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In this paper, authors reminisce on years of scientific cooperation and achievements on the
personality of Piotr Perzyna and his Theory of Thermo-Viscoplasticity, which are displayed
from remembrance. All the essence of latin wordsMaster, Doctor, Docent, Professor are in some
kind the reflection of the scientific history that has happened during the last 40 years. For every
author the shift of 10 to 20 years shows that Piotr Perzyna served with his personality and
knowledge for two to three different generations, working with authors as 20/30/50 years
younger man. Now, one year after Piotr Perzyna passed away in 2013 (50 years after publishing
the basic paper on Theory of Thermo-Viscoplasticity in 1963), the role he has played for authors
has become much clearer and conspicuous as well as in a wider context. Like Piotr = Peter =
Petrus = Kηϕάς Professor Perzyna is the rock on which we build.
Let it remain not only in memory.
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1. Introduction

There is no doubt that Professor Piotr Perzyna belonged to the most pro-
found group of scientists working on mechanics in the last few decades. His
name is mentioned hundreds of times in exposed monographs and journals.
Naturally his works are mainly devoted to the famous Perzyna’s Theory of
Thermo-Viscoplasticity (PTTV) [27, 28]. The authors of this paper were for
many years the beneficiaries of the fruitful cooperation and deep scientific dis-
cussions with their mentor – Piotr Perzyna. In particular, as a result of this
cooperation it was possible to extend the theoretical background by introducing
the numerical tools to check the validity of theoretical assumptions by com-
parison of the computational results with the laboratory tests. This coupling
of theoretical formulations supported by numerical results verified by experi-
ments, influenced the evolution of the mathematical assumptions. One of the
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good examples for this is the evolution of understanding of the internal state
variables vector, which at the beginning was restricted only to the rate of defor-
mation field and later extended by the scalar volume porosity. At the end, the
vector of internal state variables consists also of porosity tensor which evolution
introduces the enforced anisotropy during the deformation process.
The other important aspect of the PTTV is the possible way of dealing with

the so called softening problems due to temperature rise and growth of localized
plastic deformation. Even at the beginning of the eighties of the XX century, sci-
entists struggled with unexpected effects of pathological mesh dependency that
appeared in computational results. Several concepts were proposed to overcome
this problem and introduce the regularization effects. When using the proposed
in this paper formulation for large strain rate problems, the regularization is
introduced intrinsically and moreover the places for plastic strain localization
zones and their widths are simply the results of the wave interactions in any Ini-
tial Boundary Value Problem (IBVP). In this paper, attention is placed on these
characteristic aspects of Perzyna’s theory. The paper shows the general formu-
lation of the set of governing equations and the discussion of selected problems,
including those which can be still under consideration and in focus of future
research.

2. General framework of Perzyna’s viscoplasticity

Let us follow the general framework of the thermodynamical theory of vis-
coplasticity in the form proposed by Perzyna in the early 1990’s [31] (the one
strongly influenced by works of J.E. Marsden group cf. [1, 19]). This descrip-
tion bases on Riemannian manifolds and utilises Lie derivative – both facts are
crucial for self consistency and clear physical interpretation.

2.1. Kinematics

The abstract body is a differentiable manifold. To describe the kinematics
of the finite elasto-viscoplastic deformations we use the multiplicative decompo-
sition of the total deformation gradient to the elastic and viscoplastic part [18]

(2.1) F(X, t) = Fe(X, t) · Fp(X, t),

where F =
∂φ(X, t)

∂X
is the deformation gradient, φ describes the motion, X de-

notes material coordinates, t represents time and Fe, Fp are elastic and vis-
coplastic parts of the deformation gradient, respectively.
We accept the Euler-Almansi strain measure because its Lie derivative de-

fines directly the symmetric part of the spatial deformation gradient, thus spatial
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deformation gradient defines truly the rate of strains. So, we have the funda-
mental relation

(2.2) d♭ = Lυ(e
♭) =

1

2
(l+ lT ),

and simultaneously

(2.3) de♭ = Lυ(e
e♭), dp♭ = Lυ(e

p♭),

where d = de + dp is the symmetric part of the spatial deformation gradient

l(x, t) =
∂υ(x, t)

∂x
, υ denotes spatial velocity, x is the vector of spatial coor-

dinates, Lυ stands for Lie derivative, e stands for the Euler-Almansi strain,
♭ indicates that a tensor has all its indices lowered [19] while indices e and p
denote elastic and viscoplastic parts, respectively.

