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STRUCTURAL DAMPING IN SANDWICH SHELLS

HO THIEN TUAN AND S. EUKASIEWICZ (WARSZAWA)

The basic equations governing the motion of sandwich shells dte derived through the use of
a variational procedure, Structural damping is investigated in the case of a cylindrical sandwich
shell with dissimilar facings, executing axially symmetric free vibrations. The concept of the complex
modulus is used in order to describe the viscoelasticity of the core. The various frequency parameters
of the shell and their associated damping parameters are obtained and analyzed with regard to
the ratios of different layers thicknesses and other geometrical and pliysical properties of the sand-

wich shell. Curves obtained from numerical resulls afe presented: '
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subscript corersponding to upper face, core and lower face, respecllvely.
Lame’s coefficients, : .

curvature radii in «-and ﬂ-dlrectfons respectively,

curvatures, : L

core thickness to curvature radlus ratlo, .

displacement components in o-, f-and z-directions, respectlvely,

‘components of changes of slope in e-and B-dlrectlons respectwely, '

total thickness of the sandwich construction,

thickness of the ~th layer,

core thickness rafio,

face thickness ratio,

storage moduli (for flexure and extension) in o~ and p-directions, re-
spectively, -

Poissen’s ratios in two orthogonal directions, -

storage shear moduli in of-, «z- and fz- planes, respectively,
modulus ratio of the faces, :
modulus ratio of the core,

normal forces in - and f-directions, respectively,

longitudinal shearing forces,

twisting moment, :

bending moments,

transverse shearing forces,

normal {direct) stress,

shearing stress,

normal strains in «- and p-directions, respectively,

shearings strains in «f- and «z- and Sz-planes, respectively,
stiffiiess coefficient of the upper face,
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extensional stiffness of the upper face,

mass of the i-th layer per unit area,

mass of the sandwich structure per unit arca,

miass density of the i-th layer material,

mass density ratio of the core material,

mass density ratio of ‘the face material,

mass ratio of the sandwich construction per unii area,

relaxed {static) elastic transverse_modules of the core,

material loss factor associated with the g-th type of deformation,

wave-number parameter,

Toss factor ratio,

curvature parameter,

transveyse shear‘moc_iulus ratio of the core,
shear: parameter, -

frequency,

., frequency  parameter,
. logarithmic decrement,

damping parameter, -
transposed matrix .-

1. INTRODUCTION

The paper is a study of the _damp_e_d_ vibrations of sandwich shells and follows
the previously published ones {1,2]. This problem was.considered by BiENIEK and
FREUDENTHAL: in [3] and YU.in.[4], however; attention was focussed only on the
sandwich shell of equal facing. In the present piper structural damping is investi-
gated as the function of the fade ‘thickness ratio of the sandwich shell and its curva-
ture. General equations of motion of a sandwich shell of asymmetrical structure
are derived, The_d_ispla}cé}hénté at the hidsuiface of the core chosen as unknowns.
This facilitates the damping analysis, The concept of the complex modulus is used
and three damping -parameters: assoeiated with the: three vibration frequencies
of the sandwich shell are obtained. "= = . :

2. GENERAL EQUATIONS, OF. MOTION -OF. THE SANDWICH: SHELL

The assumptions .are as. follows: T .

1) “The material of the facings as well as'that of the core is considered as homo-
geneous and orthotropic. R ‘

2) A straight line through the _unc}erférmed core remains straight under de-
formation but not necessarily perpendicular to the midsurface of the core.

3) The Kirchhoff-Love's assunﬁptjon'hql'ds' true, only for the facings.

4) There is no normal interaction between-the layers parallel to the core mid-
surface. : Lo s

5) The deformations of the shell are small as compared to its thickness . The
ratio between the thickness h of the shell and its curvature is small as compared
1o the unity.. . ' o

6) No slip will cecur at.the contact surface-between core and facings.
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Shell characteristics and the forces acting on a shell element are presented in
Fig. 1. The deformation relations of the shell used here are derived from [3, 6].
It is assumed that the coefficients of the first quadratic form of any layer parallel
1o the core midsurface do not differ from those of the core midsurface.

