE PROBLEM

Throughout this paper R denotes the interior of a right cylinder of the length
! with the generic cross-section X' and the lateral boundary B. We call dR the bound-
ary of R, and designate by »; the components of the outward unit normal of JR.
Moreover, a rectangular Cartesian coordinate system Ox, (k=1, 2, 3) is used. The
rectangular Cartesian coordinate frame is chosen such that the xs-axis is parallel
to the generators of R and the x,0x,-plane contains one of terminal cross-sections.
We call X® the cross-section located at x,;=0 and @ the cross-section which ‘lles
in the plane x3 =/ We denote by I the boundary of the generic cross-section £

We shall employ the usual summation and differentiation conventions: Greek
subscripts are understood to range over the integers (1, 2), whereas Latin subscripts—
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over (1, 2, 3); summation over repedted subscripts is implied and subscripts preceded
by a comma denote partial differentiation with respect to the corresponding Carte-
sian coordinate.

In this paper we consider the linear theory of classical elasteity. Let u, denote
the components of the displacement vector field. The components of the strain tensor
are given by ' oA R S

1
2.1) eijz—f(u.i’j+uj,i).

The stress-strain relations in the case of an isotropic elastic medium are
(2.2} tiy=Aendis+ 2ue;,

where t;; are the components of the stress tensor, A and g are Lamé moduli and
§;,; is the Kromecker delta. - ‘ o
The equations of equilibrium, in ahsence of body forces, are

@3 {1 =0. | |
The surface tractions acting at a point x on the oriented surface S are given by
(2‘4) ‘ ti‘=t1“j.nj,

where n; are the direction cosines of the exterior normal to S at x.
We assume that X is a C*-smooth domain [7]. Let L, and L, be two disjoint sub-
sets of L such that L=L;\ L,. Let I" be a curve contained in X satisfying the condi-
tion that L, U I"{p=1,2) is the boundary of a domain X, contained in 2 such that
TN E,=0.
Suppose that &, and 2, are ocoupied by two elastic materials. Let A4, p
be ihe Lamé moduli relative to Z,. We denote by R, the domain occupied by the
material with- the Lamé moduli A®, .
Throughout this paper we assume that

2.5) A0 = 40 (x, %2), 1= (X1, X5) o0 R,.

The functioms A®), u® are supposed to belong to ¢, and the elastic potential
corresponding to the body which occupies R, is assumed to be a positive definite
quadratic form. '

We can consider X as being occupied by an clastic medium which, in general,
has elastic coefficients discontinuous along I". We denote by IT the surface of sep-
aration of the two materials. ' '

The displacement vector and the stress vector must be continuous in passing
from one medium to apother so that we have the conditions

2.6) . [i]s =lw:lz [tiglivp=[tigl2ve oM i,

where it has been indicated that the expressions in the parentheses are calculated
for the domains R, and R., respectively, and v, are the direction cosines of the
vector normal to I, outward to 2. : : '
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The cylinder is supposed to be free from lateral loading so that we have the
conditions

2.7 - tat,=0  on B.

The load of the cylinder is distributed over its ends in a way which fulfills the
equilibrium conditions of a rigid body. Let the loading applied on 2% he statically
equivalent to a force P(P;) and a moment M (M)).

The aim of Saint-Venant’s problem is to find out a solution for the equations
(2.1)~(2.3) which would satisfy the conditions (2.6), (2.7) and the conditions on
Z©), For the purpose of convenience the problem of extensron and bending is
treated separately in this paper. '

3. AUXILIARY PLANE STRAIN PROBLEMS

Let us consider the static problem of the plane strain in the cross-section X of
the cylinder. For this problem we take into account the body force £ e C*(Z,).
Here, the field equations are

equilibrium equations

(31) taﬂ,a“l“fg,):();
stress-strain relations
(3.2) - aﬁfl( 5(1‘(]‘[‘2}5{”) ‘?aﬂ N

geometrical relations
3.3 2ey=tt, ptug, nX,,

where w,=u, (xq, x;).
If the displacement vector and the stress vector are assumed to be continuous
in passing from one medium to another, then we obtain the conditions

(3.4 (adi=lales  [twlivs=[tplove  on I
We consider the following boundary conditions
(3.5) fupngl,=H?  on L,,

where A% are C-functions.

