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FINITE ELEMENT ANALYSIS OF 'ELASTIC-PLASTIC' PLANE STRESS
: o S PROBLEM '

1

‘L. WINNICKL M. KLELBER, M. KWIECINSKI (WARSZAWA)

The finite element method is applied to the statical analysis of an elastic-perfectly plastic material
in plane stress, The in-plane system is split up into triangular elements for which linear shape function:
is preseribed. Basic relationships are formulated for the elastic-plastic material in the matrix form,
The procedure to build up an elastic-plastic stiffness matrix is shown for the Huber-Mises-Hencky
material in the three-dimensiozal situation as well as in both plane stress and: plane strain. In the
numerical calculations an ideally. plastic material is assumed, however, the derived relationships
are valid for strain-hardening material, ‘

Basic algorithms are described for the solution of the non-linear system of equations obtained.

The method of tangential stiffness is presented together with the method of initial nodal forces
and its modification — the initial stress method. In the course of numerical analysis was investigated
the possibility of the unloading process to occur in particular elements while the whole system
undergoes loading program. The algorithm is given and a numerical example is solved,

1. INTRODUCTION

In the present-day mechanics of structures much effort is devoted to the establish-
ing of computational procedures to.deal with the behaviour of elastic-plastic
bodies. Most powerful tool for that purpose appears to be the finite element method.
It is especially useful when applied to both physically and geometrically non-linear
problems. The elastic-plastic analysis falls into the first category by the very nature
of the constitutive equations.- The second type. ot non-linearity occurs when large
deformations -are allowed for. T S .

Two basic methods are nowadays recognized to study..the behaviour of pl .sti-
cally deformable structures: the ‘tangential stiffness method, e.g. [1], and the
initial load method. The latter has two variants known as the initial strain method,
[2, 3], and the initial stress method [4]. Both variants are closely related iterative
procedures. The tangential stiffness method: is the most . direct and physically under-
standable although a substantial computational effort is necessary to reach effective
solutions. Moreover, the method proves to.be expedient when large displacements
and plastic deformations have to be accounted for-simultaneously., « ,

- The tangential stiffness method is based on the concept that a non-linear-problem
18 approached via a number of linearized steps. Thus an elastic-plastic material stiffness
malrix is introduced in place of a purely elastic stiffncss. At each step. of the analysis
a single discrete element is. brought to yielding and thus the element stiffness matrix
of this-plastic element must be built up, the global elastic-plastic stiffness. matrix
must be assembled and a resulting system .of equations solved. The clear. physieal

'
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meaning of the above procedure is retained at the cost of having to calculate the stiff-
ness matrix at each computational step anew. '

The concept of the method at the elemental stage is shown in Fig. 1.

The initial strain method is based on the principle that the stress increment of
a typical step in the elastic-plastic analysis is known beforehand. Then the correspond-
ing increment of .plastic strain can be found from the slope of -the stress-strain
diagram of a uniaxial test. This plastic strain can then be used as initial strain and
the elastic analysis of the given structure can be made with initial loads which are
defined for each finite element in such a way that they supress the imposed initial
strains in a purely elastic manner. The sequence of calculations is as follows:

o
P |
= Etastic strain ¢/ Derived initial(plastic)
g amigf, increrment \/ /7 strain increment
EfEl;g E-" ) //ASE/AE
; -~ {Ac-given stress increment
/ arcige
/
. /
arcly by ' AarctgE
- €
Fig. 1. Fig. 2.

Having the incremental initial load, follow the global displacements of the
structure accompanied by the element displacements. Then the total strains and
their elastic parts arecomputed. Finally, the stresses which must be equal to those
which have been adopted at the beginming of the step are calculated. Clearly- itera-
tive procedure must be developed to be repeated until the preset convergence is
achieved. The advantage of the initial strain method against the tangential stiffness
method consists in the fact that it is only necessary to make an elastic analysis of
the structure; thus the stiffness matrices do not change (provided the displacements
and strains are kept small). The concept of the method is schematically depicted
in Fig. 2. :

In the case of ideal plasticity the above philosophy becomes meaningless. The
initial strain solution of perfectly plastic structure is impossible, since infinitely
large plastic strains- occur in this case. '