FiG. 1

For each face, the strain-displacement relations at its midsurface are

u=A 1w, ;+AB g, A,ﬁ+R;1
2.1 ey =B~ 'v y+ AB ;B + Ry w
ea'm:AﬁlB(B_l‘Ut).a'f'AB'ﬁl(”i'A_l),ﬂ,

- while the curvature and twist changes are

hy=A" (R u A7 W) o+ (Ry "0, — B~  w ) (AB)™1 A4 4,
2.2) Boi=B U Ry v, =B~ w ) s+ (R u— A w ) (AB) 1 B
Bopi=—AB" 1 (A"2w ) g~ BAT (B 2w ) oF
+A(BR) ™ (A7 ) 5+ B (ARg)~ 1(B ~143), o,

where the subscript i=1, 3 refers to the upper and lower faces, respectively.

A typical cross section of the sandwich shell is shown in Fig. 2. Simple geometric
considerations thus give the following longitudmal dlsplacements 2y and v, at
any layer of the core:

u2=(1 +R; ! Z)'HZ a2 Z»

2.3) _
e vzz(l+‘Rgiz)v2—gﬂzz

Rozprawy Inzynierskie — 4
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and the longitudinal displacements u, o (i=1,3) at the face midsurface are
related with those at thé core midsurface
as follows:

Iy _h
”l““”Z'f‘?gaz +_£A Woas
(2.4) )

where
(2.5) Fu=R;'u~g., Enu=Ry'vi—gu,

the sign — corresponds to i=1 and ‘the
sign + corresponds to i=3; the quantities
Eu and g, are, respectively, the Ghénges of
slope in a- and p-directions, while g,; and
gz are the components of slepe changes
produced by deflection and shear deforma- - Fgp2
tion only.

The following relations exist between the. quantities £, and Zg:
Zu=R; ' t~gu, @,:R;lw-—gm; ‘

£.1, 25 are the components of changes of élope in o~ and f-directions. The effect
of the displacements i, and v; in (2.5 ) is usnally small and in the case of a simpli-
fied theory it can be neglected. Thus, we derive the following deformation relations
at the core midsurface: '

eyp=A"" Ilz‘a+(.14,8)'_"1 v, A g Ryt w,

=B~ v, g+ (AB) 0 Bt Ry W,

Capr=A"1 B (0, B, + 4B~ (A" 1) 5,
2.6) e o - '
laa=A"" oo+ (AB™) 4,5 8p2s
hﬂ.Z =B— ! gﬁl + (AB)* t B, cx-g—nﬂ >
hagy=—AB™ (g A7), g~ A" B(B™ gp2) ot

+A (BR,Z)- 1 (A.-l uz)’ B +B (ARH)_I (B_ 1 ﬂz) %~
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On the other hand, the core also undergoes transverse shear deformatlons which
can be expressed as follows:

erzzZ:A—l W oa—8s2,
2.7 .
()ﬂZZ:B w’ﬂ—gﬂz.
As in [1, 2], a variational procedure is used to obfain the basic equations which
govern the behaviour of the sandwich shell. According to Hamilton’s principle,
we have _ .
. LAt
(2.8) b f Ldt=0,

iy
where #, and ¢, ate arbitrarily chosen instants of time and the Lagrangian L is
(2.9) L=V—-K-T
with ¥ — strain energy, T — external forces work and K — kinetic energy

For the i-th layer of the sandwich shell, the first varlatlon ov; is

ﬂtz Ba
@10 o= | f[Na,- Bectt Ny O6pi S, Sesgi-+ oy S+ G Shgt

&1

+ H; Ohyp; 10y (Qau JLEIZI-I-Qﬁl Oeps)] AB do dff;

where the subscmpt i=1, 2, 3, refers to the upper face, the core and the lower facc '
respectively, while _
0, i#Q ,

1, i=2.
The work of external forccs is
LI PR

(2.11) - - ar= f f P 5wABdu g
: o LTI I
since only the transverse load p- is assumed to exist.
The kinetic energy in each layer is
4y By oz .
2.12) Kl"_" [ [ 1w+ @+ 00021 4B d dp e,

¢ By zy

where z,; and z;; are the ‘upper and lower bounds in the z~— direction of the consid-
ered layer.

