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THE SHAKEDOWN OF CIRCULAR ARCHES FOR MOVABLE LOADS

CZESEAW CICHON (KRAKOW)

The static approach is applied to method analysis of arches under movable loads. The shake-
down load value can be computed if the distribution of residual stresses is known, and limits
of passive processes are evaluated in discrete nurmbers of the cross-sections layers. Numerical exam-
ples show that the first load passing is decisive and that the range of admitted shakedown loads

is limited by value obtained from the first and the second passings.

1. INTRODUCTION

In the paper, the problem of computations. of a circular arch for. movable loads
is considered. Owing to the assumed elastic-plastic properties of the material, the
problem is much more difficult than this of the calculation of influence lines and is
connected with the problem of the plastic shakedown of the structure.

The assumed model of the body and the static indetermination of the system
cause the state of self-stresses in the arch after a certain number of passings, which
may be adventageous for the arch. Namely, the loading, determined then, such
that no further passing causes the increment of the permanent displacement, will be
greater (or, at least equal), than the loading of the previous passings. We call it a shake-
down loading for the arch after a definite number of passings. The proposed term
stresses the essential features of the computed quantity, though it is not fully
compatible with the definition within the classical theory of shakedown. Further-
more, it is shorter than the precise definition (the maximum value of the movable
load, obtained after a definite number of passings; for which there is no increment
of the permanent displacement of the arch in further passings),

In this paper, we dea! with the problem of computations of the load, defined
in this way. :

To obtain the effective solution, the whole history of the loading process of the
arch should be taken into account. This feature differs essentially (and makes more
complicated) our problem from the classical problem of the shakedown of the
structure. : ]

The method of analysis, applied in the paper, is connected with B. G. NFAL'S
theorem [8], this being the particular case of MELAN'S theorem [7] for the material
with hardening.

A very few papers, concerning the analysis of elastic-plastic structures with
movable loads, are available.’ These papers, e.g. [3, 5], are confined to the analysis
of two- and three-span continuous beams, taking into account the bending moments
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and considering ideal elastic-plastic properties of the material. The hardening of
the material and the influence of the geometric non-linearities are taken into account
in [4] for the analysis of the frame structure. :

In the paper, the following basic assumptions are made.

1. The load consists of concentrated forces of the fixed direction and values
independent of time, acting in the plane of arch, which is the principal plane of
bending as well. -

2. The change of position of the loa.d on the arch is sufﬁmently slow to neglect the
influence of the inertial forces and kinetic energy.

3, The principles of slender rods with small curvature are fulfilled (the consider-
ations are limited fo the axis of the arch and Bernouli’s principle of plain Cross-
sections works).

4. The influence of shear stresses on the deflection and yielding of the arch is
disregarded.

5. The material, treated as the material continuum, is initially isotropic, elastic-
plastic with the single lincar hardening. '

6. The structure of the material does not change during the process of loading.

7. Geometric equations are formulated for two cases:
i) under the assumption of geometric finearity, and
i) with geometric non-linearity.

Below we list the main symbols used in the paper.
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unitless coefficient in the physical equation,

modulus of the material hardening,

angle of rotation of the normal vector fo the axis of the rod,
angle of disposition of the force Py on the arch,

deformation,

deformation on the yield limit,

plastic deformation,

reduced deformation,

deformation on the boundary of the passive process,
deformation of the axis of the rod,

follower parameters in the physical equation,

actual unitless yield limits for the compression and extension,
unitless stress,

stress,

yield limit,

slope of the rod before deformation (independent variable),
area of the cross-section,

slenderness of the arch of the rectangular cross-section (H, \=Hy==H),

shape coefficient of the cross-section (§ — elastic section modulus of
cross-section), '
cross-section number of the arch, /=0,1,2,..01,

position number of the load, j=0, 1,2, .4,

unitless parameter of curvature,

parameter of geometric non-linearity,
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m=M/2FHg, unitless bending. moment,
n=Nj2Fc, unitless normal force,
(n) number of passings of the load on the arch, #n=1,2,3, .., N,
p=P{2Fg, unitless load,
Psgr parameter of the shakedown load,
r layer number for the sandwich cross-section, r=9, i,2,.., R,
pe=0"fo, residual unitless stress,
t="T[2Fc, - unitless shear force,

u=Uf2H, w=W/2H unitless tangentlal and normal displacements of the axis of undeformed
arch,
w angle coordinate of the point of the load disposition,
Z loading program,
28 central angle of the circular arch.
The asterisk* denotes the guantities, memorised by the computer during the computations.

