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NUMERICAL SOLUTIONS OF THE VISCOUS FLOW PAST
A CIRCULAR CYLINDER WITH STREAM-WISE
VELOCITY FLUCTUATIONS

;

VINCENT P. GODDARD and ALBIN A, SZEW CZ Y K (NOTRE DAME)

Numerical solutions of the incompressible, two-dimensional, time-dependent MNavier-Stokes
equations have been obtained for the flow past a circular cylinder with free-stream velocity fluctua-
tions in the flow direction. The fluctuations in the flow are produced by a change in magnitude
only and not in direction. The resulting time-dependent equations are solved by the use of an
explicit finite-difference scheme possessing conservative and transportive properties for a stream
function-vorticity formulation. A variable mesh structure is selected to provide a cell size that is
consistent with the structure of the flow, ie., a fine mesh in regions of large gradients.

Results are presented for Reynold’s number 40 and 200, and non-dimensionalized free-stream
frequencies of 0.02 to 3.2. The results compare favorably with the analytical work of LicaTHiLL [9]
and the experimental works of Cuen and BarLenGee [2], and TATSUNO i1e6].

1. INTRODUCTION

This study deals with the numerical solutions of the homogeneous, incompressible,
two-dimensional, time-dependent Navier-Stokes equations for the flow past
a cireular cylinder with free-stream velocity fluctuations. The fluctuations in the flow
are produced by a change in magnitude only and not in direction.

From the inception of fiuid mechanits, the analytical and experimental study
of the flow past a circular cylinder has received more attention than any other flow
problem, with the possible exception of that past a sphere. Although the geometry
is simple, the flow phenomena especially in the wake are most complicated. The
important basic nature of this problem and its importance as a keystone in fluid
mechanics whether one considers real or ideal flow is well recognized. For example,’
potential flow studies with circulation about a circular cylinder have produced
elegant explicit mathematical solutions for the lift. Then, through the utilization
of conformal transformation techniques ideal-aerodynamic theory of airfoils was
evolved. Such potential flow studies, however, provide no insight into the characteris-
tics of the flow in the boundary layer, the drag, the formation of wakes and other
realities - of viscous flow. In order to account for these effects, one must consider
the full Navier-Stokes equations with all of its non-lincar complexities. The non-
linearity of the equations poses formidable problems in obtaining satisfactory
mathematical solutions. Hence, with the tremendous advance in high-speed
computers and numerical techniques, a numerical approach is applied,

Various numerical solutions for the unsteady flow past a circular cylinder have
appeared in the literature. For a complete listing see, e.g., THOMAN and SZEWCZYK
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[17 and 18], RoacHE [12] and Gopparp [5]. The intent of this study was to extend
pumerical approach to the case, where the cylinder is immersed in an oscillating
free stream. Such problems can arise when launch vehicles, smoke stacks and
other circular structures, are subjected to unsteady winds. As a result unsteady
forces are produced which give rise to undesirable motions of the vehicle or structure
themselves,

LigHTHILL [9] studied a similar flow situation where a flat plate oscillated patallel
to a steady oncoming stream. In his study L7GHTHILL [9] also invéstigated analytically
some aspects of the flow past a cylinder in a fluctuating stream. Experimentally
only the works of CHEN and BALLENGEE [2] and most recently TATSUNO [16] on the
vortex wakes behind a circular cylinder oscillating in the flow direction are presently
known and have significant bearing on this study.

2. BASIC EQUATIONS

2.1. Rectangular coordinates

Consider the unsteady, two-dimensional, incompressible viscous flow past
a circular cylinder of diameter D in an oscillating free stream. Using rectangular
coordinates (x, ), the equations of motion in non-dimensional form can be written as
o 3(ug")+c‘)(°v(;‘) 1 (BZC+8ZC)
‘ dt dx gy Rel\ax*  a* [’
where Re= U, D/v is the Reynold’s number, D being the characteristic length and v
the kinematic viscosity of the fluid. The stream function w, the vorticity ¢, and the
velocity components (i, ) in the x and y directions, respectively, are specified by
the following relations
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2.2. Polar coordinates
A similar set of equations must be considered in polar coordinates (r, ). The
non-dimensional equations of motion can be written as
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¥, and V, are components of velocity in the r and @ direction, respectively, given
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in terms of the stream function as V,=(1/r) 20 and V= "o
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3. FINITE DIFFERENCE EQUATIONS

The field of computation was defined on a grid system as shown in Fig, 1. This
grid system divides the flow domajn into two computational regions., The cylindrical
region extends outward from the surface of the cylinder for a distance of one
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Fia. 1. Boundary conditions (stedy free stream)

radius. The cylindrical region is divided into cells of uniform arc divisions of 10
degrees. The radial divisions, 17 in all, are sized according to the Reynold’s number

being investigated. The remaining region is divided into a variable width rectangular
cell structure.