Replacing u, and o; by (2.3) 1nto (2.12) and, next, intergrating the resulting
expression with respect to z, we obtain :

eIy K= 2} K,—2 f fl Z Yt (0 )+ M ]ABa‘ocdﬂ+

i=1,2,3 B. Gi=1,2,3 °
I

to | [ D we@rai) adua,

ey By, i=1,2,3



484 _ HO THIEN TUAN AND STANISEAW LUKASIEWICZ

where, for external layers, we have

@ gu=A~tw,, gu=B"'w,, i=lor3
because the effect of the shear deformations is taken into account only for the core.
Tt should be noted that the second term of K is the effect of rotatory inertia.
The first variation of the kinetic energy is then
CotL & By

LI}
2.15) f SKdi = f f f Z o 1, (1 Bty 200,40, 20w) AB doc A di—
fo

fo o By I1=1,2 3

» i t, o By '
_Tz_ f [ 2 Yi 3 (g.ai.n égo:i+§m,:z agm)] AB du. dﬁ dt
to @ By =1,2,3

since the virtual displacements vanish at the end points of the arbitratry interval
oISt '

Now, we introduce the expressions (2.1)-(2.7) into Egs. (2.10), (2.11}, (2.13). =
Next, the resulting expressions (in terms of the displacements related to the core
midsurface) are introduced into Eq. (2.8). Since the variation in Eq. (2.8) for all
arbitrary values of du,, 8, gy, 082 and ow vanish, we have the following equa-
tions: -

1) Ny oKy (Na—Np)+5,5+2F, S+ka Ky (Ga—Go) +
o t3
g Gyt (ke )4 2 B H= > itith,0= 75 72 Kea,
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) NpgtFy (V=N +S, 0+ 2Kk S+kp ko (G Gp) +
/3
+kp Gy, p+ ks H), ot 2Kg ky H= Z Y fi‘vr,:n"é V2 kp Gpz, 15

i=1,2,3
F
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3) Gu,a'{'kﬁ (Ga—Gﬂ)_]"H’b'*'gkgH-l'Ezkﬂ Gﬂ a+

, . 1 tr o
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i"; 2 F o tiuy, 12_‘? 7, (o iz _gaz), tﬂ]:
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N o 1
4 G,,,,,+k,(Gﬂ—Ga)+H,,,+2ié,,H+—;~kﬂ(}ﬂ_b+

tz . - ! o "
+ 2 Rk (GGt (ke ) a1 R = Qo=

L[\ - ts
:—wl Z “l'?xl‘i'vt,:ﬂ_'??2(kﬂv2_gﬂ2)s“]'

i=1,2,3
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(214’) 5) ka Nex'{'kﬂ NB+(E:+E=1,I)_E122—E§.¢) (éﬂt—éﬂ)_kﬁ (2éa_éﬂ),ﬂ+
leontJ +Ea (éu_Z(e}ﬂ),b “((a;, a),a_(cn;ﬁ,b), ;,‘*"2 (Ea,a‘}'ZEq rcﬂ +E,vg, b) 19{_
-2 (k, ;(‘I,a“i‘Eﬁ H,b'l'ﬂ',ab)—Qazf"Qaz,b“kn Quz— —kp Qg =

1 _ t
*“Mw.ﬂ-*-? Z yir?{kﬂ ($ut+--€gﬂ),tl+k¢($‘vi+

i=1,2,3
t; f; . i
+—6_- gﬁi), et (? Uy +'€ gaci),arz + (? Y +“6L gﬂl),bt2}+ABP: .
where the curvilinear lengths and the geodesic curvatures are introduced
da=Ade’, db=RBdf,
(2.16) ke=R;', kp=R;',
ko=(AB)"' A4, ky=(AB)"'B,.

Moreover, for convenience the following has been denoted:

N;= Z Ny Nj_—"NJl_Njas

i=1,2,3
S= Z S, S=8,—8,
i=1,2,3
, ) 1
Gj= 2 G.”, GJ=G_}1+GJ°3+E(NJ‘1 tl_st tS)
.17 el -

- fy _
G.j:sz—l_?Nj, G_i:Gjl—GJ'SJ

H= Z H;, H=H1~H3,

izi,z,s
N, . 1
H=H2+?S, H=H1+H3+_§'(t1S1""t3 Sa) :