The initial stress method is based on a similat principle as the latter one. Instead
of iterative determination of the initial strains, the iteration is employed to find initial
stresses. The total strain increment must be preassigned to calculate the initial
stress increment which is to be equal to the difference between the actual elastic-
plastic stress increment and the ideally: elastic stress increment, ‘Since the given total
strain increment is in fact not known in advance, an iterative technique must be
employed leading to the initial stress increment. This philosophy is illustrated in Fig. 3.
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* The applicability’ of the two variants briefly described above 'depends ‘on. how
tapid is the convergence of the iterative procedures {3, 6]. Both variants have been
here demonstrated in their original, simple version. They have been, and are still
being, refined which will not be discussed here. ‘

It is worth stressing thaf the tangential stiffness methed and the initial load
method are related to each other to a greater extent than it can be seen at the first
sight. Basically, the first method requires an iteration process at the end of each
step. On the other hand, the initial Joad method can appear to be weakly convergent
when the load increments are not l
small enongh. The ideal solution arcty E-/// A6~ derivect initial stress
seems to be to work out an effec- crement
tive. mixed method. Ao—aclual sfre.s§ tncrement

’ A ) L7 Ae—-given total strain increment

The aim of the paper is to show Y/
applicable numerical algorithms to
deal with both physically and geo-
metrically non-linear sitwations (*).
Thus we will confine ourselves to aretg £
the tangential stiffness method to _
solve the equilibrium problem des- Fig. 3.
cribed by a set of incremental equa-
tions for a discretized structural system. From this point of view, a‘though some
other methods exist such as the predictor-corrector schemes, Rumge-Kutta pro-
cedures, chord stiffness matrix methods and others, it is felt that the presented
tangential stiffness method {the Euler forward integration method, in actual fact)
is advantageous due to a considerable accuracy achieved and the possibility to
study the stability of the solution obtained [6]. It is believed that the method,
though consuming a substantial computer time, is very appealmg to the structural,
stiffness-minded engineer, ' ‘

s

™y

2, FINITE FLEMENT DESCRIPTION OF ELASTIC-PLASTIC MATERIALS

To study structural problems in discretized mechanics, the matrix notation is
usually employed as a convenient means leading to suitable computer programs [5, 7).

A set of all forces acting on a bodycan be shown as a force column vector {F},x 1
{FY¥=(F, F,, ..., F,) where n is the total number of forces. { } denotes a column
matrix, ( ) denotes a row matrix, the transpose of a matrix F is indicated by F!
and is here used to save space. With such a loading pattern a set of displacements
associated is shown éimﬂz‘trly asa diéplacenient column vector {q}nx 1;* {q}‘ =(q1, G2y -

(") The only paper which appeared in this country and dealt with similar problems seems to
be [9]. However, the study of propagation of plastic zones was based on a simplifying assumption
that the material is bilinearly elastic with very small Young’s modulus at the second stage. So no
constitutive relationship of plasticity was employed the y:e]dmg elemnts bemg considered as
very soft, elastic ones. A '
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<y 4). General relationship between the forces and displacements can always be
shown in the form

@.1) ' {Fhoes =K (@i

where [K] f [BY [D] [B] dV-is the so-called stiffness matrix with the dimension 1 x n.
[ ] denotes, in general, a rectangular matrix. The elemenis of the stiffness - matrix
are the influence coefficients that give the force at one point of a structure associated
with a umnit displacement of the same or a different point. The stiffness matrix is
clearly a square one. It depends on the mechanical properties of material, geometry
of the comsidered structure and, in general, on the stress and strain states that de-
velop in the structure. It is easy to see that in the case of linearly ¢lastic bodies un-
dergoing small deformations the stiffness matrix is fixed for a given situation. How-
ever, this is not so when elastic-plastic behaviour is studied.’ o