It is known that if the domains X, X, satisfy some conditions of regularity
|7, p. 386], then the boundary value problem (3.1)-(3.5) has a sohmon u, € C®
(XY YL)NCP (X, VL) N C%(Z) when, and only when,

(3.6) Zz‘ [ f fOdo+ [ hg”ds]:o
p=1 I, Lp

where &;; is the alternating symbol.

b

[fs&w xnf},")dq+ feaaﬁxuhg’)ds]=0,
Ly

Zp

)
f
—
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Tn what follows we assume that the domains Z, X, satisfy the conditions which
insure this existence theorem.
Tt is easy to show that if the conditions (3.4) are replaced by

(37) [”a]1=[uu]29 [tuB]lvli‘:[td{i]sz“*'ga '011 F,

.w_here Za are C*-functions then_ the ,conditidns (3.6) become

2 [f—fﬁ‘,”da} jh;»ia;]ﬂ;%dgzo,.
3.8) . p=i. F, o Ls r

2

: 2 |f83;nx;f£(,ﬂ)&a+,f saaﬂxahga)ds]-li f Eaop Xu 8 d5==0.
A=l Iy Ln L

L3

We will have the occasion to use three special problems P (s=1, 2, 3) of plane
strain. We denote by o®; ¥ and & the components of the displacement vector,
the components of the strain tensor and the components of the stress tensor from
the problem P©. S o ' ‘

The problem P® is characterized by the equations

1
@9 =5 @h+ofl),
(3.10) 68 =100 8+ 201 &,

o)

31} o™ +(A®x) =0, o +i2=0 X, (g,p=12; s5=1,23),
B, B % af, N3 ‘

and the following conditions

(3.12) [ﬂi"];=[v5f)]z, [0'&‘3]1 vﬂ=[0§;?]zvfs+gf’ on I,
(3.13) [682 g1, = — A xy 1ty [0 n,),=—A%n, on L,
where o

(3.14) g =i xy,,  P=UP APl (1=1,2).

It is easy to show that the necessary and sufficient conditions (3.8) for the exist-
ence of the solution are satisfied for each boundary value problem P®. In what
follows we assume that the functions v, &8, o8) are known.

4, EXTENSION AND BENDING BY TERMINAL COUPLES

Let the loading applied at the end 2® be statically equivalent to the force
P (0,0, P;) and the moment M (M, M, 0). Thus, for x3=0 we obtain the
following conditions ' :

(4‘1) . ft,xg (?U'ZO,
. - . . z .

4.2) j fayda=—Py,
z
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4.3) s [ Sutsado=dgs My,
z

(4.4) [ eamxateada=o0.
z

The problem consists in éo]ving the equations (2.1)-(2.3) with tile conditions
(2.6), (2.7), (4.1)-(4.4). _
We seek the solution in the form

(4.5) U= — 5 @, x2+ 2 a;o0 ty=(a, x1+a2x2+a3)x3,

where 27 are the components of the dlsplacement vectors from the auxiliary plane
strain problems P, and g; are unknown constants.

From (2.1), (4.5) we get o e .
4.6) €an= 2 46, ea=0, en=ayx,+ayx,ta;.
Using (4.6), from (2.2) wé obtain

tag =4 (@, X, +ay Xy +da3) G+ Z a; Jgfa)s le5=0,
4.7 - L
133 = (A +249) (a, x, +a, ¥y +as)+ A% Z a6 in X,

i=1

The equilibrium equations and the Boundéry conditions (2.7) are satistied on
the basis of the relations (3.11), (3.13). The conditions (2.6) are satisfied in view of
the relations (3.12), (3.14).