3.1 Rectangular coordinates

The values of any function for a typical interior rectangular cell with its four adjacent
cells is associated with the center of the cell and is denoted by the subscripts (i, /).
The four surrounding cells are labeled with reference to the pivotal cell. The mid-
points on the borders of the pivotal cell are teferenced by half-subscripts.
.The variable rectangular cell widths and heights are designated by the notation
Biand 4, ‘ '

In order that the calculational stability of the voticity transport equatio;:t be
'-'augmented, use is made of a directional differencing scheme for the non-linear
_convective terms, ¢.g., see THOMAN and Szewczyk [17 and 18] and Roacus [12].
‘This scheme takes the values of vorticity at the mid-point of the cell’s borders as
being equal to those of the cells from which the vorticity is being convected. Using
he ordinary forward d'iﬁ“crenciri'g scheme for the time derivatives and the “directional
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differencing” for the non-linear convective terms, the finite difference ‘approximation
of the non-dimensional vorticity transport equation is,

’;j}l — ¥ (UOL 12, j_(uc)’:— Y2d g (‘UC)’:, jrizT (‘vojic,ju yz _

ij
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where o= (xry1 — X0 —%-1)y Br=raes == yi-1) and the superscripts
(kY and (k- 1) indicate current and advanced values of the function. Solving equation
(2.2) in finite difference form for an explicit expression of w; ; yields,
(3.2)  wi,,=RDXY, ;[{; ;+APSLy, 1, ;+BPSTi iy, +
+ CPSL; yr;, ;1 +DPST; Wy, 11l
whete RDXY, ;=[2fo; Ax?42[8; 4y31™%,  APSL=2 [(1-+a,) Ax]]17Y, BPSL=
=2 [y (1 +a) Ax}]7Y, CPSL=2[(1+ ;) Ay;1™", and DPSI;=2[F; (14 /) Ay;1~t

The non-dimensional velocities and stream-function take on the following finite
difference form:

(3.3) u; = —AU; ¥ j—1—BU; ‘/’i,j"‘CUJ‘ Wi pets
(349 v, = AV w1, s+ BV Wi,ﬂ‘ACVi Vit1,is
where
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CU=16; (1+8) A1 AVi=of oy (L) 4x,)7,
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3.2. Polar coordinates

The values of any function for a typical interior cylindrical cell with its four
adjacent cells is associated with the center of the cell and is denoted by the subscripts
(ir, i6). Similar to the rectangular system, the mid—points of the cells borders are
referred to by half subscripts. The variable cell radial length is denoted by DR,
and the uniform angular division by A0,

The finite difference representation of the polar transport equation fakes the
form
k+1
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where A;,= (i1 _"tr)/(f'ir—f‘ir—I)-
The explicit expression for w;, ;, takes the form,
(3.6) Wir, 5= RDRT,, {gir, -+ APSIC,, Wir—1,10+ BPSIC,, yr;, 1,7}
+ CPSIC;, [y 10— 1+ Wir, 10411}
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The radial and tangential non-dimensional finite difference expressions for the
velocities are

3.7 Vrin o =AVR, [y, -1 Wir, 10+ s
(3.8) Vgtr, w=AVIy, Wir—1,1at+ BV, Wi 9— CVT, Yirr1, 0
where

AV, =2ry 40]~4, AVT,= 32, Dy (1+ ) dry]—1

BVE!‘:(I _/1123-) [ﬁfir (1 +’1i1-) Arir]_ 15 and CVTir: [;{'ir (1 +2'ir) Arir]_l'

3.3. Initial and boundary conditions

a. Steady freestream. In seeking the solution of the time dependent problem
an initial solution must be specified at time t=0, and boundary conditions on all
boundaries for all subsequent times. Care must be exercised in specifying not only
the initial solution but the boundary conditions as well, so that the end solution will
correspond in actuality to the desired one.
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The initial solution for the non-dimensional stream function of the flow past
a circular cylinder is as follows:. :

_ S 0.25
| g rton: o[- 2]
(3.9 rectangu ar region Wi =Y Ty
' o 0.25
(3.10) cylindrical region: Wi p={1— oz |Fe sin g .
ir

The boundary conditions are shown in Fig. 1. On the inflow boundary, the
conditions of zero vorticity and zero z-velocity are specified, whereas on the outflow
boundary the conditions that the change in the o-velocity and the vorticity in the
downstream direction is zero are specified. These conditions have been successfully
applied before by TooMAN and SZEWCZYK [17 and 18] and have been used by other
investigators since, see RoAcHE [12}.