- (= p)
The boundary conditions also yield from Eq. {2.8) but they are not reported here.
Equations (2.14") ‘are the equations of equilibrivm of the considered sandwich
shell: Tey may be expressed in terms of the shell displacements if the consitutive
equations are considered.
We assume that the stress-strain relations for any individual layer of the sandwich
shelt are essentially the same as those for a single-layered homogeneous shell:

- Eﬁ[ ti 1 Eﬁ'i — *
Ny=—"" eai+? Vma“""fﬂt_vm et |

: —-l_vaivﬁf
(2.18) Ep t, [ -1@( E, ) ] '
=l byt —— ,
N 1= Vet Vs Ep ™y Ve Ep, Vai | €n

Sy=1; Fypy €aps,
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3. GOVERNING EQUATIONS OF A SANDWICH CYLINDRICAL SHELL

e

The shell characteristics are thus (Fig. 3)

a=x, = b=Rf, -

. Ry=o00, Rpy=R=const,
3.0
4=1,  B=R,
ky=ks=k,=0, ky=R™'=const.

The following equations of equilibrium result from Eqgs. (2.14),:

1) Nxx+R IS.H— Z y!tlui,rza

i=1,2,3 L.
2) R™* Ny s+8, +R™ 2Gﬂ‘,,JrR H, 2 ?mvz e
i= l 2, 3
’2
. . '-'12R Tap Y2882,0,
7 e tz . . ti
) Cuxt R H j=0a="7 Fritith, et oy ),

FUR T L T - _
o~ - i
(3.2) 8 R Gy gt o~ Cpa=— 2

E‘[ 2 Tyt p—

. i=1,2,3
2

T (R_l'z’ ~—&p2), 2|

,xﬂ+Qx2 v+R Qﬂz B_R Nﬂ_ l

T —MW 2 2 Z Vi ti [(“"u +— 6 gxi)tt3+

. o f=1,2,3 :

: ‘ o _ t; :
S . CL L+R'1(+‘1’t+?lgﬁi).mz—lfz]‘

Let us consider the case where the faces and core materials are such that

' 5) Gy kR 2G,, g VARV

- Ei s .
(3-3) Exi=Epi=E.:, Exm=m, Var =Vgi =V; . i=1,2,3, Eu,=F5,=0,,
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Moreover, for the sake of simplicity we assume
(.4) ' ViRV, RV =V,

Now, we substitute the expressions (2.1), (2.2), (2.6) ,(2.7) into the relations (2.18),
taking into account (2.5%), (3.1), (3.3) and (3.4). For convenience, we introduce
the new variables

_ 2‘2 _ 1‘2
(3.5) o V2= 82y V2 Ty &2

Next, we introduce the resultmg constitutive equations into Egs. (3.2); thus we
obtain the following equatmn in a matrix form:

(3.6) p Iy {dr}‘l' Esesl {de}=1{L.}, r,s=1,2,3,4,5,

Fic. 3.

where {d,} is the dimensionless vector of displacements
u;

a7 - {d}~r1 i { ~

{L,} is the dimensionless vector of loads
. : ‘ 0
3.8 S {L3=10 1§,
: 0
. IP'/S'i
[m,,] is the dimensionléss and symmetrical mass matrix, the elements of which
are as follows: ‘ ' o

fy
}7111=—id, 1?113:1—93 ., .Tnls':?(l'—'e:‘} ?712)'_5;5, _‘m22=__‘"d,

Myg=1+—= 2 k2 —O03t,  mys = (1 &y m* =

F
6 REp’
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2 t a
UMy =M, —(61—3627()! M35 = *7(14-93 ’"2)5?»
2 5
R’ m55=d*"-3—(1+93 m?) V2,

Py =H g =Ny =Nz =0

Mgy = (1 +0, m*)—

[5:s] is the dimensionless and symmetrical stiffness matrix, with

(3.10)

5 o2 L—v &2
s11 = (L4+n, k+nm) (—a*xT—i‘T TRE OB 3ﬁ2 )
) L+v o2
S12=15 (1 +n, k+nm)—"—2—— m,
. o* i—v 22
Sia=1:*(nm—1) (ax2 + 2 R ),