From (4.2), (4.3) and (4 7) we obtam thc followmg system for the unknown
constants a;
(4.8) Dejay=eay My, = Dyja;= D5,

where

2
D=3 [ %[O+ 20) x4+ 496D ds,
p=1 I,
Du3=2 f X L9V 2400 4 200) 3 iy
(4.9) A=t :
=3 (042487 5,+39 ) o,

o=1 z,,

Dyy= Z‘ f A 42 ﬂ(p)+ AP e g

p=1 I,
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TLet us prove that the system (4.8) uniquely determines the constants «;, We use
a similar procedure to that in [8, 9}
The elastic potentials corresponding to the considered materials

1 i
‘(4 10) W(ﬂ) (u) = ? [tij eiJ]p = ? A'(ﬂ), Cor €55 -+ .u'(p) eij eij . (P : 1» 2) >

are positive definite quadratic forms. Let us consider two elastic configurations
1 !

r r t tr I
{u}, €, 113} and {u}, e, £;;}. H we denote

’ 1 oo 1 it ‘ P
{411) W(D) (u , un) — _2__ [tij ei:’f]p = ? A} e, e”_‘_.u(ﬂ) €,;€155
then

(4.12) Wo (', w'y=W® @, u'), W wy=Www).
From (2.3), (2.4), (2.6), (4.11) and (4.12) we obtain

2
4.13) 2f W', u'") dv=2 2 [ wo @, v dv:f tyu} do= f t) udo .
R p=1 R, R
Obviously, the total elastic potential is
. 2 1
(4.14) U= f‘W(u)dw= Z f W“”(u)dv=7-f i de.
R ) p=1 Rp aR
. The relations (4.5)~(4.7) can be written in the form
. 3
(4.15) i Z (I 'H(“) e[_r_ Z as elj’ tiJ': 2 a-‘ tsj') v
- s=1
Tt is casy to show that the total elastic potential is given by
{4.16) ‘ U=U,;aa;,
where
417 o .Ui-jzf WS,y do =
R ‘ .
From (4.5), (4.7) and (4.15) it follows that we have
1 ’ i s
@19 W =g Pog®, =l W=, D=L,

19=0, (D= +24Nx,+ A0 ,;;I(;;})', (=104 244 450 on x3=1,
and

(4‘19) t,gs)=0, u(:f)r_-O, us):'vg’) on, xl‘l =0,
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Using the boundary conditions (2.7) and the relations (4.17), (4.13), (4.14),
(4.18), (4.19), we can write

22Uy, = f £ 4D do= f 1M yM dg = f tUD do=ID,
22D+ B (1

(4.20)
2U12 = f t‘(l)u(iz)dﬂ'zlpiz .

2R
In a similar way we can prove the relations '
(4.21) S 2U;;=1D,; .
" Taking into account the relations (4.21), (4.16) and (4.14), it follows that
422 ‘ det (D;;)#0,

so that the system (4.8) uniquely determines the constants a,. The conditions (4.1)
and (4.4) are satisfied on the basis of the refations (4.7). Thus, the problem is solved,

5. TORSION AND FLEXURE -

Let the loading app-lied at the end 2@ be statically equivalent to. f,he force
P (P, Py, 0) and the moment M (0, 0, M3). In this case on the plane x;=0 we
have the following conditions:

(5.1) [ tusdo=-P,,
i p
(5.2) [ ts3d0=0,
X
(5.3) [ xetssdo=0,
x
(5.4) v f 33,15 Xa t‘gg do"= ;'M3 .

The problem consists_in solving the equations (2.1)-(2.3) with the conditions
@.6), 2.7, (5.1-(54).
We seek the solution in the form

1
U= — b, x3— 13453x5x3+x3 2 b0,

6

j=1

(5.5)
1
U=y (bl_ Xy by X%y +b) X2+ F(xy, x,),
where {” are the components of the displacexﬁent vectors from the auﬁiliar}; plane

sirain problems already considered in Sect. 3; b;, v are unknown constants a;}d
F is an unknown function.
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From (2.1), (2.2) and (5.5) we obtain

tup=Al }(bxx1+bzxz+bs)x3 wp T X3 2 b, Gﬂ;),

=1

(5.6) faz = u1#) ( «—Eapa TXgt Z b, ‘vm)

