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QUASI-STATIC THERMAL STRESSES IN AN INFINITE SLAB

K. SAKAINO AND A, ATSUMI (SENDATL}

This paper deals with two thermoelastic problems of an infinite slab with or without a cylindri-
cal hole, Thethermal stress distribution which arises in a slab if a circular region of the plane boundary
(Case A), or a cylindrical boundary (Case B) undergoes a sudden temperature change, is analysed
using a thermoelastic potential and a stress function. In both cases, it is considered and graphically
shown how the ratio of the radius of the heated circular regwn, or cylindrical hole, to the plate
thickness affects the thermal stress distribution.

NoTaTION

a radius of circular region in Case A, of the cylindrical hole in Case B*
plate thickness,
r, z cylindrical coordinates,
V2. =—€i+“1~ ‘i+ - Laplacian operator
ar: oy v o2% ’

T temperature,

i thermal diffusivity,
¢ time,
To constant temperature,
J. () Bessel function of the first kind in order n,
Y.{} Bessel function of the second kind in order #,
@ thermoelastic potential,
v Poisson’s ratio,
o coeffiicient of linear thermal expansion,
E Young’s modulus,
o, radial stress,
ap circumferential stress,
o, axial stress,
7. shear stress,
w, ¥ stress funciion, R
u, w component of the displacement vector in r- and z-directions,
K, () modified Bessel function of the second kind in order #.
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1. INTRODUCTION

When the surfaces of machine elements are partially heated in casting, welding
works etc, thermal stresses arise in them, which may often cause the structure breaks.
Therefore, it 15 very significant to clarify the temperature field and the thermal
stress distributions in the slab. Such thermoelastic problems have been investigated
many times before. For example, Huistir {1] has studied the infinite slab which
is exposed to an instantaneous uniform change in temperature, and Mugr [2]
has treated the steady thermoelasticity of a slab whose surface is partially heated,
and Koizumt [3] has dealt with the quasi-static case that slab with a circular hole
is uniformly heated. : .

The present investigation concerns two cases of quasi-static problems. In the
first problem (Case A), the circular regions of the upper and lower surfaces are
heated. The second problem (Case B) is that of an infinite slab with a cylindrical
hole only whose surface is heated. In both cases, the initial temperature is Zero every-
where, and the circular region (Case A) or the cylindrical hole (Case B) undergoes '
a sudden temperature change. The problems are analysed using a thermoelastic
potential and a stress function. Numerical calculations are carried out for each
case, and it is considered and graphically shown how the pilate thickness affects
the thermal stress distributions. :

Numerical results will be of use of engineers and designers.

2. SOLUTION OF THE EQUATION OF HEAT CONDUCTION

The coordinate system is shown in Fig. 1. The material is supposed to be homo-
geneous and isotropic with respect to both its thermal and mechanical response,
and all physical properties are regarded as independent of temperature. Furthermore,
the treatment is quasi-static in the conventional sense that inertia effects are neglec-
ted along with the absence of internal heat sources, which are required to obey
the equation of Fourier’s heat conduction in the form

(2.1 VT Lo
1) ok at”

At this stage it is expedient to introduce the dimensionless variables

” o a z (2n+1) _ Kt
( . ) I d’ pl_—d?r C_E: Wy = ) T, T_d?. ‘

The initial condition and the boundary conditions are given for each case as follows:
for Case A

[T‘}r:0=0: A
2.3 . IT]L’=i_1:T0P1fJ1 Ep)Jop) dl, =05
a
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for Case B

{T]t=0=0’
{T]Czil =0,

24

o
[Thms,=To D aycos @, ([

7>0.

=0

265

Now, in the consideration of the initial and boundary conditions, the Laplace
transform and the Hankel transform {4] are introduced to solve the Eq. (2.1) for
Case A. For Case B, we use the Laplace transform and the method of variable
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Fig.z 1. Coordinate system.
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Fig. 2. Radial stresses on tﬁe surface of a slab.
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separation. Performing the inverse integrals, we obtain each temperature solution
as follows:

for case A
T T ch & .
I f S ACAACOL S
© g i@ o)
+2p, Z (=Dt o, cos @, f Eiad JiEp) do Ep) dEs
u=0 ) 0 "
for case B
: 1__ - KD (CU,, P) .
(2.6) T, = ; a,cos o, {—-————KO (@n D) +
. i fw Ee @D J (£p) ¥, (fpl)f Yo (Ep) o (Eps) dﬁ]
Tl (@ tod) TE(Ep )+ YE(Ep) :

Fig. 3. Circumferential stresses on the surface of a slab.