2. SHAKEDOWN LOAD FOR THE ARCH AFTER THE DEFINTTE NUMBER OF PASSINGS

Let us assume- that the load of the system agrees with the program of loading.
We write this program in the form
@

@y Z={{P} {6} (% Wor Wi}y, k=1,2,3, ., K

In the above formula {P;} is the set K of values of the system of loading forces,
{Cx} — the set of values of angles, determining the disposition of forces on. the
structure, and {x}—the set of numbers, determining the time independent
configuration of loading. The met-
hod of passing of the Ioad on the
arch is estabhshed by the extreme

ftel

S F=29

_h__“?ﬂ
;'.; ) ‘b
w2
17

‘@'
hue

‘positions (y/o and !//L of the force,
distinguished from the system of
loading forces, as shown in Fig. 1.

For the cross-section with one
axis of symmetry, the formula for
stresses in the cross-section layer
z=Z{(H, + H,) takes the following
unitless form o

Fig. L.
{2.2) L) =n+y, mz, ®

The index ¢ in this formula indicates the elastic solution of the structure.
We write the yield condition for the cross-section in the form of the double
inequality

(2.3) s (z, < (2)+p(2)<st (2, 0).

In this formula, s~ and s* are instantaneous (at the instant of time ¢) limits of
passive processes, p is the residual stress in the structure, resulting from the plastic
deformation.
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Further, we are dealing with the one-parameter load of the form:
(2.4) o Py=pPy. L
Then we can write for the elastic range :
me=pi (o2} {Lhvs 0)s
ne=pa({pg}: {lch v 0)-

We limit our considerations to countable sets i of cross-sections and ¥ cross-section
layers. Substituting (2.5) into (2.2), and subsequently into (2.3), we obiain the system
of inequalities limiting the sought — for value of the load parameter of the r-th Jayer

2.5

5T — | s¥—pe
(2.6) L P
nt‘l‘?zmzr Aty 2,

Assuming that the condmons (2.6) hold for the equality sign, the pa:rameter
of the Shaigedown load pgyr for the whole arch can be found from the formula
{2.7) Py =Min min p,.

Then we can find the shakedown load for the arch, making use of the relation
(2.4).

The method proposed requires a systematic search of chosen layers of every
_crosg-section of the siructure for the successive load dispositions. The system of
inequalities. (2.3) allocates the elastic range for the cross-section on the plane (»°, mey
[6]. From this point of view, the shakedown paraieter is the maximum value of the
loaded parameter p, obtained for the isotropically “extended” path of loading
[defermined by the Egs. (2.5)]. This extension is made to reach the point, common
with the straight line, bounding the actual elastic region of the cross-section.[2].

To use effectively the condition (2.7), the actual limits of passive processes s~
and s* and the field .of residual stresses p (z, ¢) must be known The method of com-
putatmn of these quantities is presented in the next Sccuon of the pa,pm

3. METH(SD OF COMPUTATION OF THE ELASTIC-PLASTIC ARCH ..

3.1. Physical equations

Let us assume that the arch is made of the elastic-plastic material with the single
linear hardening, and the non-ideal Bauschinger effect. The adopted schematization
of the plot s(¢) is shown on Fig. 2.

Let us write the physmad equation in the accrual form

(3 1) ' . - As=ade,
where a=1—for passive processes, #=o — for active processes.

We take account of the Bauschinger effect, introducing the measure of the eﬂ'ect Xe
This quantity sets the straight line, being the set of all points with the equal distance

from the actual limits- of passive processes. For limit cases, we have y =« uldeal
Bauschinger effect, =0 — isotropic hatrdening of the material.



THE SHAKEDOWN OF CTRCULAR ARCHES FOR MOVABLE LOADS 6458

‘We obtain the value of stresses £~ from the formulae

for y=«
1—u
5§ = e¥—1,
- Oi ’
for y#«
A o : ‘ o :
. sT=l—— e* —1 - homogeneos passive_process,
=y l-a/" pE
{3.2) 2 7 :
5 e* —g* — multiple passive process.