Discretization of the continuum tan be simply described as the process in which
the given body is split up into a number of finite elements constnuthng an equivalént
system. The act of subdivision, although liable to automation, remains very much
a process based on the sound judgement oh the part of the structiral engincer. Thus,
within an accuracy, a finite number of nodal points can be selected and (2.1) be
understood as related to those nodes. In particular, the element’ stiffness matrix
can first be established consisting of the coeflicients of equilibrium equations derived
from the material and geometric properties of an element and ‘usually obtained
with the help of the minimum potential energy principle.’ Thus the element stiff-
ness matrix relates the nodal displacements of a single, typical clement to the applied
forces at the nodal poirits (nodal forces). The distributed load, if any, is replaced by
equwalent concentrated forces at the nodes. As a -result of this procedures,’ (2.1}
represents a set of simultaneous linear algebraic equations. The displaceiments within.
an clement are prescribed by means of a certain displacement model, called also
a shape function. Inside the finite elements the equilibrium’ equations “hold well
together with displacement compatibility. The global equilibrium of the structure
is replaced by the equilibrium requirements related to the nodes only-—the equilib-
tium along the element boundaries can be sacrificed. The interelement continuity of
displacements is .observed -by. proper choice. of the shape function. A polynomial
is the most commonly used, displacement model, since it is easy to. handle the ne-
cessary mathematics such as differentiation and integration. Moreover, a polyno-
mial of infinite degree clearly corresponds to an exact solution, provided it does
exist in an analytical form. Thus, by truncating the infinite polynomial we can vary
the degree of approximation as needed.

The constitutive gquations for linear elastlclty of 1sotrop1c bodies are 1n the ’se:nw
. sorial notation
2G

@y - T,

=1 —21) 3;1+V5:m 511] .

where &2, is the trace.of the eléétic strain tensor and' 5, ; denotes the Kronecker
delfta. In the shorthand matrix notation we have s
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2G ‘ -
11 mn .
—2 [ ' 21X +.vee ]e‘,

@y a=

where T, is a 66 unit matrix and ¢=(1 1100 0 ) or, explicitly:

BT vy 0 0 0
1—v v 0 0 0
Oy &
Oy _ 1—v 0 0 0 &
' o, {_ 26 _ ‘ ' &,
24 {o}= . | 1-2 0 v
2

s 1-2» Tos
Tox (symmeiry) 5 0 q Vax

| 1-2

o 2 —h

In (2.4), shortened to {o}=[D°] {e}, [D*] is the symmetrical 6 x 6 constitutive elastic
matrix, :
In the case of plane stress, o, =1,,=1,,=0, the matrix [D?] takes the form

B A
: o 2G ‘ :
o] — 1 1)
—y
. _(SM') 2 |
{D?] for plane strain can be shown similarly to be
11—y 0
26
(254') [‘De]=1_2v 1—v 0
) 1—2»
_(sym-) 3

In elasto-plasticity we shall start form the Prandtl-Reuss relationships and assume
that the total strain rate can be decomposed into an elastic part &, and a plastic
part £,

(2.6) &= HEY .
Now we can write _ _
2 7 R ji J + 1 _2V .(5 ;1 3F
. £, = —_— -, .
@7 WETG TR P,
where §,;=d,;—65;, is the stress rate deviator, ¢ =3 Oy i8 the mean normal stress

rate, Fis the left-hand side 6f a suitably adopted yield condition and 1 is an unknown

613
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parameter. The last term in (2. 7) means that the plastic strain rate vector &7, is ortho-
gonal to the yield hypersurface in "the nine-dimensional stress space. On selecting
the Huber-Mises yield condition in the
form e

28) F=o-sy5y—— 52=0

or, explicitly,

29) (a0 (0, +0.) +(0,—0.)

A 6(r 4T ) —265=0,

the scalar fa.ctor A can be determined, . : Fig. 4. z
The quantity &, is initially equal to the
yield point determined in a uniaxial tension test. The equations (2.7) can also be
shown in a finite incremental manner io give
VAsy 12

' BF
(2.10) | Asij—?—~ —— dody+ 4 oy

aF :
where de;;=AA is an increment of pl'astic strains.

do;;

For elasto-plastic strain-hardening materials, o is a current vield point stress

depending on the load history as deplcted in Fig. 4, The &--¢ diagram of a uniaxial
_test yields the slope

Ad
(2.-11) o ¢ =
Plastic strain increment is
BF 2 ,
(2.12) A=A —— hence Aé=-—AM.