2.2. Constitutive postulates

Assuming that the balance principles hold, namely: conservation of mass,
balance of momentum, balance of moment of momentum and balance of energy
and entropy production, we define four constitutive postulates [29, 31]:

(i) Existence of the free energy function ψ. Formally we apply it in the fol-
lowing form

(2.4) ψ = ψ̂(e,F, ϑ;µ),

where µ denotes a set of internal state variables governing the description
of dissipation effects and ϑ represents temperature. It is important to no-
tice, that we have used semicolon to separate the last variable due to its
different nature (it introduces a dissipation to the model), without µ the
presented model describes thermoelasticity [7].

(ii) Axiom of objectivity. The material model should be invariant with respect
to diffeomorphism (any superposed motion).

(iii) The axiom of the entropy production. For every regular process the con-
stitutive functions should satisfy the second law of thermodynamics.

(iv) The evolution equation for the internal state variables vector µ should be
of the form

(2.5) Lυµ = m̂(e,F, ϑ,µ).

where evolution function m̂ has to be determined based on the experimen-
tal observations.
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2.3. Constitutive relations – general form

We can write the so called reduced dissipation inequality in the form [19, 34]

(2.6)
1

ρRef
τ : d− (ηϑ̇ + ψ̇)− 1

ρϑ
q · gradϑ ≥ 0,

where where ρ denotes actual and ρRef reference densities, τ denotes Kirchhoff
stress, ψ is the free energy function, ϑ is absolute temperature, η denotes the
specific (per unit mass) entropy and q is the heat flux. Using postulate (i),
Eq. (2.6) can be rewritten to the form:

(2.7)

(
1

ρRef
τ − ∂ψ̂

∂e

)
: d−

(
η +

∂ψ̂

∂ϑ

)
ϑ̇− ∂ψ̂

∂µ
Lυµ− 1

ρϑ
q · gradϑ ≥ 0,

so because of arbitrariness

(2.8) τ = ρRef
∂ψ̂

∂e
,

(2.9) η = −∂ψ̂
∂ϑ

,

hence Eq. (2.7) reduces to

(2.10) −∂ψ̂
∂µ

Lυµ− 1

ρϑ
q · gradϑ ≥ 0.

The final form of evolution equations for the specific thermomechanical pro-
cess requires postulation of a set of internal variables governed in µ.

3. Aspects and mile-stones of theory of thermo-visco-plasticity

3.1. Observation and choice of effects obtained from multiscale experiments

An analysis of experimental results has always been very carefully inves-
tigated in research under Perzyna’s supervision. His wide contacts and visits
in worldwide famous experimental labs were constantly the source of mate-
rial observations and measurements that were the basis to show that the shear
band localization failure in dynamic loading processes is affected by complex
cooperative phenomena. From this analysis it was also evident that such co-
operative phenomena as the thermo-mechanical process, the instability of the
flow process along localized adiabatic shear bands, the microdamage process
which consists of the nucleation, growth and coalescence of microcracks and
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the final mechanism of failure are the most important for a proper description
of the fracture phenomenon under dynamic loading. All these cooperative phe-
nomena might be influenced by different additional effects such as the strain
rate sensitivity, the induced anisotropy, the thermo-mechanical couplings and
others.
The high rate deformation of face-centered cubic metals, such as copper, alu-

minum, lead and nickel has been extensively studied. It has been shown that the
apparent strain rate sensitivity of such metals has two origins: that associated
with the finite velocity of dislocations, and that connected with the evolution
of the dislocation substructure. The first of these two components – the instan-
taneous rate sensitivity – is related to the wait-times associated with thermally
activated dislocation motion. The second component has more to do with the
relative importance of dislocation generation and annihilation at different strain
rates, and shall be referred to as the strain rate history effect. The rate and
temperature dependence of the flow stress of metal crystals are explained by
different physical mechanisms of dislocation motion. The microscopic processes
combine in various ways to give several groups of deformation mechanisms, each
of which can be limited to the particular range of temperature and strain rate
changes.
In a realistic way, despite the rather complex than simplified form, Perzyna

decided to include in the description not all effects observed experimentally.
Constitutive modelling was excellently understood by Perzyna, as a reasonable
choice of effects which are most important for explanation of the phenomenon
described. Experiments from different, macro-, meso-, micro- and in the last part
of Perzyna investigations from nano-scale, were the rock foundation of theory
and constitutive modeling.