32

S = =) Raﬁax

.5'15—[1’1 (1+n2k+nm)w+ (rrm -1 VZ] ox’
1-v &2 N a2 )
2 dx? R2ap* [

S22=17 (14+n, k-!—nm)(

. 1+ 12( : 1 kz) a2
Saa =Ty i m 6 R Rf éx °

( kz)(l—v % N s )
R ™ 2 o Rl
Sps=13 [(1+M2 k+nm)R*1+-——(nm -1 VZ] Rap’

8z -y o2 Yz
nz +nm + —4 »

Saa= tl

S =1 o T2 R k
1+v k 2

S3a=L43= > (1 + - ny+ nm) m R

N 2 rl a
S35=1] H(Hm— 1)E+T Var ¥ (L +0m%) Vzi F

. [ k I ' d* a2 Vyz
S““:’I'_(H?”ZJ’”’”)( 7 e | Rzaﬁz ) T4
, 2y d :
Sas=1t] (nm DR +—— +—~(nm +1) V2 ?{EE’

t3 2 2 {
. 55'5‘—“tf (1+H2 ]C-I-?IP’H) R'z'i"—k‘-‘: (nmz—l) (V ‘b}?"'W)'i‘

ré a &
+ 3 4__ 42 + )'
3 (nm +1) v kfl (J’x: Ix? Yey R2 3[;2 |
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Equation {3.6) is the general equation governing the motion of a cylindrical sandwich
shell in terms of the displacements (3.7). In the following section we shall study
only the axiaily symmetrical free vibrations of cylindrical shells,

4. AXIALLY SYMMETRIC FREE VIBRATIONS OF DAMPED SANDWICH SHELLS

For reason of symmetry of the shell deformations, we thus have
(4.1) VZ=\_~'2“_~0,

while the remaining variables u,, #, and a are only functions of the variable x.
Since only free vibrations are considered, we set

2:=0.
Moreover, for sake of simplicity, we assume that:
d*g
(i) the contribution of szz to translatory motions u, and w, and inversely,
2
those of > and 3% wdt? to rotatory motion are negligible;
u, ot 2y, 2
(ii) the confribution of 3;‘22 to - transverse motion w and that of R tor

longitudinal motion u, are also negligible.
Within the above-mentioned simplifications, the 5-dimensional equation (3.6)
turns into a 3-dimensional and homogencous one, namely:

(4-2) . 2 {m.] {‘?r}+ [s:s {dr}= {9} ,  hs=1,235
i
(4.3) {dey=1d1;
‘ w

_ 2 T 2
m}_1="“d; Hignp= — d_?azk b ijEd'—_g“(1+93n13)—_'

(4.4) ax* 7

Ml =Hy3 =33 =0,
2 92
51y =1 +#, k4 nm) tf—ax—z', §1a=(rm—1) tf-ﬁ’
] -l I ) R a2 a
S1a= I_(I +r, k+ nm)vf+-5(nm -1 tla_x?'m g

2
5 _ 4 y}'ﬂ ,
ax k

k
“.5) S22=(1+ ?n2+nm)tf

1 1 , & a
§23 7= (”m_l)T+2?xz+'E”(l+”’n2) £y ox? t oy
2 -

Jx?

szsa=(+n k+nm)t{ R=?tvt; R~ (nm* —1) ¢ +

4. 2

1
+?(i+nm3)tf o o pReal
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Let us now include the mechanical loss associated with the deformation of the
core material through the use of complex material characteristies. Since only complex
moduli are here considered, we have .

a;l,:Gz (1'!'[#0 81)3

@6) V
EZ :Ez (1 +Lf.l0 82) >
where o
Hy Hy
4.7 - . 2 T "_, =
{ ) £y ito &z o

with jtq — the arbitrarily chosen material loss factor, y, — the material loss factor
associated with the transverse shear modulus, iz — the material loss factor asso-
ciated with Young’s modulus.