3
t33= QO+ 200 (b, X, +b; %, +b3) X3 + 2P x5 D) byeld)  in 2,

Jj=1

Obviously, the conditions (5.2), (5.3) are identically satisfied. '
Using the last of the equilibrium equations and the conditions (2.6), (2.7) we
can write

(5.7) frae,da f(z,,a+x ta, i)da—f[(x tam), ot Suss, s]do= fx 133,340

Taking into account (5.6) and (5.7) from (5.1), we obtam '
(5.8) Dyjbj=—Fy,

where D,; are given by (4.9).
On the basis of the relations (3.11)~(3.14) it follows that the equilibrium equa-
tions and the conditions (2.6), (2.7) are satisfied if the function F satisfies the equation

(59) | | (.u(ﬂ)ﬁ‘, a),m = _p(p) in Ep s

and the following conditions

5.10 ) oF (2) 8F+k
(' ) [F]1=[ﬂ2, nu: av_.lu' av on F;

aF -
(5.11). .u(")%;=m o on L,,
where

3

P = — { o (ga 58 TXp— Z bjf,g))] (120
3 =1 * )
x(by x4 +b2x2+b3)+2(") Z byl

(5.12) i=

ke (,u“) _ﬂ(z)) (saﬂSTxﬂ — j bj‘l)&")) Vo s

J=1

- 3
m) = e} (Ea,,s TXp— 2 b ,-'z)g”) fy
i=1

The necessary and sufficient condition for the existence of the solution of the
boundary Value_‘problem . 9)—(5.11) is [7] '

Gy 2 [jp("’ do + fm<ﬂ>dsj fkd.s'

p=1 Zp
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Taking into account (5.12) and the divergence theorem, we . obtain

2

(5;14) 2 {fp("’ do -+ fm“’) ds]-i- f kds=Dj;b,;,
2 g .

p=1  Z,
where D5, are given by (4.9). _
The condition (5.13) is equivalent with the fo]ldwing:
(5.15) Dy b,=0.

From the system (5.8), (5.15) we uniquely determine the constants ;. In order
to determine the constant v we mtroduce the torsion function ¢ (x,, x;) which
satisfies the equdtion

(5.16) ‘ (P, 0), p=tugs (5p ), 0 Z,;

and the conditions

dy dy
(G170 Ioli=Iok, u(”3—=u‘” oy THO = Nepsxgv, on T,
g

(5.18) .

= Expga Xg My _On Lp.

It is easy to show that the necessary and sufficient condition for the existence
of a solution to the boundary value problem (5.16)-(5.18) is satisfied.

Let us introduce the flexute function y by the relation
(5.19) F=tp+y.

From (5.9)(5.12), (5.16)(5.18) and (5.19) it folloWs that the functlon W satlsﬁes
the equation

(5.20)

3
(Y ) = ...[”(o) 2 bj'vf)],a'—(/l(")+2y("))(bl X1+ by x5 +by) — A0 Z b;eld,
J=1

i=1

and the conditions

oy ay
52D leli=Wl, #P =@ — (- #(2))257)(’)% on I,

(5.22) 2 b, vwn on L,.

In what follows we assume that the function ¢ and W are known., Frorn (5.19)
and (5.6) we obtain

} 3
(5.23) tas =T (9, a—Eups %)+ 1O (v, Y b))

j=1
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From (5.4) and (5.23) weé get
(5.24) _ rDe= — My —M¥,

where D is the torsional rigidity

) ,

(5.25) D=3 [ 193 x, (9,5~ gz X} do,
p=1 Z,

and

M*= 22: fy(’;)amm Xq (u/,ﬁ+ j bJ-'Z)E;") do
o=1 3, : =1

As in the case of homogeneous bodics [10] we can prove that D>0 so that the
refation (5.24) determines the constant 7. Thus, Saint-Venant’s problem is solved.
The case of piecewise homogeneous cylinders was studied in [10].