3.2. Mathematically well-posed formulation

Rate independent continuum with introduction of material instability in the
Drucker’s sense, does not quarantine well-posedness of the problem. Even if it
allows for calculations of localization zones (for a wide class of commonly ac-
ceptable from point of view of engineering applications materials) both the an-
alytical and numerical solutions become meaningless. The next symptom when
computational results are obtained for these materials, one can prove easily that
they exhibit so called “pathological mesh dependency” – the result, especially
the width of localization zone, is essentially different for models with another
discretization (for example double, four more dense meshes).
The resolution for those problems comes from the theory of viscoplastic-

ity, when fundamental research on mathematical modelling problem is taken
into account. It was proposed and proved that introducing viscoplastic con-
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stitutive model does make the important change. The mathematical problem
does now present that no loose of well-posedness and no mesh-dependency is
present so far. Also, it is viscosity – material parameter – that plays the role for
mathematical regularization of system of equations. The material certain value
of viscosity parameter in the defined initial boundary value problem, results in
specified characteristic of localization zone with its specified width. According
to the values of viscosity distinguish another physically motivated mechanical
problem with specified plastic strain localisation process and width of shear
band.
The problem of formulation of governing equations is particularly important

when starting to describe the fundamental phenomena which appear during fast
dynamic processes like the creation and development of localized zones of defor-
mations. Two important qualitative results should be in focus in our interests:
(i) the width and directions of plastic localization zones (according to the exper-
iments they are sometimes very narrow but still have finite dimensions), (ii) the
shape of concentrated strains depends significantly on the type of loading and its
velocity (usually the localization patterns are different for quasi-static and dy-
namic cases). The levels of possible description of localization phenomena based
on experimental observations were discussed in detail in [10, 21, 24]. Among
different possible constitutive models which deal with softening plasticity, the
one that is chosen is rate dependent. It has to be also emphasized the the ex-
istence and possible using the other models also introducing the regularization
effects like: smeared crack models, non-local theories models, higher order gra-
dients models, embedded models or Cosserat models. In computations all of
them need to introduce explicitly additional parameters like small constitutive
or geometric imperfections or width of localization zones (embedded elements)
to initiate the place of concentrated plastic strains. In the case of rate depen-
dent models (PTTV) both the width and directions result from wave interaction
for the specific IBVP and the nature of loading (the length scale parameter is
introduced implicitly to the model).
It is convenient to start the discussion of posedness of the IBVP by writing

the governing equations. Herein we assume adiabatic regime and the set of
internal state variables of the form

(3.1) µ = (∈p, ξ),

where ∈p is the equivalent plastic deformation ∈̇p =
(
2
3d

p : dp
)1/2
, which de-

scribes the dissipation effects generated by viscoplastic deformation, and ξ is
porosity (scalar) which takes into account the intrinsic microdamage effects.
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We have [10, 23]

φ̇ = υ,

υ̇ =
1

ρ0M (1− ξ0)

(
τ

ρM
gradρM + divτ − τ

1− ξ
gradξ

)
,

ρ̇M =
ρM
1− ξ

Ξ− ρMdivυ,

τ̇ =

[
Le − 1

cpρRef
ϑLth∂τ

∂ϑ

]
: symDυ + 2sym

(
τ · ∂υ

∂x

)

−
[(

χ∗

ρM (1− ξ)cp
Lthτ + Le + gτ + τg

)
: P

]
(3.2)

1

Tm

〈(
f

κ
− 1

)m〉
− χ∗∗Lth

ρM (1− ξ)cp
Ξ,

ξ̇ = Ξ,

ϑ̇ =
ϑ

cpρRef

∂τ

∂ϑ
: symDυ +

χ∗

ρM (1− ξ)cp
τ : P

1

Tm

〈(
f

κ
− 1

)m〉

+
χ∗∗

ρM (1− ξ)cp
Ξ,

where ρ0M is an initial density of a body without microdamages, ρM is a current
density of a body without microdamages, Le is an elastic constitutive tensor,
Lth is a thermal operator, cp is a specific heat, χ

∗, χ∗∗ are the irreversibility
coefficients, P denotes the direction of viscoplastic flow, Tm is a relaxation time,
f is a yield surface, κ is a work hardening-softening function, and m is non-
dimensional material parameter.
This evolution form is even better seen when the operator equation is in-

volved [20]. Hence, the inhomogeneous Abstract Cauchy Problem can be formu-
lated in the following form