. In Eqs. (4.5) the following substitutions are made -

fyi=ny=n, (1 4+ &)
4.8) -
T Vxzi= )‘;xz”:yxz (1 + g 8,1)-
Let us consider the case of a cmnposutc shell sn:uply supported at its free edges
(i.e., at- x=0;1). :
According to the boundary conditions, the following forms of the shell —
displacements may be employed: :

: . b W qnx 1.
@9 - g ) Gacos T €,
q
gux
w= 1/1’1I/Visn1~ I_el‘”',
q.
qmly 23- st
where i
4.10) _m:&)+Is, ,
. ;o
@1 -~ A=gnt

i
— wave number parameter. \
Let the expressions (4.9) be introduced in Eqs @. 2)

(4.12) - (B~ O M) D) =0},
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where

2
(D} ={ug, Gpyoway, Myg=di™t, Mzzz(d_?'gzk))b_l,
A
Mj3= [d +3" (t+3 ms)} A3
8= —(L+nm)—kn,,
3‘122812=(1 —nim), :
S a=vt (14-mm) +0.5 (1 —um®) +vkn,,
{4.13)
" 4 k.
82 = — (L +nm)~ ?'[/1 _"'é"f’t‘z, .
.,§'23=vr(nm_—-‘l);()_5_(I+;1.n1,_2)+.2.|:y1', .
. - . B . .v
S33= —{rz (U+mm)—vr (nmlz—' 1+ T (A +nm® +ky, +k? nz},
- ty . 1—y2 éz
N = = —_
AT—A ? T R Amt W= /-1' EJ;’
with ' '
{4, 14) : g_'z_pc'oz

Tt is seen from Eq. (4.13) that if nontrivial solutlons for U, G, and:'W, are to exist,
the determinant formed by the coefficients of these unknowns must vanish, e.g.,

4.15) det ([S,,]—- @ [M,])=0.
Thus we obtain the “frequency” equation
{4.16) Qo Q%0 Q% +0, 2—dy =0,

where aqg, 4;, ¢5, a3 are complex coeﬂiments which can be obtained on solvmg
Eq. (4.15). Moreover, we have from Egs. (4.14) and (4.10)

“1mn __ s'2=poszzpw2 (1 +_21?0—),
where 1t has been assumed .
. (s LI
4.18 Co =] <&l
@19 B

Introduocing the frequency parameter
(4.19) . e Q=pwt

and the logarithmic decrement.

- : U .. I 5 -
(4.20) d=2n-—
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we obtain .
Y é
.21 0=0 (I+I;)
or
(4.22) Q=0 (3 +1uy 6%,
" where
4,23 oF = °
{4.23) = ‘

is defined as the damping parameter.

In order to carry out the calculation of the shell frequencies and their associa-
" ted damping parameters from Eq. (4.16), we set up from [7] a suitable procedure.
First, we identify the shell frequencies as follows: the lowest frequency corresponds.
to the flexural mode, the highest frequency is predominantly of the thickness —
shear type, while the remaining frequency is predominantly of the extensional type.

We denote the frequency parameter and its associated damping parameter,
respectively, as corresponding to the flexural, extensional and thickness-shear
types, by 2,, and 5:’,, £, and 5: Q, and (5:. Let us note that all these guantities are
positive values.

@24) D=0, (141 8y), Q=21+ 8), &=0,(+I18),
where, as it follows from the above remark '
(4.25) Q,<Q,<2,
Viete’s formulas give from Eq. (4.16)
@, 4+0,+8,=a,fa,,

{4.26) Q. 82,462, 82,+2, O =y/a0,

S 0, 0, Q,=aa/a,.
By substituting Ecis. (4.24) and (4.17) into Eq. (4.26) and assuming
(4.27) He (B 83+ 85 0y + 8, By <1

and, after equating in each equation the real part in the left-hand side member
to that in the right-hand side member, we obtain

Q.42+ 2,=a,]a,,
(4.28) Q, 2,+92,2,+02,2,=as/a,,
Q, 2, Q,=as/a,.
Likewise, a similar procedure for the imaginary part in each equation gives
i+ Kyy 05+ Ky Op=1y (14 K33+ K13),
(4.29) (L+K12) 85+ (1 +Ky5) 0f +(Kiz + Kiz) 6y=12 (1 +Kis+K12),
8o d+00=1,, \
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where

'Qw _ Qw K : 'Qu
.(2" ] - 237 Qg )

(430) Ky,= Hy=dapla;, j=1,2,3.

“The set of Eqs. (4.28) yields the frequency of the sandwich shell
(4.31) _ ag 82 —ay; Q%+ a, 2—a,=0.
Solving Eqs. (4.29), we obtain .
_ 5: =[(1=Ky2) 10+ (Kps — Ki3) (13 Kia—12)1/(1 — Ky3)%
N 7 x(1+K13—K;5—K;a),
“4.32) "5:=(’3’2e"711c"’13 Ko)W1+ K 3Ky — Kz,
5; =111 (K12 —K13) + (13— 1120) (1‘ —E)l(1—K) (14K 3 — Kas — Ky 3),
‘where '
Hie=ty (1 +K23+K13):

{4.23)
Nze=t2 (1 +K 3+ K;2).