6. (GENERALIZED SAINT-VENANT'S PROBLEM

We shall now consider a generalization of the preceding problem to the case
when the cylinder is subjected to body forces and to surface tractions on the lateral
surface and to appropriate stress resultants over its ends. The problem of loaded
homogeneous and isotropic cylinders was first undertaken by Arimanst [{1] and
Michery [12] and was developed in various papers (see, €.g., [13, 14]).

In this case the equilibrium equations become

{6.1) ' i+ P=0  in R,,
where f{* are the components .of the body force vector.

On the lateral surface of the cylinder we have the conditions
(6.2) [tatal, =57 on B,,

where B, are subsets of B and correspond to the two materials.
As in [9] we assume that the body forces and the tractions applied on 1 the lateral
surface are polynomials of the » degree in the axial coordinate xs, nam_el}{ .

r

(6.3) O P= D) PR, x) A,
. k=0
(6.4) = Z P (01, %5) 5%,

where Fif) and p® are prescribed functions which are supposed to belong to C*.
Let the loading applied on ¢ be statically equivalent to a force P (P;) and
a moment M (M;). Thus, for x;=0 we have the following conditions

{6.5) o ' f 'tuﬁ do=—P,,
X
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6.6) [ tsade=—P,,
xz
(6.7) fxat33dazsaﬁ3Mﬂ’
z
(6.8) [ bupa Xy by do=—M;.
z

The problem consists in finding a solution for the equations (2.1), (2.2), (6.1)
which would satisfy the conditions (2.6), (6.2), (6.5)-(6.8).

Let us denote by (A) the problem of determining a solution for the equat:ons
2.1), (2.2), (6.1) with body forces
(6.9) SO=FR (50, 5) x5,
which can satisfy the conditions (2.6), (6.5)-(6.8) and
6.10) andy=p$) (x1, )%y on B,.

In (6.9) and (6.10) n is a positive integer of zero and the functlons FP, p® are
prescribed.

Obviously, il we know the solution of the problem (A) for any » then, according
to the linearity of the equations, we can determine the solution of the initial problem.
We denote by B® the problem (A) for #=0 and by B® the problem (A) when
n=s5(s=1,2,3,..,r) and P;=M,=0. If the compomnents of the displacement
vector from the problem B (k=0,1, .., r) are uy, then, the components of the
-displacement vector of the initial problem are given by

{6.11) . _ ui=2 . -
k=0

In order to solve the initial problem we make use of the induction method.
In Sect. 7 we shall attempt to solve the problem B, In Section 8 we shall establish
the solution of the problem B"*%) once the solution of the problem B®™ (with
P,=M;=0) is known.

7. THEORY OF UNIFORMLY LOADED CYLINDERS

We assume that the body forces have the form
(71.1) f(")mG"’) (x1, x2) in R,,
and that the COﬂdlthllS on the lateral surface are
1.2) 0 [ty =pP(x1, %) on B,.

In this section we establish a solution of the equations (2.1), (2.2), (6.1) which
can satisfy the conditions (2.6), (6 5)-(6.8), (7.2), when the body forces are given
by (7.1).
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Taking into account the results from [9, 13], we seek the solution in the form

1 o1 1 I

— .2 —_ 2
U= —?aals—*ﬁ*baxg TR o A X — T30 X X3 2 Ceaap Xp X3+

3
. 1

+ Z (ak”_l'bkxa +?Akx§)"’g‘)+%(x1: x2),

(7.3) =

1 .
uy=(a,x,+a; x2+a3)x3+?{bl Xy +byxsHb)x;+

+?(A1 X1+ A X, +_A'3)x_g +F(x1, X3)+ X3 P (x;; Xa),

where v are the components of the displacement vectors from the auxiliary plane
strain problems considered in Sect. 3; v, F, @ are unknown functions and a;, b,
T, A;, C are unknown constants. o ' i '

From (2.1) and (7.3} we obtain

1
€ig=" Z (a;+b X3+ — 3 A; xs)s")+yaﬂ,

74 2e53=F o 7"830!11 Xp+[D,a CgSaﬂ xﬂ]x3+ Z (bJ+AJ‘ xs)ﬂm
. i=1 .
€33l_-al'x1+q2 xz+03+(blx1 +b2x2+b3)x3
1 : oo :
+5 (i x+ Aa X, + 4A3) X5+ @,

where ‘

(7.5) , 270s =" pH0p,us

and &) are given by (3.9).