On the ypper and lower boundary the flow is considered uniform and parallel.
In effect, it is assumed that these boundaries are remote enough that the flow can
be treated as parallel, so that the conditions correspond to a frictionless (or moving)
wind tunnel wall.

On the cylinder surface: the stream. function is specified to be a constant {(zero).
In addition the condition of no slip on a stationary solid surface requires that the
radial and tangential velocities be set equal to zero.

b. Fluctuating freestream. The initial condition or solution for a given '
Reynolds number flow for the fluctuating freestream problem was either the steady -
state or the limit cycle solution of the steady freestream problem. The inflow, outflow
and cylinder surface boundary conditions for an oscillating freestream were identical -
to those used for the steady freestream problem. Since the magnitude of the oncoming -
velocity and not its direction is permitted to vary, the conditions imposed on the _'
velocities at these boundaries were _

11 w=U_=U,(1+Ampsino?),

v=0,
where {7, is the steady mean freestream velocity about which the oscillations occur
Amp is the velocity amplitude and ¢ is the circular frequency.

3.4. Numerical stability

Numerical stability is one of the major factors that influences the choice "of -
a finite difference scheme. For a detailed description and developmeht of the stability”
criterion used in this study, see the works of GODDARD [5], ROACHE [12] and THOMA®
and Szewczyk [17 and 18], The von Neuman stability criteria require '

(3'12) Atdiffusioné-Re M RDXYi,j’

and

‘ ez, 5 o3, 4l ]_1
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Since both criteria must be met simultaneously, we have

1 1 -1
‘(314) Atcritlcal.g-. + .

Ardiffusinn Atcunvective

A similar analysis can be applied to the cylindrical form of the equations. The
resulting expressions are

(3.15) | Atgsctusion<Re - RDRT,,,
and

316 At <[ ]Vrir, el IVoir, 0l :Iﬁ
l( . ) , convective ™= -Drir Fir Ag

Since Atiriiea; varies from cell to cell a search of the entire flow field must be
made to determine the allowable critical time step. The value of the time step used
for a given calculation was determined from At=p4df. ;0. Where 0.3<y<0.9.
In general, a small time step required a fewer number r of iterations to satisfy
Poisson’s equation for the streamfunction,

3.5. Convergence

The solution of Poisson’s equation for the streamfunction is obtained iteratively.
In the solution of this equation the criterion requires that lw"* 1 =¥} |mex <& when n
is the number of iterations and e is some small pre-assigned value. The value can be
determined by numerical experimentation. The value used for most cases in this
mvestlgatlon was 1x 104,

When a steady flow solution is expected as a result, a criterion similar to that
given above can be formulated. . The steady flow solution will be approached
. asymptotically, so in place of the iteration index », we use the time step k. The con-
vergence criterion for the vorticity is [{3*%'—{} [<y, where y is some small pre-
assigned value,

In addition to convergence, for the unsteady flow past a cylinder where vortex
shedding occurs, one must ascertain when a limit cycle has been reached. In practice
for both the steady and unsteady flow cases, comparison of the computer solution
with experimental data and/or known analytical solutions provides a reasonable
indication of a correctly converged solution.

4, PRESSU'RE, DRAG AND LIFT COEFFICIENTS

The pressure distribution on the cylinder itself is obtained directly from the
~momentum equations. The pressure terms in the momentum equation for the
ectangular coordinate system can be expressed as

p 1 U ac,
ox 27D ox?
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and
ap 1 U2 8C,
(4.2) > 27D o

1
where C,=(p—p,) / 0 pU2. ‘Similar equations govern the pressure coefficient in

the polar coordinate system. Integration of equations (4.1) and (4.2) are performed
numerically to obtain the pressure distribution on the cylinder.