5. NUMERICAL RESULTS

- In the present section we present the results for the case of 'axially synmetric
vibrations only.
For a shell of thin core and face thickness numerical results show that its three
natural frequency parameters are separated far apart, as this can be seen in Fig. 4.
"Therefore, it is pertinent to point out that in this case the computanon of the vibration

~characteristics may be performed by an .
approximate method as outlined below. = -
We assume 10b

(5'1) K13 ‘<<K£2< 12 K13_<K235 K23 <1 .

Then, by applying Eq. (5.1)to Eq. (4.28) 7 -
we get the approximate formulas for

frequen01es . e ot
s ‘ as o —_——
Qw= - L] Qll= - L] 1573 H 1 1 1 -
(5 2) az - a1 - a1 N 10 @y m
4y Rys. 4
0 =~— ¥8.
a .
ao

Next, by considering Egs. (4.32) and (5.1) we obtain
. ‘5:2'?14‘1(23 (3 Kya—92),
{5.3) 5:=ﬂz—7]1—K12 H3s
5::=’11 Ky, +13—13,
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—-the approximate formulas of the various damping parameters. We will use
mainly Egs. (4.31) and (4.32) in the computation below. Geometrical parametfers
of the sandwich shell are chosen as follows

tyfa=1/50, (1, +1,+13){2R<1/20,

the ratios m=1,/t, and k=t,/t; are varying within the ranges (0.05; 15.0) and
(0.02; 10.0), respectively. :

For the sake of simplicity we assume that the material of both facings is the
same, €.g., ‘
. 11=E3/E1=1, . 03=53/'}’1=i
and the core material characteristics are as follows: nzzEZ/E;:O.O and 0.05 (for
the case of “‘weak” core and “rigid” core, respectively),

02=y:2/'))1=0.1, E

where yy, y, are, respectively, the mass densities of the upper face and of the core;

g =8=1,

where p,=0.2. o
Two ratios of the core transverse ‘shear modulus to the face Young’s modulus

will be considered:

G,lE;=1/100 and -~ 1/10.

Therefore, since A=n* (t,/a)* =0.04, there two values of the shear parameter axe
yielded: ‘

1-y* G, ; .
V1= B, ='2;5. apd 25.0,

where /1.=0'..3. ‘ e - S P
Numerical results are presented in figures as follows, Figure 5 shows the effect-

of the face thickness on the various damping patameters 0%,, 3%, 5*_'“, in a sandwich
shell, within the range of m from 0.1 to 10.0.
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1. The damping of thickness-shear type is the highest in magnitude among the
three types of damping and differs scarcely from one, except for too large m.
Within this limit, the increase in face thickness ratio m diminishes this type of damp-
ing but in rather slight manner and the dependence (5: upon m may thus be plotted
by a decreasing straight line.

II. Through the variation of the face thickness, the dampmg of extensional
type, identified by 4, decreases at first to a very low in magnitude minimum at ¥
m=1 {e.g., when the plate has a symmetrical structure) and next increases for
further increase in m. This minimum-peak has a very “local” character because
the damping parameter 5: suddenly decreases to very low in magnitude values

~only in the neighbourhood of m=1.0. It should be pointed out that this minimum-

peak agrees closely with the results obtained by Yu from his theory of sandwich
plates and shells of symmetrical structure [4]: Yu, deducing from his approximate
formulas, asserted that in shells of symmetrical structure &, =0, e.g., the shear
damping of the core is seen to be totally ineffective for the exteiisional vibration
of a sandwich plate or cylindrical shell. '

1. The variation of the damping of the flexural type (1dent1ﬁed by J,,) versus

~ the face thickness ratic m has the typical form mentioned in [2] for sandwich plates.
For given A, v, n, and k, an optimum structure m,,, may be reached providing
a maximum damping of flexural type.