9,

On differentiating the yield condmon with, respect to time and multiplying by the
time increment At, we arrive at

(2.13) . i ijdsij—?fdﬁ=0,

On observing that s;; 4s,;=s,; 4oy, (2.13) can be rewritten with the help of (2.11}
and (2.12) to give ‘

. 4
(2.14) Sij Aﬁuz—g_tﬁzdll.
Writing (2.2) incrementally and using (2.14) we obtain

: 2G ' 4
(2-15) Aﬂ'fjsij=1—“:'27 {(1 —2V) AS;kSU +VA8;,‘ 5,'_,'.5'”] =?C62 Ai.
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Since ‘ : oF

Vil hAelj ASU—AE — Aef, = Ag;;— AA dor?
J

we arrive af the equation in 41

2G{124 zaF)]4~u
) { V) (Aey;— A L'TU:; 5z —?CO' A.

Its sclution provides

216 m 2G de;; 54, _ 2Gdey sy
(2.16) 4 B ) 4
?é’a +2G B, Sy ﬁ9~6 (§+SG)
In the matrix form we have'
Ag,
Ae,
1 S 8 8 Sy S 8 Ay |
2.17 =_._%_"_.°’___.”__"_’.’__i’i_.ii.) Z
( ) A% l-—Zv(s s 5 085 8 8 Ayyy
. A%y
| 472x

where

1 (4 s )
ST 3G (=2 \o b8 20 G sy

and s, ..., 5., are the components of the stress deviator.

Now we can determine the mcrements of the stress tensor components for clasto-

plastic problems

' 2G _ o
(2.18) ‘AGU =H [(L—2v) de;; + v Aey, 61;] —2G AL doy,

Remembering (2.4), (2.17) and representing dF/3a,, in the form

| éF }*
130’ =(sx Sy 8z 283y 28yn 28,2),
. i1
we finally have
Ae, Sy
de, Sy
Ae, 2G 3, Sy Sy 85  Sey Sy S
2.19 Aoy ;=D S S SR N o e . et .
( ) U[]Al’xv 1—2vA23xy(s s 8 5 8 5
Ayyz : 2“5')’2
Av.. 1 2s,,

or, symbolically,

(2.20) Acy;=[D1d &;— D] Ay, =[D*%] s, .

Ade,,
de,
Ae,
Ay
¥ip
AYzx
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.

The matrix [D¢?]is called the constitutive elastoplastic matrix and takes the form

@21 [D7]=

. S .
N _
5 S Sy 55 5y Sy Sxy 8 Sy 8y 8zx
1—v— V— Y= - — —
s S - s 3
2 ‘ 4 ‘
85 5,8, Sy Sy 5y Sy Sy Szx
i—y—"— y— - . - ——
s s 5 §
2 ‘ .
'Sz Sz Sxy . Sz Syz Sz 82y
. . 1—y— - - —
2G ‘ . . 5 h § Ry
- . »
— . 2
1—2v 7 I-2r s, Sy Syz Sy Sz
2 5 5 s
2
G . ) 1-2v s, Sz Sox
mme! : ‘ _— =
¥ ry. - 2 s s
2
1—2y S
B 2 5

where, specifically, s,=(20;—0,—02)/3, ..; Sxy=Tsys -

ey

RS CR 2P B U
U260 -) [3 ’ (3 - )]

In the case of plane stress, =Ty =T;,=0, similar derivation leads to

_1 _ (Sx +VS),)2 y— (Sx-'i' vs,) (Sv +V3x) _ ('1 '_V) (5':: +v'5'r) Sx:-’-—

K] 5 8
b8y hvs)? (1—) (8, FV5y) 5y
ep] = ——— —
@2) D=1 1 , | - ,

1—-y  (1-v)2si,

(symmetry) ‘ : 7~ p

where
. Sx=(20'x'_ay)/3: Sy=(2a'y'—ax)/3a Sy =Txy»

2

. //‘ 4 ~

s=52 42058, +s2+2(1 .—v)s§,'+-§— 5 72,
N

For plane strain, the constitutive elastic-plastic matrix can readily be shown to

take the following form:.
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I T S T T
1-2v s 1—2v 5 s
: 1—v s 5,8
ey S 5%
2.23) ID1=2G T -
. 1 s
i {(symmetry) . | 2 s

3. BESCRIPTION OF PROGRAM AND COMPUTATIONAL METHODS

As can be scen from the flow chart, Fig. 5, the program is divided info a number
of main parts. ‘

Steps 1-5 constitute a standard, purely elastic solution of the problem and will
not be described here in detail. Some particulars can be found i [8]{2).