3. POTENTIAL OF THERMOELASTIC DISPLACEMENT

To find the state of stress, we shall use the potential of thermoelastic displa-
cement . @, which is the particular solution of Poisson’s equation [5]

14y
(3.1) V= 1

al.
-y
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The stress field corresponding to the function & is easily found to be

“ - E [0*@ ) o E {1 8@ ,
ot = —-vipl, gli= — V2],

4 I+v \ ar? I4+y \r or
G2 (8295 o @) W, E_ #o
T2 v \ a2 ’ T’ 14y drdz’

The particular solution of the Eq. (3.1) is given as fOHOWS
for case A

T—v &b Y {sh &
L+ al,d? 2 Eché
0

(3.3) = (i) Jo {Cp) 2+

—t (& + wf)

+zp12 (=1 @, cos o, ¢ f Frary T o) 0 €0

for case B
1—y @ 1 <R { K, (w, p)
(3-4) 1+v (Z'.TO d2 - ? . aﬁ €os (D_" C ! (D_" K() (CO" pl)
4 Ee™ &+ )
= @ray OOE)
0

where

= Yo oM Cp) - To (p1) Ya (Ep)
N S ISt TN

4., STRESS FUNCTION

It can be seen that the stress does not satisfy the boundary conditions on the
surfaces of the slab, as well as on the cylindrical surface of the hole in Case B, where
tractions should vanish. In order to complete the boundary conditions, we make
use of the stress functions [5, 6], which are defined as follows:

for Case A
2 2
e {3 Wy 3 Wz o aw, }
14v { or? 8z
(2)_ {1 Ay i &y, ‘Zv 3!;‘/2},
[+v rooor oz
@1) (z)m {32 V1 Vo 3'!’2}
z 2 (1 —V) 32 ]
72 = {32 ¥ 32 "”2 _ aWZ}
Bz I4+v L or 3z 31‘ oz

where V2 y, =V? y, =0,
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for Case B : .
0p= 11 {8;:21 z aa:fz - "%%““L' 2 gs (-2 3;; }
=TT % e G
2 oD = Ev {B;Zf‘ 2z —2(1—1;)%—:-%;%3-«2(24@ %%3}
W= I+v {3!‘32 3:’32 —(1=2) ;2 tr a;z}is 2(1-) ag:}’

where V2 3, =V? 3, =V? x3=0.
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Fig. 4. Maximum compreésive stresses as functions of time ({=+1, p=0). -
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Fig. 5. Maximum axial stresses as functions of time (p=p,, £==0).
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The harmonic functions are assumed in the form:

for Case A
I—v yy = fo &) :
(4'3) 1+V D(To dz - éz ch éCJO (&P) dés
1—v 80(5)
o W f sh &0 Jo (2p) d&;
for Case B
l_v X1 - KO ((an)
Vv adod® Apllogp+20 oF Ko (on p0) cos @, {+
(9]
| +Of b ch & Co (p) dE,
1y gl(@
(4.4) T f sh &0Co (&) &,
1—v X3 C Ko (CO,“D)

Iy aly d E 7(0 (o, p1) sin o, .
0

H=

The unknown functions f5 (£), go (&), f1 (&), g1 (§) and coefficient A4, B,, C,
are determined from the following conditions:

for Case A
(4.5) e+ =0, FD+P)1,=0;
for Case B (4.5) and

(4.6) e+, =0, [P +12],_, =0.

5. DETERMINATION OF THE UNKNOWN FUNCTION AND COEFFICIENTS

For Case A, the unknown functions are determined from (4.5), a pair of simul-
taneous linear algebraic equations. The solution is given by the forms

1y (éfi
ché
4p. 1 (p1) o N éwz e rod
6 Fenagag PO 2

P11 (i) N Ap, J, (&py) . ﬁ, M
2ché (sh 2&+28) > Era??