From the pressure distribution and vorticity distribution on the cylinder the
total drag coefficient due to pressure and friction is Cp=Cpp+ Cpr giving

2n Zn
1
(4.3) cD=-f Cl;cosﬂdﬁﬁ-gf ¢ sinddd.
0 0

In a similar way the lift coefficient is expressed as Cp=Cprp+Cir giving

2% 2%
. , 1
(4.4) Cp= f Cpsin 6 do't —— f ¢ cos 6db.
4] 0

5. COMPUTATIOM PROCEDURE

Only an outline of the numerical procedure is given here. For details the reader
is referred to GopparD [5].

The initial calculations begin with computation of the mesh system and the
necessary constants for the streamfunction and vorticity’ transport equations. Next,
the initial potential flow solution was computed and then modified to conform
to the boundary conditions by an iterative scheme. After convergence the velocity
and cylinder surface vorticity were computed. With the problem totally initialized,
the time is advanced and the following repetitive calculational procedure is applied:

1. At the beginning of a time step all required quantities for each mesh point
are known.

For each cell center an advanced value of { is calculated.

Knowing ¢ current values of y’s are computed.

From y’s current velocities are computed and the surface vorticity updated.
At selected time levels, the pressure distribution, lift and drag are determined
and a summary print-out is made.

6. The steps 1 through 5 are repeated until desired temporal state is reached.

IS

6. RESULTS: ANALYSIS AND DISCUSSION

Solutions for the flow past a circular cylinder started impulsively from rest in
a fluctuating free-stream for Reynold’s numbers 40 and 200 are presented in detail.
In addition some of the results obtained for a steady freestream at the same Reynold’s
numbers are presented to establish the validity of the basic time-dependent
formulation and numerical scheme,
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6.1, Steady free-siream solutions

Steady state solutions for the flow at Reynold’s numbers 40 and 200 provided
stream function and vorticity contours. For a2 Reynold’s number of 40, the steady
state solution shows that the flow is symmetrical about the x-axis and that
a symmetrical vortex pair is formed in the wake and remains attached to the rear
of the cylinder. For details see GobparD [S). The length of the standing vortices.
compares favorably with other numerical results e.g., THOMAN and SzZEWCZYK
[17 and 18] and Taxami and Kerier [14]. It is well known that wind tunnel walls.
have a strong effect upon the wake and its development and to a much lesser degree
an influence upon other.flow regions. In this study the upper and lower boundary
conditions used correspond, in effect, to frictionless tunnel walls with a cylinder
diameter to tunnel height ratio, DjA=0.1. With these constraints in mind the resulis.
obtained are compared with the experimental resulis of TANEDA [15] and Grove
et. al. [6] in Fig. 2.

TANEDA (EXPERIMENTAL
BEST LINE
THROUGH DATA)

20

GROVE ET. AL
{ EXPERIMENTAL
BEST LINE
THROUGH DATA »

ol

b_ ..
h-O.(

® PRESENT
O THOMAN 8 SZEWCZYK

0 ¢ 20 30 40 50 50 70
REYNQLDS NUMBER

FiG. 2. Length of standing vortices, steady free-stream

For a Reynold’s number of 200, the flow is not symmetrical with time and the
formation of a vortex street is observed in contrast to the symmetrical vortex pair-
obtained for Reynold’s number 40. These flow patterns are in good agreement with
visual flow experiments at similar Reynold’s numbers,

The variation of the separation angle with Reynold’s number, the variation of
the drag coefficient with Reynold’s number, and the pressure coefficient for Reynold’s.
number of 40 is shown in Figs. 3, 4, and 5, respectively. Good agreement is found.
for the results of the present study and data from other numerical studws and
experimental observations. :
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At a Reynold’s number of 200 the vortices formed at the rear of the cylinder are
shed alternately and form the well known Karman vortex street. The frequency of
shedding was evaluated from the cyclic lift curves and was determined to be 0.149.
The fluctuating lift is shown in Fig. 6. In addition to the total mean drag due to the
pressure and friction drag, and the fluctuating lift, the fluctuating drag acting on
the cylinder is discernable. Although the fluctuating drag force is very small compared
with the lift and mean drag forces, as observed by Bisgor and Hassan [1], Fig. 6
shows the magnitude and frequency of this force. A further comparison of the
- frequencies of the fluctuating lift and drag coefficients shows that the fluctuating
drag has a frequency of twice that of the lifi as expected. Very little experimental
data is available for direct comparison at this Reynolds number because of the
difficulty in detection of these forces in experimental investigations.