(3.3) ϕ̇(t,x) = A(t,x) · ϕ(t,x) + f(t,x,ϕ) for t ∈ (0, T ] and x ∈ Ω

with the initial condition

(3.4) ϕ(0,x) = ϕ0,

where

(3.5) ϕ =




φ
υ

ρM
τ

ξ
ϑ



,
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(3.6) A =




0 0 0 0 0 0

0 0
τgrad

ρ0M (1− ξ0)ρM

div

ρ0M (1− ξ0)

−τgrad

ρ0M (1− ξ0)(1− ξ)
0

0 −ρMdiv 0 0 0 0

0 a∗ 0 0 0 0

0 0 0 0 0 0

0 b∗ 0 0 0 0




,

where

a∗ =

[
Le − 1

cpρRef
ϑLth∂τ

∂ϑ

]
:
∂

∂x
+ 2

(
τ · ∂

∂x

)
,

b∗ =
ϑ

cpρRef

∂τ

∂ϑ
:
∂

∂x
,

(3.7) f =




υ

0
ρM
1− ξ

Ξ

c∗

Ξ

χ∗

ρM (1− ξ)cp
τ : P

1

Tm

〈(
f

κ
− 1

)m〉
+

χ∗∗

ρM (1− ξ)cp
Ξ




,

where

c∗ = −
[(

χ∗

ρM (1− ξ)cp
Lthτ + Le + gτ + τg

)
: P

]
1

Tm

〈(
f

κ
− 1

)m〉

− χ∗∗Lth

ρM (1− ξ)cp
Ξ.

Now, it is necessary to split the discussion into two branches. One is so called
Abstract Cauchy Problem (ACP), which takes into consideration only the ini-
tial conditions, and the other one more significant for responsible computations
Initial Boundary Value Problem (IBVP). For the detailed description and dis-
cussion please refer to the works [20, 21, 22, 24]. The well-posedness of the ACP
or IBVP means that the solution for the components of vector ϕ̇ exists, is unique
and is stable in Hadamard or Liapunov sense. It seems to be possible to prove
the conditions for well-posedness of ACP and using the Lax Theorem, define the
conditions for finite element approximation. Unfortunately, for IBVP until now
it is extremely difficult in a strict mathematical way to prove the well-posedness
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of the system of governing equations (for 1-D case it was done by Ionescu and
Sofonea [16]). One cannot count for the general proof for arbitrary IBVP. Fortu-
nately, we are not completely helpless. Using the numerical computations, one
is able to discover the pathological mesh dependency (using different meshes eg.
more dense the typical convergence is not achieved) which is for softening be-
haviour the implicit proof that the governing set of equations is not well-posed.
For this purpose any FEM computational results has to be verified for different
meshes including specific densification in the localized areas.

3.3. Solution existence and uniqueness of softening problem

Well-posedness, as was discussed before does provide the mathematical prob-
lem verification at the formulation and its properties. The separate research was
resolved for the method of numerical solution and properties of numerical anal-
ysis that allow us to end up with verification of computed results. Again having
the viscoplastic constitutive model, it was proved in research by Perzyna [31],
that a solution exist; method of numerical solution is stable, convergent and
obtained results lead to unique results. The rate dependent continuum with
the crucial role of viscosity again has been recognised as a valuable element of
material constitutive formulations.

3.4. Viscosity defined by material parameter

In Perzyna’s Theory of Thermo-Viscoplasticity, the material parameter that
describes the viscous property of material is time relaxation Tm (see Eq. (3.2)).
In problems where softening is analysed as the problem of material bifurcation,
usually the place of localization is in line with the understanding that the zero
thickness of shear band is out of computation results and finding the place is
not correlated with measuring/verifying the width of shear band. Depending on
material taken into consideration, the more brittle are with smaller dimension of
shear band width, tending to zero width in limit, and more ductile material with
finite dimension of shear band width in reality. One has the hope to reflect that
part of plastic strain localization phenomenon by introduction the viscosity in
constitutive model. Taking a range of values for material parameter of time of re-
laxation, the result is like in Fig. 1, presenting the distribution of point velocity
along the specimen. The case of change of the displayed value almost in a point
is related to brittle failure with thin width of localization band. Small value of
relaxation time – correlated with small viscous properties of material – gives
the result like cut-off specimen into two pieces. The advantage is that despite
brittle properties of material there is no mathematical and numerical problem
to go through maximal strength of material and continue computations without
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risk of sudden numerical break-off through softening, even if the localization
zone does not extend the thickness. The opposite material situation, when duc-
tile material is used into analysis, then greater value of time relaxation is used.
Material is more viscous, which means that independently on its real plasticity
characterization, its behaviour in localization zone is more ductile expressing a
wider zone of plastic strain localization [12, 13]. In Fig. 1 it is represented by
quite smooth change of point velocity between 0 m/s and 20 m/s. Estimating
what is the width of localization zone is possible taking this same chance of
point velocity but looking at the horizontal axis where length of specimen is
drawn. In case in Fig. 1 the band width of plastic strain localization is quite
wide and takes about 20% of specimen length. Viscosity in such a way reflects
engineering important property for plastic strain localization zone.