Jo (©)= —(I—V)_

go (&)=~
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For Case B, we obtain the following relation from (4.5);
(5.2) fi(@=2-2v=¢(thd g (&)

Now for (4.5),, if the relations

K (@) 20, fC (é/g) -
K{) (Corrpl) B T 62 ’

KO (wﬂ p) 20):1 K (CU,, }9 ) Ci (L.;p)
(53) Wy P1 Wef1 7 - —_1_— 2 ‘§+
K, (w, PL) 2 Ko (w, p1) &+
4oy (&p)
)
. B (&2t
are used, g, () can be expressed with B, and C, as follows:
.4 (&) __%_ Z (—1)'ch & [ ay o pr Ky (wapy)
PB4 @ o) @) n Kol@,p0)
L 2o, & £ 24, m, &2 e @D
—— + 205, B, +

(éfz +w) (& +of

-Kl (wn pl) 20)121 }]
p/ KO ((Dupl) éz-|—CD,?

+2w, C, {4 —2v—a,

The unknown coefficient A, for the sake of convenience, may be written as

' e C, (§P1)
(5.5) A=2 (1) f £ Qe = S de.
o S
151 / :
i =03
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Fig. 6. Maximum circumferential stresses as functions of time (p=p., {=0).

In (4.6), expanding ch & and & sh &0 into the Fourier cosin-series, as wen
as sh & and & ch & into the sin-series, and equaiing separately the coefficiellt
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each cosin- or sin-function to zero, we obtain a system of linear equations as
follows:

[val
bn(;l) B,,+C,(,I) CR-}- Z {"bﬁl)Bk+"c,ﬁl’ Ck}-_*d,{,l),

(5.6) .
bf,z)B,,-i-C(z) C,+ Z {nb(Z)B _|_nc(2) } d’{'2)’
where K = Ko )
R M @y
bf11)=1+ _‘_Hl—lgms Cj(nl):]‘*z]’—ojltleLs
: @, p1 Ko (0, p1) Ky (@, p1)
16
irb(l)_ 1)tk —e 1 =) ML) 25 (‘1,?) ,
k ( ) Dy Py {( V) Vi +oy "y } .
' 16 oy, * Ky (o pi)
C(l)*“-" 1 n+lk [{4*21) @ it EENL {1, 1)_|_
b Ry P1 KPR Ky (mk Pl) s ) T
b =20 (1) P+ m) .
(“1)" @l K, (Cok Pl)
d= - 2{ — 1Y @ o @ 1)yt 4
n 5w, (1) a, @y kP17 K, (COLPJ {( Y%
+Cl)2 n?(l 2)}+9w {(1 " Ec1’2)+w;2 n,ygc? 2N +2 (1 ‘l’) na(z l)+
(5.7 ] &, { Ky (0,p1) } |
2 ng(2,2) o I
+2w" ék + 2 1""@:: pl ](D (C{}” pl) 7'5!91 "y
V K Ct)l w“
bf,z)=—-l( 1p1)’ (2}__2(1 v Ki{ Pi_)___wnpl’
KO ((Dn pl) KO (Cl)" pi)
16 o, w?
nbg‘Z) — (7 l)n+k _;k_f___ “3’;(;1'2),
16 wy o, K, (owpy)
nc{?.):: —(—1 n+k7"{{4 Py — _ 2 N 1,2) — Iy? M2, 2)
¥ =1 T K Ky (0 py) T kT
( 1)" 860" I<1 (w)pl)
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2 (2 2) (2,2) G G 4
+ 27 My 2 6 +—-2——— prt+—1q,
/A
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o 2
le(i J)___, f Ch é Cl (ipl) df
) Gh2e+25( +w2) (407
w éza ch? f e—r(c +op)
. g ) = : -, (Ep) e,
{5.8) O (Sh2<f+2q")(§2+wf)‘(§2+mﬁ 3 Ep)dL
éz -t (2 +d)
In: 2 Cl (éﬂx)df
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6. NUMERICAL CALCULATIONS AND CONSIDERATIONS

The value of Poisson’ s ratio v was taken as 0.3. Numerical calculations were
carried out for three cases of the value p,, namely p, =0.3, 1, 3.