6.2. Fluctuating free-stream

Steady and fluctuating free-stream results and salient characteristics are presented
in Table 1. For the fluctuating freestream, Reynold’s numbers of 40 and 200 were
investigated. Low, medium and high frequency free-stream oscillations corresponding
to freestream Strouhal numbers of 0.019, 0.120 and 3.180, respectively, were

Table 1. Sammary of computer runs

Reynolds . '
number 40 i 200
Free-stream Steady[ Fluctnating Steday Fluctuating
oy I — 0.12 Q.75 20.0 — 0.935
Free stream’ ' wake freq. '
Flucivation — 0.019 012 3.18 =0.149 0.149
freq.
Fluctuation ‘
Amp, — 0.20 0.10 0.10 b= 0.10
Computed
time advance
for essentially
Cb totm ) — none 0,50 0.05 — 0.90
essentially
CD friction -_ none 0.40 0.025 —_ 0.50
Cycles limit cycle at
computed -— one four five time=359
Time 33.5 | 240810 24.0—580 239255 70.0 64.0=289.0

investigated at a Reynold’s number of 40. For a Reynold’s number of 200, only
that frequency corresponding to the natural frequency in steady flow, St==0.149,
was investigated. All of the cases investigated were initiated by an impulsivestart
from the steady state solution corresponding to a non-dimensional time of 23.9, -
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a. Ryenold’s number 40.i. Low frequency — St=0.019. This is an exiremely
slowly varying free-stream oscillation. The effect of the impulsive start is quite
apparent at the very beginning but is quickly damped out. The velocity reached its
first maximum at a non-dimensional time of 37.0. No apparent lead or lag in the
friction drag of the cylinder was discernable at this time. It was found that the peak
in the friction drag coefficient was in near alignment with the velocity maximum.
The pressure component of the drag coefficient and, so consequently, the total
drag coefficient did not follow the free-stream variations nearly as well. Furthermore,
the pressure drag lagged slightly behind the free-stream velocity by nearly one
non-dimensional time unit.

In comparing these results with the experimental results of Chen and BALLENGER

- [2] it can be concluded that for a slowly varying free-stream velocity the drag of the
cylinder responds instantaneously and is equal to the steady state value associated
with the instantaneous value of the velocity. Thus the instantaneous drag coefficient
is given by the ratio of the change in dynamic pressure, namely

_ U, \2
(61) CD instant = C'p steady (7) .

LigutHnL predicted that the local skin friction would anticipate the free-stream
fluctuations. Results for this case show that the vorticity maximums lag the velocity
maximums at 25° and 45°. These points are in the region where Lighthill’s analysis
is valid and the vorticity maximums should have anticipated the velocity maximums
by a non-dimensional time of 0.05 corresponding to a phase angle @=20.4 minutes.
At 105° and 115° in the region just prior to separation where Lighthili’s “stagnation
region” solution is not considered applicable, the vorticity maximum does lead the
velocity maximum. Furthermore, Lighthill speculates that the separation point
would fluctuate, however for this Reynold’s number and frequency, fluctuation of
the separation point was not discernable, From the instantaneous streamline patterns
for the flow around the cylinder at various times throughout a cycle of velocity
fluctuations, it was found that the length of the standing vortices change throughout
the cycle and that the maximum length appears at the minimum drag point.
‘Correlation between the length of the standing vortices at the extreme drag points
is explained in the following section.

il. Medium frequency — St=0.12. The medium non-dimensional, free-stream
velocity fluctuation of St=0.12 was chosen since it was estimated to be the value
that would approximate the natural sheddin g frequency of a cylinder at a Reynold’s
number of 40 if the cylinder could be forced to shed by some anomalous disturbance.
It was tacitly assumed that if the streamwise velocity fluctuations could induce an
- alternate vortex shedding pattern it would in some likelihood occur at this frequency.
No vortex shedding was found to occur at this Reynold’s number, however a growth
and decay of the attached wake vortex bubble was observed as shown in Iigs. 9
~and 10.

*  Figure 7 shows the computed response of the total drag coefficient, together
with its components due to pressure and'friction, to the fluctuations in streamwise
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velocity. The effect of the impulsive start is not very apparent at this frequency
and its effect is observable only for times somewhat less than 1/4 of the first cycle.
Tn order to be assured of stable and repetitive results, the computer solutions were
extended for a total of four complete cycles. Inspection of Fig. 7 indicates that the
cyclic variations of the drag coefficients are exactly the same after the first cycle
where the effects of the impulsive start occuf.