Fig. 1. Distribution of point velocity as a function of dimensionless length of the specimen.

3.5. Propagation of mechanical and thermal waves

Application of the viscous properties in dynamic analysis of very short time
processes becomes important in the description and solution of materials be-
haviour under impulse loading. The propagation and reflection of waves intro-
duces inhomogeneous changes in fields of deformation and stress. The Perzyna
viscoplasticity has got one more important physical advantage; that there is no
need to introduce initial imperfection, when in other formulations without initial
imperfection the localisation does not nucleate and develop [9, 11]. Of course
if one would like to reflect the inhomogeneous, not perfect material structure,
it is possible to provide analysis initially with material imperfections, but due
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to only constitutive relation and the wave propagating in material properties,
no initiation of softening development is introduced. It is worth also to men-
tion, that in most of computed problems it would be hard to explain where and
why the defined imperfection is considered. Other imperfections result in other
deformation development, so other final mechanical state. There is no case for
the problem using viscoplasticity, where no imperfection, no imperfection con-
sideration exists. More over using the formulation with viscous material one
can analyse, how the consideration of initial imperfection introduces additional
mechanical effects, that were out of intention of person who provides structural
analysis. The computer simulation provides illustration of waves interactions
in the evolution of the plastic strain localization especially in softening states.
Observation of the process development by change of point velocity or point
acceleration in the adequate time scale always provides far wider understanding
of mechanical phenomenon under consideration. When the problem formula-
tion includes viscoplasticity the observation of wave effects is valuable as well
(Fig. 2). The value of that observation and the width of perspective is opened
with a new dimension – we have not only waves effects observation, but we

Fig. 2. Point velocity in beam model for the whole and selected moments of process time.
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have the influence of viscosity into dispersion, that is mathematically and later
physically opening to the new class of problems [12, 13].

3.6. Dispersive material character

Stating once again the scientific adventure based on Perzyna viscosity we are
going into the next science territories.
Continuing the usefulness of wave effects observations one meets area of dis-

persive waves, that are extra separated from non-dispersive waves. The border
between in mathematical research is so important that structural scientist and
engineer usually does not realize how much different sphere of investigation there
are when only a bit of viscosity is introduced in mechanical problem formulation.
Observation of non-dispersive elastic-plastic waves is mostly so complicated that
it can not be treated as a standard tool in construction engineering [12]. From
a mathematical perspective, dealing with non-dispersive waves means doing nar-
row part of wave phenomena – the very restricted one to some linear relation
between frequency and wave number. This opens the problem for non-linear
function of group velocity makes it mathematically interesting. It, of course,
brings physical opening as wall (Fig. 3). The key for this opening is the presence
of viscosity in constitutive law. One again we can state the key-importance and
perspective role of viscoplasticity.

Fig. 3. Phase and group velocity as the function of frequency for elastic-visco-plastic solid
(non-dimensional plot with the reference to value of elastic wave velocity).
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3.7. Regularization with straight-forward material length-scale parameter

In problems of plastic stain localization or material bifurcation as well, there
was the common need to introduce any mathematical regularization of the prob-
lem. Having additional problems with mesh-dependency the parameter in rela-
tion to width of localization zone was extraordinary introduced to save the
problem and its mathematical solution from troubles. The parameter, also de-
fined as length-scale parameter was explicitly introduced in the formulation
in different ways within the range of research papers. Some of the proposed
enrichments, however, computationally efficient, have no physical justification,
so are in a artificial way the source of process control, and at once with no
chance of identification. Within the viscoplasticity theory, viscosity itself takes
the role of length-scale parameter. It is not just only internal material parameter
to be identified, but plays the multifunction role, and one of them is length-
scale.