Step 6 — In this part of the program stresses are first computed resolting from
step 3 -and added to the already existing stresses, if any. Then the yield condition
is checked in each clement: the stress intensity is calculated according to the Huber-
Mises vield criterion and compared with the prescribed yield peint of the materiai.
If the yield condition is satisfied the element is at yield and the calculation of con-
stitutive elastic-plastic matrix [D®] follows for this element the formula (2.21)
in the three-dimensional case, (2.22) for plane stress, (2.23) for plane strain. Then
the test load factor is computed from the condition that the point 4 of the stress
- vector in the stress space (Fig. 6) must not be too far from the yield surface F=0.
For this purpose a suitable second degree algebraic equation is to be solved.

If the yield condition is not reached and elements remain elastic, in each element
a ratio of the yield point stress to the stress intensity is calculated. Then an element
is selected in which this coefficient attains the least value. From this a suitable test
load factor is deduced bringing the next element to yield. Now the smaller load
increment (from the two resulting from the elastic and the plastic paths) is selected
and fed into the next step.

Step 7 — Displacement increments corresponding to the test load factor determi-
ned in step 6 are calculated.

Step 8 — Corresponding stress increments followed by the total stresses are
computed. The total stress is represented as a vector (4, Fig. 6. Now, this total
stress is reduced to occupy the new position OB, This reduced total stress is stored
to start the next computational stage.

Step 9 — The problem of uniqueness is here studied. The question must be an-
swered whether or not the conditions for loading process are satisfied. To this
end in each yielding element the scalar parameter 424 which is proportional to the
plastic work done must be calculated according to (2.16). This parameter should

(*) An improved program in ALGOL-1204, used here, has recently been written by A. Ra-
DwANSKI and M. WITKOWSKL

Rozprawy Intynierskie — 4
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preparation ' .
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2| Element stiffness rnalrices 1 ‘
v

Ca

Test loading vector and inittal displacement |
and fer stress vector (if any}

¥

[7[ Assemb.!age of averail stiffness. matrix,

i 5| Current matrix inversion (caiculation
Y| 6F nédal displdcements) s :

- .| Determination of test .load veclor with respect) . o A
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ﬁz L Total sTresses d:.s,placemenfs and ioad.; ]»—b{ printing out |
Is crirerion‘ for rhe end of analysis
satisfied ? '

: No¢ ' T ves

Calculation of new elastic-plastic consti-

tutive and stiFFness matrices
( STOP )

Fig. 5.

appear to be non-negative in order to justify the assumption made at the beginning
of a given step that the element considered is undergoing an active plastic process.
It Al turns out to be negative the step 10 follows. -

Step 10 — The calculations must be repeated, starting from step 4. In all the ele-
ments in which A1<0 the elastic constitutive and stiffness matrices must be intro-
duced. ' ' '

Step 11 — Procédures for nodal equilibrium improvement are incorporated
here. In the tangeniial stiffness method the load-displacement curve can happen
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to depart considerably from the true one, especially when the structure.is split up
into a large number of finite elements. There exists a number of methods to improve
the accuracy of the calculations from which those seem to be preferable which are
based on the initial load concept. In partlcula.r a suitable iterative process can
ideally be carried out at the end of each steép. To save computmg time, this plocess
can be performed at every few steps. Similar corrections are mtroduced in the
incremental analysis of geometrically non-linear Lo
problems. Another method to improve the current 5 ’
matrix consists in the calculation of an average
matrix resulting from the matrices. at the beginning |0 / L
and at the end of the step. R A do

Step 12 — Total stresses, dlsplacements and A
loads are calculated and prmted out fer. the cur-
rent situation.’ : :

- Step 13 — A suitable criterion must be formu-
lated at what stage the computational process ‘is
to be terminated. For instance, a criterion can be Fig. 6. ..
imposed that the displacement of 4 certain refe- :
rence point becomes large enough to indicate the uitimate behaviour of an elastic-
‘plastic structure or that the slope of the load-displacement curve becomes small
enough. If the adopted criterion is not satisfied the computational process is con-
q tinued via step 14, starting again from the
R T : step 3. If it is, tjle analysm 18 t.grmmat.ed.'