The components of the stress tensor have the expréssiions

| :
Lo = AP [al Xy +dy Xo s+ (by Xy +by 3, +D3) x3+ (A1 x; +A2x2 +A3)><
2 1
Xx%] 513+£'(p_) @61‘3'{' Z (aj+b_,- Xa +EAJX§) Jg‘?—l-d'uﬁ,
. o 5 ,

. 3 .
tma_#'(p) [ "—sz'saﬂ xﬂ+(@ Cﬁgaﬂxﬂ) x;;+ 2 (bi+A,-x3) 'UE;)] 4
(7.6) i=1

1
faa= (’1(9)'1‘2#(‘0)) [01 X +a x2+a3+(b1 X, +b, Xz +b3) x3+ (Ax, +

+Ay X, +A5) x§]+(ﬂu(")—i—2,u(”)) P+
3

- ) 1 ' '
+JL(")'2 (a b x5+ 5 A xs) s"’+l(”)y

i=1
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where
(1.7 ' O =APy,, 5@ +24 1os.

Taking into account (7.6), the equilibrium cquatlons lead to the following equa—
tions: - :

7.8 o Oup, g+ HP =0,
(79) (/'t(p)E a_t), o :g(lﬂ 3

- (7.10) - (,u(”)d)’u),a=h(") in 2, i}
where

. . 3
HEO'=GP (1D @) (4 fhD D o g2 Crgyp 05+ 4@ 2 Ao,
L, ) J=1
80 =83, (W) x) ,— Z b [ o) 4 A0 D]
(7.11) C A=
‘ o ‘ — (XD +2u) (by X, +b, xz +b3)—GP,

) = Ceg (149 X5} o — Z A (O o)+ AP 50—

i=

— (AP + 240 (A %1+ Ay X5+ A3)
The conditions (2.6) are satisfied if '

{7.12) .l = o]z, loush .Vﬂ = [Uars]z vzt (1(_‘2) — /1»(1)) !ﬁva s

w OF _ L OF 5 oan 3
(7.13) [Fl.=[Fl,, & W= H W‘i‘(,u( = h (Bex.s:s Txp— 2 ijf,”) Yas
. B i=1

S SN o 3
A(114) [9]=]P]. 3 ﬂm-‘”g,;“ = ) oy + () —it(z))(ﬁaﬁa Coxy— 2; Aj"g)) Ve
L | : : o ' , S on I
From the conditions on the lateral surface (7.2) we obtain the followuag boundary
conditions:

(7'15) [aoc.ﬂ Hﬂ]ﬂ:Pm"),
(1.16) w02 oo

an ’
7.17 ' = u —aﬁ:K(”) on L

© dn >

where
(7.18) PO —=p® _ () q;,;,
(7.19) o= PPt u“’) (783 s Xp = Z bﬂ,(n) L

J=

(7.20) K(ﬂ)_ e (C,;M Xy 2 A vm)
f=
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Let us consider the boundary value problem (7.10), (7.14), (7.17). The necessary
and sufficient conditions to solve this problem reduce to

(7.21) D3iAI'=03
where Ds; are given by (4.9). Let us now turn to the plane strain problem (7.5),

(7.7), (7.8}, (7.12), (7.15). The necessary and sufficient condijtions to solve this problem
reduce to )

¢

2

D [6,do+ [ oD s} + [ 13,5 do=0,
(722) p=1 Z, Ly z
2
2 { f Ezap Xa ngp)d0'+ f E3ap xap%’)ds} + f Sagp Xz f,.;3,3 da=0.
p=1 X, . Lo . 3 T