=1,

It follows from the above formulae,
that to find s in the general case of cyclic
processes and nonideal Bauschinger effect,
two independent parameters s* and e¥
must be known. These are: the maximum
stress and the corresponding plastic deferlfﬁ;
ation, respectively. These guantities, con-
taining the history of the loading process,
must be calculated and actualized during
the analysis. We achieve this by the use
of memory of the computer.'

In the problem under consideration,
the appearance of multiple processes (e.g.
cyclic) should not be excluded. We des-
cribe them through the formulae (3. 1) and
{3.2). The formulac correcting the values of e* and 5* 'snd the procedure itself
have been presented 'in [1].

Fig. 2.

3.2, Govefning equations for the arch in the accrual form

The system of govérning equations for the elastic-plastic arches with movable
load consists of six non-linear ordinary differential equations in thelr canonical
form and two algebraic quasi-linear equations [1]:

du g cw dw

dp 97T _'?’_(qu) d_qo=uhﬁ/y1",
{3.3) ﬁ=-€ik+/'!.;vlw f-t_—— —-n(1+Aﬁ)

dp 71 T dp dy

dn ap an 2

= (1-1—170“) %=—‘y;'t(l+ﬂ»3£ﬂ),
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1 1
(3.4) an=I, d> +— L Ak, Am=I A> +5 L 4k,
1/2
(3.5) L= [ a@2'dz; 1=0,1,2.
' —-1/2

The discontinuities of the normal force 7 and the shear force ¢ at the points of
the load disposition should be taken into account in calculations.

nly=nl P sm(@—y— 25,

(3.6)
miy = —py COS B—w— A5

The parameter 1, introduced in the above equations, makes possible to inclode
(A=1) or to neglect (A=0) the influence of geometric non-linearities (moderately
large deflections) and the principle of stiffening on the deformation of the structure.
The system of the Egs. (3.3), (3.4) has been solved by the half-inverse method,
presented in [1], changing the boundary problem into the problem: with three initial
conditions. ~ ‘

We express the increments from the Eq. (3.4) by the following formulae:

£ *
3 A3=3;;—3;;..1, An=ny—n; 1,
' ] Ed
Ak:kij""ki —1a Am=mu"“‘mi —1
i i

The-accrnal method applied has climinated, during the computation, the diver-
gence of the iteration process resulting from the interaction of two discontinuities,
namely the discontinuity of the derivative

A a2 of the assumed extension plot and the
o / discontinuities of the discretized cross-sec-
il tion, as shown in Fig. 3. The broken line
s~ *éﬂ-"‘r’.ﬁ’, stands for the plot of s (¢), where the loop-
44— 1" may occur, as it actually is between points.
| prag] 2’ and 2.
’ Below, we present the method of exact
9 description of the plot s (). The idea of

of

this method is to divide the increments.

Afi and A, corresponding to the transi-

~ tion of the state of stresses from the point

" Fig. 3. I to the point 2 into parts Afi and A,

for the point 4 of the plot to be admis-

sible, and the remaining parts, necessery for the transition from the peint A to the
point 2. The point A is described by the corresponding deformation e,.

City o

'The values of e, versus the increments of the deformation de=e—e, are laid
down in the Table 1, e being the actual deformation, and e; — actual value of
plastic deformation.
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Let u be the ratio of deformation increments

€g—€j—1

(3.8) u=

Ae_,' ?
Where r—0.5R
dej:.da+sz —R—— .

Assuming the increments of the normal force and the bending moment to be
sufficiently small, we can set

(3.9) dii=(L—p) 4n, Am=(1-—w)dm,
(3.10) sf_l::ajr_1+,uda, k‘f_1:=kj_1+ﬂdk.

o+
The values A and 4ri, obtained from (3.9), we substitute into the system of
equations (3.4), and then we find the increments 43 and Ak. Subsequently, according
to (3.10), we calculate the deformation e;. It corresponds to the transition from the
point 4 of the plot to the point 2, the latter corresponding to the actual state of
stresses. .

Table 1,
Ade=e—e¢ €y
de>s* ¥ gH
1+
. Ae < —s* - ud e* £ e¥—g*
ﬁ* 1—x 1-x
= Aez=0 e¥ | s*
>4
de> —s¥ 4 - ¥ 1+
1y Ae<Q | x e*—g*
1--x
oL
de> -g¥41
11— e*+1
—a
;i - Aez(
et —1< deg *4-1
= 1—a A 1—a ent de<0
1
e*—1
de< e¥—1 1—a
—a

If the situation described takes place in r-layers of the cross-section of the arch,
the coefficient g is calculated as the minimum of all

(3.1H , p=min g,
r

We finish, this iteration process when the value g=1.0 is reached. The method
is the particular case of the procedure applied in [9] for the material with multiple
linear hardening.