Loy Step 14 — New elastic-plastic constitutive
and stiffness matrices are calculated.

‘n

g T a,

4, EXAMPLE

As a test example a rectangular plane
stress. region is considered made of elastic-
perfectly plastic material and subjected to
the self-equilibrating load as shown in
; Fig.7. The structure is divided into trian-
; B[ gular elements within which a linear shape

,;r, { & function- is adopted. Due to the symmetry
) E@y - J 2 a half of the structure is dealt with.
L 4 8

1B om

e

g b g : The nodes lying on the' symmetry axis are
Bem ; constrained against the horizontal motion,
Fig. 7. point B (Fig. 7) being completely fixed.
Displacements of all nodes: are calculated,

but the behaviour of the structure is represented diagrammatically by means of the ref-
erence point C as undergeing the largest vertical displacement. Four divisions are
used, numbered I, IT, IIT, IV (starting from the coarsest) in order to compare the accu-
racy of numerical resulis. Moreover, the coarsest mesh was used for the purpose
of manual calculations as a check on the correctness of the computer program.
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4.1, Mesh I

The considered half of the structure js divided into 16 elements having 30 degrees
of freedom, the mesh being made finer towards the bottom edge where a certain
stress concentration is expected to take place. The pumerical calculations were
exccuted twice — for large load increments (resulting from the yieldiﬂg of consec-

Load A
PlkG]
- 28 937 é
28 284
V3
@
S
23 531 o
23 744 4 o]
Sl
22 §22 / - 5 . )
21 689 5 : —
B ‘qe
: W d
19 879 I (_,\)(
B f Jw
!

] =4 O Reference

@ Eg‘é, T § § ‘g displacernent

3 oS50 S s o & ggflem]’
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utive elements) and for small load increments — fractions of the former increments.
-—1in order to exceed less the yield surface at cach step and obtain a smoother load-
displacement diagram in its elastic-plastic part. Fig. 8, curve @ shows the obtained

\
3

a) Mesh I (16elements)

b) Mesh II (64elements)

c) MeshIl (14{4 elernents)

d)  Mesh IV {256 elements)

S Fig. 9.

results in the load-displacement of the point C-plane. The sequence of yleldmg ele~
ments for large load increments 1s shown in Fig. 9a.
The upper branch of curve « corresponds to large increments, the lower oné
“to small increments.
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4.2, Mesh 11

The half of the structire is spht up mto 64 elements havmg 90 degrees of freedom
Only such load increments were apphed that were bringing the consecutive clements
to yield. There was 11 load increments to cause a substantial increase in the displace- '
ment of the reference point C. The results are shown in Fig. 8, curve b. The sequence
of yielding elements is shown in Fig. 9b.

4.3. Mesh HIT

The half of the structure is divided into 144 elements and has 182 degrees of
freedom. There was 19 load increments, ¢d@eh causiiig the next element to yield.
The result is shown in Fig. 8, curve ¢. The propagation of plastic region can be
seen in Fig. 9c.

4.4, Mesh IV

The half of the .structure is ‘divided into 256 elements and has 306 degrees of
freedom. The obtamed load—dlsplacement dlagram 1s shown in Fig. 8, curve d.
The developnfeﬁt of plasti& zone i5'seen in’ Fig. 9d.” :

4.5. Technical data

The calcﬁlations ‘were carried out on the ODRA-1204 computer with 16K, sup-
plied with 2 drum memorles 36K each. The ALGOL language was used. Due to
limited operation memory the program is divided into 4 segments.. The computation
times for each.mesh were, respectively; 12 14", 1h 1139, 3 h 17°33", 8 h 44'44"",
The program enables the computational process to be carried out in two ways:
either automatically — when the magnitude of the load increment results from the
fact that the next elemént is brought to yielding or the yi€ld surface is exceeded by a
prescribed amount — or the load increments can be conirolled manuafly with the
use of monitor — when smaller load increments are required to obtain smoother
load-displacement curve.