3.8. Diverse way of energy dissipation

Viscoplastic constitutive relation introduces to mechanisms of energy dissipa-
tion. One comes from pure plastic flow described by associated or non-associated
relation of plasticity criterion and direction of rate of plastic strain. The second
mechanism results from dispersive character of wave propagation (Fig. 4). Let
us make the observation that both are independent. Plastic model without vis-

Fig. 4. Plastic equivalent strain for different elastic-visco-plastic material models
with significant and un-significant role of viscosity in energy dissipation.
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cosity presents plastic dissipation. No matter how complicated or how simple
the plastic constitutive law is, it holds the change of external energy delivered
to the system into inelastic energy, the part of energy that is not possible to get
back. And the second model, but with another mechanism of energy change and
dissipation, is non-plastic visco-elastic one, where with no plastic effect, dissi-
pation goes through dispersion, so different change of external energy through
material internal mechanism, but different from point of view of wave frequency
that carry the energy with different intensity of dissipation [13].
And one more new character of physical mechanism of mechanical phe-

nomenon occurs when we include the particle/package based way of energy
exchange. The smooth energy exchange during the plastic flow has got quite
opposite energy exchange during wave propagation in viscous media. Package
based, non-smooth energy exchange in dispersive media, introduces once again
the key-important role of viscous character of constitutive relation, that means
crossing the next border in space of material behaviour description. Step-wise
change of energy transformation versus continuous in time and smooth charac-
ter of mechanical phenomena opens new challenges for softening and failure of
material.

3.9. Smooth and non-smooth distributions within damage and failure

Development of strain and stress variables and other variables (velocity, tem-
perature) within analysis of thermo-mechanical problem meets some physical ob-
servations defining limit. Within Perzyna theory of viscoplasticity some initial
or critical limit are formulated. Meeting limits of width strength of material the
fracture criterion is formulated. The criterion itself works independently whether
the process has got smooth or non-smooth incremental character. As the stan-
dard way of explanation of material degradation the smooth distributions of
damage and failure is considered. So distribution, tendency of changes, the ini-
tiation of failure and its development is rather expected as smooth function.
Appearance of non-smooth, step-function or cyclic character changes is unex-
pected and recognised as the error result at first. But opening the perspective
for the properties of the problem resulting from the propagation of dispersive
waves, taking only the dispersive character of media, makes it possible to exclude
the errors and analyse the non-smooth character of mechanics as adequate and
correct description. That does it result from that perspective: the possibility of
development of crack in even smooth material as non-smooth in time process.
As a package character of energy dissipation, as non-smooth accumulation and
change of external energy into dissipative energy, the process of crack growth
can develop step-wise in time scale, resulting also step-wise increase of distance
in space scale in accordance with wave character during advance of deformation
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process [15]. It means that oscillations or in-heterogeneity. Again one can ex-
tend the feeling of surprise how far and wide is the influence of application of
viscosity in solid mechanics.

Fig. 5. Plastic equivalent strain and temperature for three time instances of thermo-mechanical
impact problem with elastic-visco-plastic material model for description of crack nucleation and

growth in pre-notched plate.

4. Damage anisotropy

4.1. Motivation

It is clear, that real materials are never free from defects. Their role in the
deformation process is meaningful and spreads through all scales of observations
i.e. from macro to atomistic. Concerning metallic materials one can emphasize
defects like microcraks, microvoids, mobile and immobile dislocations densities
[2, 40].
The existence of defects causes the overall behaviour of material during the

deformation is anisotropic. This directional behaviour becomes crucial under
extremely dynamic loading. Such results had caused that PTTV (which pre-
viously has included scalar damage measure [5, 6]) model has been extended
to describe damage anisotropy in [15, 32] and developed in a series of papers
discussed shortly in next sections – cf. Fig. 6.

4.2. Governing equations for PTTV including anisotropic damage

Before we start the discussion on selected recent results concerning the role
of anisotropic damage description in the framework of PTTV formulation let us
focus the attention on some formal aspects. Thus, in the development of PTTV
including anisotropic damage description the key point was the introduction of
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Fig. 6. The role of damage anisotropy in quantitative and qualitative approximation of dynamic
tension test cf. [14, 34].
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microdamage tensor as an internal variable [15, 32]. Formally the set of internal
state variables (in the simplest case) was assumed as

(4.1) µ = (∈p, ξ),

where ξ is microdamage tensor which takes into account the anisotropic micro-
damage effects. It was originally postulated in [32] that the norm of microdamage
tensor describes (scalar) porosity, namely

(4.2) ξ =
√

ξ : ξ.