On the basis of the equilibrium equations we can write
(7.23)  faza=lua s+ X (fis;+ G 3=tz tXalia,1),5=
_ . =[(Xq f.us),ﬂ‘f"?ca t33,3), 3= (Xatp3,3) 5t Xul33,33
Using (7.23) and (7.17) we have

(7.24) f taa,sdazf X tss,asdf}',
z E

so that the first two telations (7.22) become independent of &. Taking note of
(7.6) and (7.24) from the first two conditions (7.22), we obtain

. 2 '
(7.25) Dudi—— 3| [ 6@do+ [ pPds),

a=1 Z, Egp
where D,, are given by (4.9). The system (7.21), (7.25) uniquely determines the
constants A,. In what follows we assume that the constants A, are known, Let us
determine the constant C. We introduce the function ¥ by the relation @ =¥+ Co
where ¢ is the torsion function. From (5.16)~(5.18), (7.10), (7.14), (7.17) it follows
that the function ¥ is independent of C. It depends.on the constants A; but these
are determined, We consider the function ¥ to be known. From the last of the
conditions (7.22) we obtain
2

(7.26)  CD=-— 2 {fsamxa(?g’)da—l- fgilmﬁxap,('jp)ds‘l'
i Ly

p=1 Z,
3
+ f E3ap Xa 1P {Y’, o 2 Ajwf,j)] dcr},
Zp Ji=1

where D is the torsional rigidity. The constant C is determined by (7.26). In what
follows we assume that the functions #,, o4, ® and the constants 4;, C are known.

Let us consider the boundary value problem (7.9), (7.13), (7.16). The necessary
and sufficient conditions to solve this problem reduce to

2

(7.27) Dyb=— M| [ 6Pda+ [P0 as}.
Le

p=1 ZXp
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Let us now study the conditions (6.5). We can write

(7.28) [ tusdo= [ ltua+ X, (tis, 1+ GP)] do = f Xalss,sdo+
z x

+ Z {fx G do + f xap{")ds}

From (6.5), (7.6), (7.28) we obtain
5 S
(7.29) Dy by=—P,— 2 { fxa G do+ fxapg’)ds}.

The system (7.27), (7.29) detérmines the constants b, From (6.6), (6.7) and (7.6)
we get

(7.30) . Diya;=s

where

2
Sa=t30g My — 2 [ %[00+ 26P) @419 3,,1do
(7.31) o=t %

§3= (A(ﬂ)+2ﬂ(ﬂ)) &+ 1@} Yy ]
p=1 I, - . .
The constants ¢; are determined by (7.30). Let us introduce the function A by the
relation F=A+1p, where ¢ is the torsion function. The function A is independent
of 7. We can consider the function A to be known. From (6.8), (7.6} we obtain

(1.32) M, — Z [ Eaupx, 1 [A + Z b 'v(J)] do,

. op=1 I

where D is the torsional rigidity. The constant t is determined by (7.32).

8. RECURRENCE PROCESS

Let us establish the solution of the problem B®@+1) assuming that the solution
of the problem B™ (in which P;=M,=0) is known. We denote by u;, e}, 715
respectively, the components of the displacement vector, 'the components of the
strain tensor and the components of the stress tensor of the problem 8™ and by
#;, €5 4;; the analogous functions of the problem B®+1). As the solution of the
problem B® is known for any F%, p{?), we can find the solution of the problem
B® for fP=F, (%1, x,) x4 and {P=p¥) |\ (xy, x,) x5. Thus, the problem can
be presented as follows: to find the funciions #, which satisfy the equations

IJ' J+F )(x]:xz)x"+1 03
(8.1)

tij:l“’}e,réij+2u(")e,-j, Zeij:ui,j+uj,i in ’Rﬂ
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and the conditions

(8.2) [wli=lwlss  [five=lhad2ve on I,

(83) {t:a"a]p )(xli x2)x"+1 on Bp’