5. CONCLUDING REMARKS

The applied procedure makes it possible to study the propagation of plastic
zones up to an instant at which the intensity of limit load is practically reached.
Any plane stress configuration can be dealt with by the program. In plane strain
situations the matrices must only be replaced by different ones as shown in Sec. I.
In Fig. § the convergence of results as dependmg upon the number of elements
is demonstrated.
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STRESZCZENIE

SPREZYSTO-PLASTYCZNA ANALIZA PLASKIEGO STANU NAPREZENIA
METODA ELEMENTOW SKONCZONYCH

W pracy zastosowano metode elementdw skonczonych do statyczne] analizy larczy z mate-
riatn sprezysto-idealnie plastycznepo. Tarczg podzielono na elementy trojkatne i zastosowano
liniowa funkcjg ksztaltu., Sformutowano podstawowe zaleznosci dla materiatu sprezysto-plastycz-
nego w zapisie macierzowym. Podano sposdb obliczania macierzy sprezysto-plastycznej dla ma-
terialu spelniajacego warunek plastycznodci Hubera-Misesa-Henckiego w przypadku przesirzennego
stanu naprezenia, plaskiego stanu naprezenia oraz plaskiego stanu odksztalcenia. W obliczeniach
numerycznych przyjeto material idealnie plastyczny, natomiast wyprowadzone zwiazki sa waine
dla materialn ze wzmocnieniem, '

Omowiono podstawowe algorytmy rozwigzania otrzymanego nielinfowego ukladu roéwnan.
Przedstawiono metode zmiennej sziywnoscl oraz poczatkowych obeigzen weztowych, w szezegdlnosci
jei wariant — metodg naprezen poczatkowych, W irakeie obliczen namerycznych badano mozliwosé
wystapienia procesu odciazenia w poszezegolnych elementach tarczy podczas obciaZenia zewngtrz-
nego calej konstrokeji. Podano algorytm postepowania, rozwigzano preykiad numeryczny.

PezwoMme

AHAJIA3 ITIOCKOTO, VIIPYTO-ILTACTUYECKOI'O HATIPSDKEHHOI'O COCTASHIAA
METOOOM KOHEYHEIX 2JIEMEHTOB

B pafore npuMeHeH MeTON KOHCYHRIX HICMEHTOB K CTATHYCCKOMY AHATH3Y IACTHHKH M3
. VOPYTO-HACANEHO ONACTHIECKOT0 MATCpHamd. LIDHMEHAITCH TPEYTONBHEES SJEMEHTH B AWHEH-
HAS AmmpokcEMUpyIowas ¢qyekiaa, Qnpefenensl, B MATPHIAOH HOPMYRHMPOBKE, OCHOBHBIC 3a8H-
SAMOCTH /IS YIPYrO-HiACTHYECKOTO Teid, IIOCTPOSH METOH pACHeTa VEPYTO-UIaCTHIeCKodt
MATPHTIE], I8 Teia ICJ9AHAIErocd yCnoBuo muacruarocta I'ydepa-Museca-I'eHke, B cIryide
HPOCTPAHCTBCHAOTO HATPUKEHHOTO COCTOSAA, IIIOCKOTO HANPUKEEROTO COTOSEET X ILTOCKOH
nehopmMalym. :
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YHCHEANEIe PACETE BPOBSIEHET [ HAEATLHO-BNACTHYECKOIO TENa, HO NONYYCHHBIC 3aBH-
CHMOCTH IPEMEHMMEI A MAaTepEana ¢ YOpouHeHmWeM. PacCMOTPEHBI OCHOBHEIC JTOPHIMEL
PEIes TORYYCHAOH NelHHeioll cHCTeMBI ypaBHeHHH,

OBcyses METOI TEPEMEHBOl KeCTXOCTY W HAYANBHAIX YIROBBIX CHI C €r0 SacTABIM Ciy~
YaeM — METOHOM HAYANBHAIR Hanpsxemml, TIHCIEHHLC PACYETH CBS3AHBL OBUIR ¢ ACCIEHOB-
HECM BOZMOIEHOCTA HOABJICHEs PASTPYKCHHOIQ COCTOSHAR B OTHGNBHBIX NICMCHIAX HIIACTHEEX

| COTYTCTBYFOMIEro BHGIHEH HAPPY3Ke KOHCIpyxmmm. Palora COACPXAT COOTBETCTBYIONMHC Airo-

PHTMB], KaK ¥ TNCICHHLIC PACYeTEL
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