The algorithm of the numerical integration of the set of the Eqgs. (3.3) and (3.4
is presented in figure “Block diagram No. 1 — Numerical integration of the set of
governing equations (3.3} and (3.4)”. In the diagram, PC denotes the block of formu-
Iae of the adopted method of integration of the Egs. (3.3).
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Diag. 1.

The procedure presented can be used for the computation of elastic-plastic arches
with an arbitrary disposition of loads. If the load were beyond the arch (the extreme
force of the system of load placed on the support), then the resulting state of stresses

would be the sought-for state of residual siresses. We compute the value of these
siresses from the formula '

(3.12)

__ &
h=ee,.

The elastic solution of the érch i and m follows from the repéa.ted solution of the
arch for p=1.0. We use here the set of the Egs (3.3) und (3.6), in which p=1.0,
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A=0, 5=n and k=m/6 should be substituted. The set of the Eqs. (3.3) is then linear
and the free initial conditions are found from the first approximation of the iteration
process for the boundary conditions.

4, COMPUTATION ALGORITHM '

The computation algorithm of elastic-plastic arches is presented in ﬁgure “Block
diagram No. 2 — Computation of elastic-plastic arches for movable loads”.

STORAGE DATA , .
E‘,‘ S‘[ﬂ-‘/?, 0-’[] Ap, A, 8, 2)!; Ep,ﬁ‘:‘a_, Ay, Z} Cuax ? me L R!
stk ntm* 1] O K, lx , N, (ol T:WI], By
e )
e =
3 _a )'\
.‘g |
¥
’ W=t JAY
J=O 2 .y T
Y
[ v 73
g % PIWP o SFLOW CHART By
Y
I_ﬁ\ REPFAT STORA-
- BE UFDATING
‘ ¥
max|els emoy
MAX[ U} € gy
Co A WK Waray 3‘
= Do : o 1 7 g I By
1ol i
W< Wy ro
7, 7 v f
7 o g7 }
' .
! ) — 57
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The program of computations consists of three main parts: the part containing
the numerical integration — NC (the block diagram No. 1), the part of correction of’
the free initial values — PSWP, and the part containing the computation of the
shakedown load — pgy [the formula (2.7)]. The listed main parts of the program are
connected to assure the automatic computation. We give the following input data:
the support conditions of the arch - SCH, the value of the parameter 4, the loading

“program Z, the increment of the load Ap, the number of the load passing on the arch
N, the number of switchings of the computation of pgy — Ip [1 : N;]. The algorithm
makes possible to perform the calculations until either the given program of loading
is realised, or the maximum value of the shakedown load is found, the latter for
the case of the intervention of one of the following limitations: for the admissible

. displacement, or plastic deformation, or for the shakedown when (m) <N.

The ending of computations takes place in three different cases: K, — excess of
one of the limitations for #, w or e under the load different from the initial py; Ky— -
the shakedown did not happen either after the given oumber of passings, or for N=1;
K, — the shakedown of the arch has taken place as the result of the decrease of
load pg.

The shakedown condition (non-increasing permanent displacements) is checked
after every passing of the load on the arch.

5. NUMERICAL EXAMPLES

As an example, the simply supported circular arch of the rectangular cross-section
2H % 2B, loaded by the single vertical concentrated force, has been investigated
(Fig. 4). .

The boundary conditions for both supports of the arch are presented in the
Table 2.

X., X, X, denote the free initial 'values, Introducing the parameter ¢ into the
formula for ¢, the boundary condition could be written for a particular position of
the force, this being the point ¢,. If we assume
4=1, we obtain the two-point symmetric prob-
lem of the type “34-3” (three free initial values).
On the other hand, 1=0 is leading to the prob-
lem of the type “2+42” (two free initial values).

The integrals (3.5) have been calculated, in
particular cases, by the use of Simpson quadratic
formula. Physically, this procedure means the
replacement of the real cross-section by the
substitutional sandwich cross-section with equi-
distant layers. The set of differential equations
(3.3) has been integrated by the use of Runge-
Kutte formulae of the fourth order. The error has been estimated by the integration
with a smaller step of integration, and the difference of results at the end-point ¢
has been used to measure the accuracy of calcylations.
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Basing on the presented block-diagram, the program in the language ALGOL-
1204 has been prepared and the calculations have been carried out on EMC ODRA~ .
1204. .