(8.4) f t;s do= f g Xjliz do=0 on X
x

when the solution of the equations

) £, A FO (x4, x5) X5,=0,
(8.5 . e .
(=20 &8, 5+ 24P €, 2ep=up Huy, 0 R,,

with the conditions

(8.6) [ =0ls,  Fhlive=llve on 1T,

(.7 [thn.),=p? (x1, x2) x5 on By,

L fti'ks do=0, f EiieXj 1:3 do=0. on X0,
x . I

is known. In the above relations F{® and p¥ are prescribed functions which belong
to €. We seck the solution of the problem (8.1)«(8.4) in the form

ioas

" (8.9) o | | (n+1) U ul dx, +-z)i],

where v; (X, X5, xs) are unknown functlons The components of the stress tensor
are given by

8100 tu—(n-!-l)[ f 15 dva K
where
(8.11) = 9, 6+ 269 vy, 27=0 510

kg?:j‘(m MZ (xls X2, 0) 5@15 » kg;}:ﬂ(p) u:(xla Xz 0) E]
(8.12) .
K = (A2 2PNy s (%1, %2, 0).
By using the relations (8.5), the equilibrium equations reduce to
8.13) 7 FXP=0  on R,,

where

(8.14) | 2P (50 %) =k ot 11 (%1, X2, 0) .
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The conditions (8.2) lead to the following conditions for the functions »; and x,,

(8.15) [l =ll,, [Miolt Va= [Tl Vo b5, on IT
(8' 16) [ﬁm na]p - T(ip) on Bp s
where
(8.17) k=i (xy, x0)= (k- kD, P =t (x,, X)=—k®p..
‘From the conditions (8.4) we obtain
(8.18) f My do=—T,, fs,.j,(xj s do= —N,,
z x

where

) 2 i
(8.19). 7= [KQdo, N= D [ e, K do.

p=1 25 p=1 Z,

Thus, the functions v, arc the components of the displacement vector in the

problem. characterized by the equations (8.11), (8.13), (8.15), (8.16), (8.18). In this

pr

oblem the load is independent of x5, If x, were to vanish, then this problem would

reduce to the one solved in.Ssclion 7. However, it is easy to see that, for Kk #£0 as
well the solution is (7.3). Moreover, in this case the solution has the form (7.3)

in

which A;=C=5b,=0, ®=0. Thus, the problem is solved.
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STRESZCZENIE

PROBLEM SAINT-VENANTA DLA NIEJEDNORODNYCH 1 SPREZYSTYCH CIAL
STALYCH

W ninjejszej pracy przedstawiono metodg rozwiazania problemu Saint-Venanta dla niejedno-
rodnych i izotropowych walcow sprezystych, gdy wspdlezynniki sprezysie sg niezalezne od wspot-
rzednei osiowej. Zatozono, ze przekrdj cylindra wypelniony jest przez roine nicjednorodne i izo-
tropowe materialy sprezyste. Zbadano rowniez mozliwosé uogdinienia problemu na przypadek,
pdy powierzchnia boczna walca poddana jest sitom masowym i napigciom powierzchniowym,

PesaomMme
BA,[[A‘{A C3H-BEHAHA 1A HEOJHOPOJIHEIX W VIIPYIHX TBEPIBIX TEI

B macrosmeil paboTe OpeAcTaBiIcH METOM PEICHAA sapgaun Cop-Benana RS HEOMHOPOAHBIX
¥ H3OTPOIHBIX YAPYTHX lmmﬁ,upog,'xorﬂa YHpYTrae rophATACHTE] HE 3ABHCAT OT oCCBO#M KOOD-
mmaare. TIPEINOIOKCHD, YTC CSYeHNe IMIANIPA 3al0NHCHO PASHEIMA HEO/HOPOJHEIMH H n30-
TPOIHEIMH YODYTHEMH Mavepmanami. Mccliemosaua TOXe BOIMOKHOCTE 0DODIIEHERA 33734y Ha
CILY' ‘iﬂﬁ, xoroa Goxosas HOBEPXHOCTD HUAHAOPA HOoXBEPrHEyTa MACCOBEIM CHIIAM H HOBB;]XHOCTHI:IM
HANDSDKCHAAM,
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