IV. The contribution of the modulus in flexure and in the extension of the core
(n2+0) is most effective for the damping of flexural type and for that of extensional
type, while for the damping of thickness-shear type this contribution is all but
ineffective, as illustrated in Fig. 5. The minimum-peak of the extensional type damp~
ing seems then to disappear completely. '
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V. Figure 5 shows also the effect induced by the shell curvatu_re; identified by T,
on the various types of damping. The decrease in curvature will, in general, slightly
diminish the damping of thickness-shear type and that of extensional type (except
at m=1 where the minimum-peak strongly increases) but will,improve noticeably
the damping of flexural type. This type of damping would att:)iin maximum values.
only if -the curvature vanished, e.g., when the sandwich shell degenerates info
a sandwich plate (see also Fig. 6). For a sandwich shell of asymmetrical structure
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the two types of damping, 6. and &, may be considered as independent of the
curvature change.

VI. In general, (Fig. 7.), the thicker the core, the better the damping of extension-
al type (%) and the damping of flexural type (8,). But the rule is opposite for the
damping of thickness-shear type although the decrease is rather negligible when
the core is not too thick. At small values of core thickness ratio k, the two types of
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damping J, and 4, are all but the same. Only from a certain value of k does the
difference between these two types of damping become stronger; the damping
of flexural type then increases faster than that of extensional type.

VIL Figure 8 presents the relation between the core thickness & and the face
thickness ratio mi., optimum with respect to damping of flexural type, at fixed
shear parameters y, in the case of sandwich shells having a “weak” core [2]. This
relation is plotted by “mean’” curves which are similar to those obtained for sandwich
plates with.a “‘weak” core. In the considered cases it is obvious that in. general ‘the
optimum structure is the asymmetrical one. Co

VHI. The difference between the damping of flexural type optimuin structure
with that in symmetrical structure is shown in Fig. 9. It follows from the considered

cases that only for a sandwich shell with a thick “weak® core may the symmetrical
structure become an optimum one,
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STRESZCZENIE

TEUMIENIE STRUKTURALNE W POWEOKACH WARSTWOWYCH

Btosujac metode wariacyjna wyprowadzono rownania rzadzace ruchem powiokl sandwiczowej,
Thumienie strukturalne zbadano szezegolowo w przypadku sandwiczowej powloki walcowej o réznych _
warstwach i wykonujacej osiowo symetryczne drgania swobodne. Do opisania lepkosprezystych
wiasnosei wypelniacza wykorzystano koncepcj¢ zespolonego moduhr. Uzyskano i przedyskutowano
réine parametry cz@stosca powloki i odpowiadajgce im parametry tiumienia w zaleznosci od sto-
sunkdw roznych gruboscl warstw oraz innych fizycznych i geometrycznych charakterystyk powloki
wypelniacza, Wyniki obliczer numerycznych preedstawiono w postaci wykreséw.

Rozprawy Inzynierskie — 5 -
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Peztome

CTPYKTYPHOE JATYXAHHE B CIOHCTBEIX OBOJIOYKAX

TIpuMeAsA BAPHAUAOHHbIN METON, BRIBEZEHB] YDABHCHHUA OMHCLIBAIOLIEG HBIKEHHS CIIOHCTON
oBonowmc, CTPYKTYPHOE 3aTYXaNHe UCCIeNOBAHO TIOAPOGHe B CiyIac CIIOMCTOH MAMAHAPATECKOH
OBOIOMKE € pasHBIMH CHOSMHE M COBEpMAromeil OCeCHMMETPHYCHbIC cROBONERE KoneGaHmH..
JIna OnMCaHAA BASKOYIYIHUX CROMCTR ANpPA HCTOAL30BAHZ KORIEMIUMA KOMINEKCHOTG MOYTA.

Toayyensl @ 00CYXRAEHEI PasHbie TapaMeTpLI yacYoTH OBOIOMKHE H OTBEYAIOLUAE EM TAPAMETDhL

3aTYX4HAA B 3aPACEMOCTH OT oTHomeHNt pa3ALIX TOMDHH CNOEB, a TAKKE APYTHX (i)HSK‘IBCKHX

H TCOMETDHHECKHX XaDAKTEPHCTHK CIOUCTOR 0B0IOUKE. Pe3ynbTaThl MHCICHHEIX PACIETOR npen—

craBiedsl B BHge rpaduxos.
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