Table 2.

Initial conditions (po=0) ‘ Final conditions

(pL=20)
pll—c) . :
=1 ntg 0+ — [sin #+sin (@—y)]p +AXy u=w=0
sin 268 :
B=Xz, k=X, i=w=m=0 Am=0
_{1 for w=0
" {0 for w0

The examples have been computed for the arch of the central a-ngle 20=60°,
radius R=350 cm and for the two- and five-layer cross-sections, The data. of the ma-
terial:

E=21x105kG/em?, a=5x%]10"23,

5.1. Two-layer cross-section

The slenderness of the arch y, has been computed from the compatibility con-
dition for surfaces and sectlon moduli of the two-layer cross-section and for the
optimal five-layer cross- ~sectibn. We have assumed : ¥ =0,016, £,=3.14x 104,
x=0o (ideal Bauschinger effect), dp=2° Ay=6° B=1x10-5

The computations have been carried out for three different loading programs

@
(5.1)  Dl: Z={p,0-jdy,j=1,2,3, .. JO{WO—Q Wi

1)
_ W, =20, WLﬁo S M=1,2,3,.., N},
(52 D2 Z={p,0-jdp,j=1,2,3, .., 7,0, {%=00, ny=48°}

{2) 2) @ ()
oo =489, 3, = 189}, {WO 182, v, =20}, {yro =20y, =0,

W,_:zo, o} (W)=4,5,6, ..., N},

(1} (1) 2)
(5.3 D31 Z={p, O—jdy,j=1,2,2,..,7,0, {yro=0° y, =30°, {yr, =30°,
n =0}, {yn=20—prr, 5,,}29 P =0% ..} (1) =3, 4,5, .., N}.
The dependence of the shakedown load pgy on the value of the load P, passing
the arch according to the loading program DI, is shown in Fig. 5. For the load not
exceeding the value p=0.1027, the shakedown of the arch has taken place after the
first passing, and then pgy > p. The biggest value of pgg=0.1049 has been obtained
for p=0.1020. For the load p=0.1030 and bigger, the shakedown of the arch has
not occured, and then Psa<p. The striped region in the Figure contains the admissible
values of pgy; it is limited by p on abscissa, for Wthh the inadmissible deflections
of the arch would appear.
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The programs D2 and D3 have been carried out for p=0.1030 and A=0. It
follows from the computations that, after initial peculiar passings, the behaviour
of the arch for further passings is similar to these for the program D1, The displace-
ment line of the axis of the arch is shown in Fig. 6 for w=12° The plots for D1

Table 3.
o , i N ‘ @ -
L 2 3 4
1 ‘ 0.1019 | 01026 0.1026 —
0.1030 0 - — 0.1026 —
3 — 0.1004 0.1019 0.1026

.and (n)=2, D2 and {n)=4, D3 and (n)=4 are the same. The values of Psn, collected
in the Table 3, confirm the feature of the structure to “forget” the pasi history of
loading. : e

3.2. Five-layer cross-section
The slenderness of the arch has been assumed to be
y;=0048, £,=942 %1074, Ap=3°, Ay=3°, B=1x10"3,

The computations have been carried out for the program D1, for which we adopt
the notation P1 in the case of five-layer cross-section for A=0, and P2 — for A=1.
In the preliminary testing computations the yielding of different signs did not appear
in the same layer of the cross-section. Therefore, the value y=o has been taken,
which is leading to the simplification of computations and, simultaneously, is the
most disadvantageous case for the value of psy. The value of the passing load was
p=0.125, the maximum number of passings N=35. '

It follows from the performed computations that the utmost layers of the arch
(r=0 and r=4) have been yielding in consequence of the action of the loads, the
plastic zone for the layer r =4 (external) being between the cross-sections 6°< p<54°,
and for the layer r=0 (internal) — between the cross-sections 9°< p< 18° and 42°<
< ¢ 54°. The plastic zones have occured during the first passing, and they have
not increased during the next omes. Merely, the increment of the plastic zone has.
taken place in the layer r=4 of the cross-section @=48°,

As an example, the stresses and deformations in the most strained cross-sections.
p=12° and ¢=48" are presented in the Tables 4 and 5.