For Case A. The graphs for the radial and circumferential stress distributions
on the surface, as functions of p for various times are shown in Figs. 2 and 3. The
curves for g, are discontinuous and have a finite jump at p=p,, being compared
with the continuous curves for o,. In a heated region, the maximum compression
of o,, as well as o,, occurs at the central point of the region as 1— +0. The maxi-
mum tensile circumferential stresses arise in the steady state outside the heated
region. In Fig. 4, the effect of the pla"ce thickness to the maximum compressive
stresses, which are functions of time, are shown. For the larger value of p, (=a/d),
the thermal stresses decrease to the steady value [2], which is 0.35 in each case,
more slowly with respect to time, but the steady thermal stresses of the uniformly
heated slab disappear [1]. ‘

For Case B. Numerical calculations were carried out for the particular cases
which is ¢o=1, a,=0, n=1, namely cosin-distribution of temperature. The maxi-
mum values of ¢, and o, induced on the ¢ylindrical surface, as functions of time,
are shown in Figs. 5 and 6. When the value of p, is small, the remarkable concentra-
tion of o, occurs in the steady state, and the steady value for p; =0.3 is about —1.6.
The axial stresses are large as a value of p; becomes small and 7— +0.

7. CONCLUSION

In the present paper two thermoelastic problems of an infinite slab which is
partially exposed to a sudden temperature change, has been analysed and the char-
acter of thermal stresses has been clarified by numerical calculations. '

(Case A). The maximum compressive stress arises just after temperature change,
and the plate thickness greatly affects the decrease of thermal stresses for time.

(Case B). The maximum compressive stress on the cylindrical surface occurs,
‘just after temperature change for the axial stress and in the steady state for the
circumferential stress. The stress concentration is remarkable as the plate thickness
becomes large.
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STRESZCZENIE

QUASI-STATYCZNE NAPREZENIA TERMICZNE W NIESKONCZONEJ PEYCIE

W pracy rozwazane sg dwa zagadnienia termosprezystodci: zagadnienie pelnej nieskonczone
plyty oraz plyty z otworem cylindrycznym. Rozklad naprefed termicznych powstalych w plycie
wskutek naglej zmiany temperatury na kolowym cbszarze plaskiego brzegu (przypadek A) Iub
na brzegu cylindrycznym (przypadek B) jest analizowany przy wykorzystaniu potenciatu termo-
sprezystego i funkcji naprezenia. W obydwu przypadkach zbadano i pokazano graficznie jak sto-
sunek promienia ogrzanego obszaru kotowego lub otworu cylindrycznego do grubosci plvty wplywa
na rozklad naprezed termicznych.

Pesmwowme
KBASUCTATHMUECKHE TEPMHAYECKHWE HAIIPSKEHMA B BECKOHEYHOM TIIWTE

B paGoTe paccMOTpeHB! e 3a/la4H TEPMOYOPOTOCTH: 3a1A94 TIOJHOK GeCKOHETHOM YUTHTEL
H 337344 IVTRE ¢ UMIEHIPHEYECKHM OTBEPCTRHEM. Paclpefiefenme TepMHYECKWX HAMPSLKESHWMiL,
BO3HAKHYBHIHX B NIIWTE BCIGACTBHE BHE3AHHOTO M3IMCHCHHSI TEMIEDATYDH B KPYToBOH o6nactm
nnockol rpaumipl (Caytail A) MnH Ha MHTHERPHIECKOR Tpanmre (cnydvait B), anamH3ApyeTcs npw
HCHONB30BAHAN TEPMOYIPYTOTO moTenuana ® dyukuwii ranpawxenus. B ofomx cnywasx mecmemo-
BRHO ¥ Fpadtecks NNENCTABICHO KAK OTHOINEHWe PAJMYCA HATPETOR Kpyrosoil obnacre mme

IHNMHAPHYIECKOTO OTBEPCTBAS K TOMHEES MIHITE BIHAET Ha PaCIIPeleNeHHe TePMEICCKHX Halii-
KOHRIL, ’
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