Further investigations have shown that the components of ξ can be interpreted
as levels of damage on representative volume element planes in macro scale
[15, 34]. Final form of governing equations for IBVP including PTTV including
anisotropic damage with a set of material functions can be found in [15, 32].

4.3. Global versus local damage approximation

In the paper [37] the notion of global (GDA) and local (LDA) damage ap-
proximations by the model were introduced. It was stated that we have GDA
if (global) strain-stress curves from experiment and mathematical model are
close to each other. Whereas good LDA means that apart from the global we
have particularly good coincidence in: macrodamage initiation time, velocity
of macrodamage evolution and the geometry of macrodamage pattern.
Based on series of numerical analysis (in agreement with experiments) it was

concluded that PTTV model including anisotropic damage enables to reach
good LDA. It appeared also that anisotropic measure for damage is a necessary
condition to reach good LDA whereas scalar damage models are able to cover
GDA only.

4.4. The role of covariance

Another important aspect of PTTV model is its covariant structure assured
by consequent utilisation of Lie derivative [19, 30]. This problem was discussed
in [35] and gives simultaneously the answer that the selection of objective rate in
the constitutive structure is not arbitrary. Based on comparison with logarith-
mic derivative [41] is was proven that covariant material structure gives better
damage (LDA) approximation.

4.5. Transition from ductile to brittle type of damage

It appears that under extreme dynamic loading the mechanism of damage
in metallic materials can change from ductile to brittle type [4]. This aspect in
terms of PTTV formulation was discussed in [26] and once more the meaningful
role of damage anisotropy was proven. It was proposed that the assumed critical
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value of porosity causing failure of material depends on velocity of damage evolu-
tion – giving analogous interpretation to the cumulative fracture criterion [3, 17].
Based on simulation of flat plate impact test [33] it was presented that for

extreme velocities of flyer plate there is no time for porosity evolution in fracture
zone on target plate. For such loading target plate spallation had appeared
almost in a brittle manner without intensive plastic deformation and for low
values of porosity in spallation zone – like in the experiment cf. [4].

4.6. Fractional viscoplasticity

Among other aspects discussed in terms of PTTV formulation including
anisotropic damage like reduction of the number of material parameters utilising
Artificial Neural Networks[38], demonstration of the role and level of thermal
stresses in extremely fast processes [39] or discussing the connection between
wave nature of fast dynamic processes with the formation of localised zones
of damage [25] it appears that recently proposed concept of fractional calculus
application in viscoplasticity [36] can set a new trend. It was shown that substi-
tuting the classical integer order derivative in flow rule by a fractional one (real
order) unusual flexibility of the model is observed (e.g. non-normality was ob-
tained without additional potential assumption). In this sense, in a perspective
PTTV model with fractional derivative application can result in smaller number
of material parameters.

5. Conclusions and future perspectives

In this incomplete review the aim was to show several aspects of the develop-
ment of the Perzyna’s viscoplasticity theory and stress in particular those results
which came from the long lasting cooperation of the authors with their mentor
Professor Piotr Perzyna. Sometimes the theory of viscoplasticity is perceived
as very complex and too sophisticated because of its mathematical description.
Many engineers prefer using simplified models with faster and easier drives to
the solution of models. But of course these models are not able to describe
many phenomena on different (micro and meso) scales of observations. In [38]
one can find the idea how it is possible to optimize the number of constitutive
parameters and in [8] what is the sensitivity of the constitutive properties to
these parameters. The problems of identification of the constitutive parameters
as well as the number of sufficient number of parameters are still open and could
be the interesting field of research.
The general formulation of PTTV was presented and some discussions (well-

posedness) were restricted to the formulations which omit the influence of tem-
perature coupling or to adiabatic processes. The development and extensions of
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Perzyna’s formulations like plastic anisotropy or fractional viscoplasticity were
also indicated.
The PTTV is now widely used in computer simulation of many different

types of fast processes in which the rates of deformations are extremely high
(above 104 1/s) like crash tests or estimation of the structures safety under
blasts for which the coupling with temperature fields is crucial.

6. List of author’s research papers on viscoplasticity
leading and inspiring by Piotr Perzyna
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