The values of the shakedown load pgy, computed for the successive passings
of the load p=0.125 are collected in the Table 6. Similarly to two-layer cross-section,
the values psy converge to each other for even and odd passings, with the increas-
ing number of passings.

The displacement line for A=1 is presented in Fig. 7 for different positions of
the force on the arch and different number of passings. '



Table 4,

@ r - (11)
1 2 | 3 4 5
0 1.5339 14605 | 1.4295 1.4243 1.4243
o 1.0027 1.0023 1.0021 0.9978 0.9978
- 4 —1.7306 —1.6698 —1.6446 —1.6403 —1.6403
—1.0037 —0.9424 --0.9175 —0.9132 —0.9132
o 13853 | 1.3802 1.4800 1.4880 © 14751
- 1.0019 0.9969 1.0024 1.0024 1.0024
4 —1.7048 —1.7007 —-1.8112 —1.8114 —1.8281
—1.0035 —0.9994 —1.0041 --1,0041 —1.0041
Table 5.
o - )
1 2 | 3 4 5

o 14812 1.3583 |  1.3583 13570 1.3570
- 1.0024 1.0018 1.0018 1.0018 1.0018
- 4 —1.7022 —1.6183 —1.6183 —1.6174 —1.6174
—1.0035 —0.9146 —0.9146 —0.9137 —0.9137
o 1.3896 1.3851 1.4044 1.4043 14242
g 1.0019 " 0.9974 1.0020 1.0020 1.0020
A —1.7123 —1.7086 —1,7394 —1.7394 —1.7704
—1,0036 —0.9999 —1.0037 —1.0037 —1.0039
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Table 6,
. [
A
! i ‘ 1 | 2 [ 3 T & s
1 0.1078 0.1170 i 0.1102 0.1168 0.1103
P 0.1250
0 0.1113 0.1193 i .1144 [ 0.1189 \ 0.1147

6. CONCLUSION

The above;presellted method of computation of elastic-plastic arches for mov-
able loads and  the computation of the shakedown load have proved to be effective
and wseful in applications.

The accrual form of the physical equation has advanced significantly the compu-
tations, in spite of the increment of the computer memory (e*, s*, 2%, k*, n*, m*).

The presented formulae and methods are simple in applications, and they work
even in the case of the quast-cychc deformation processes with the mixed Baunschinger
effect. :

The loading program for the arch, described in the paper, admlts the different
ways of load passing to be considered.

In the case of forseen significant deflections of the structure, the analysis can
be carried out with the principle of stiffening neglected (i.e. 2=1).
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STRESZCZENIE

PRZYSTOSOWANIE LUKOW KOLOWYCH DO RUCHOMYCH OBCIAZEN

Do analizy fukéw poddanych ruchomym obciaZeniom zastosowano podejicie statyczne, Wartosé
obcigZenia przysiosowania obliczono na podstawie znanego rozkladu naprezen resztkowych i granic
procesow pasywnych w skoficzonej ilosci warstw przekroju 'popr'zecznego huiku. Przykiady nume-
ryczne wykazuja, Ze przejicie plerwszego obciazenia jest decydujace, a zakres dopuszczalnych
obcigZen przystosowania jest ograniczony przez wartosci oirzymane z pierwszeogo i drugiego przejécia.

PezmomMme

TIPUCHTOCOBIIAEMGCThA KPYIOBBIX APOK K HNOABMDKHBIM HAIPYIKAM
B macroameit paloTe i AHANHE3A APOK TONBEPIHYTEIX JNEHCTBHIO IOIBIKHBEIX HATDYSOK
HCIONB30GBAH CTATAYECKAR Hoxxod. Harpyska npucrrocoDAeMocTd BHIYHCHACTCH Ha OCHOBE Habi~
JIEHHETX OCTATOYHLIX HANPSMGHHMH W NPEACHOB IACCHBHEIX LPONECCOR B KOHGUHOM HHCHE CIOGE
TIOHNEPETHOTO CEYCHESA apiy. VI3 MHCNeHHOTo aHANH3A COEAyeT, YTO PCeINAFOIHM SBIACTCH PRSIt
Tepees s ¥ YTO OPOCTDAHCTBO HONMYCK2EMBIX 3HAYSAME HarDy3KH NPHCHCCOOASEMOCTH OTrpan-
9eHO 3HAYCHWAMA LM OCPBOTO W BIOPOro LEpes3iios.
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