12

Ug/ Ua

DRAG COEFFICIENT

It is seen in Fig. 7 that the total pressure and friction drag do anticipate the
velocity extrema. The pressure drag lead is greater than that of the friction drag and
since the total drag is their sum, the total drag lead lies between the two.

In Fig. 8 the computed response of the vorticity on the cylinder surface correspond-
ing to angles measured from the front stagnation point of 15°, 25°, 45°, 105° and
115° is presented. The cyclic variation is presented only for the third and fourth
cycles where the effects of the impulsive start have vanished, For this frequency,
Lighthil’s analysis predicts a phase advance of two degrees and nine minutes
corresponding to a time advance of 0.05. In the front quadrant it is with uncertainty
that any visible phase change can be seen other than a slight lag. This lag is more
noticeable at the smaller angles. At angles nearer to separation, i.e., 105° and 1157
the phase advance is quite definite and approaches that predicted by Lighthill’s.
shear-flow model. It is of interest at this point to note that within the plotting;
accuracy of Fig. 7 the total friction drag coefficient for the cylinder does show
a phase advance, as was previously noted, and that the corresponding time advance:
is equal-to 0.40 non-dimensional time units.
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The instantaneous streamline patterns that exist at various points during the
third and fourth cycle are shown in Fig. 9. Similar to the low frequency case the
length of the standing vorlices increases with decreasing velocity. The maximum
length corresponds to the minimum drag point and the minimum length to the
maximum drag point. The relationship between the length of the standing vortices
and the drag coefficient is in accord with the physical situation. That this is so can
be deduced from the steady flow results. Figure 3 shows that the length of standing
vortices increases with Reynold’s number, while Fig. 4 shows that the drag coefficient
decreases with Reynold’s number. Thus the drag coefficient varies inversely with
the length of the standing vortices.

Lastly, these flow patterns indicate that the separation pomt fluctuates with the
flyctuating freesiream velocity. This is in accord with Lighthill’s prediction.

iii. High frequency — St=3.18. This value of the non-dimensional frequency of
fluctuation of the free-stream velocity was selected because it corresponds to the
critical frequency. The critical frequency is that frequency at the boundary between
the low and high frequency expansion methods used by Lighthill in his analysis,
where the results from both methods are identical. When the frequency is equal
to or greater than the critical, the phase advance angle of the skin friction is 45
degrees.

The effects from the impulsive start were quite apparent in this case during the
first two or three cycles and only the fourth and fifth cycles provided results that were
repetitive, Here as in the previous two cases the friction drag coefficient variation
is quite smooth and sinuous with a phase advance. This was also true of the pressure
and total drag coefficients. The friction drag coefficient of the cylinder anticipates
the velocity extrema by about 0.025 time units, whereas the total drag coefficient
anticipates the velocity extrema by nearly twice this amount. That the drag coefficients
anticipate the velocity extrema, without exception, is noteworthy. For this frequency
a very definite phase advance for the surface vorticity is found over the whole
cylinder. This was not the case for the other two frequencies. The phase advance
angle according to Lighthill’s analysis is 45 degrees and corresponds to a time
advance of 0.0393. This time advance was found to be only about 1/2 of this value
and is attained at the 15° and 25° locations, whereas about 2/3 of the value is attained
at the 45° location. At 105° the phase advance is near to the predicted value.

Figure 10 presents the streamline flow patterns for various times throughout
the fifth cycle for this case. Most outstanding is the pseudo shedding of the vortices
that occur. Examination of the patterns show that just prior to the maximum
velocity corresponding in time to the point just after the peak drag coefficient,
a pseado shedding of the vortex pair as a unit takes place. The vortex paid starts
to reform again between points F and G just prior to where the velocity returns to
its mean free-stream value. The vortex pair continues to grow again and reaches
a maximum size at the point corresponding to the minimum drag and appears to
maintain this length up to the minimum velocity point where again from this point
on in time it decreases in size. Point D corresponds to the maximum friction drag
coefficient point. Inspection of the flow pattern associated with this point shows
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that separation does not occur and so the friction drag should be a maximum.

The minimum friction drag coefficient lies between points [ and J. Comparing these

flow patterns it is seen that the separation point is at its most forward position.

It is of interest to note that at this Reynold’s number and frequency, pseudo shedding
can be induced.
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b. Reynold’s number 200. Numerical solutions for a Reynold’s number 200
with a fluctuating free-stream velocity were obtained for a non-dimensional frequ-
ency of St=0.149, This frequency corresponds to the natural alternating shedding
frequency of the cylinder in a steady free-stream flow.

In Fig. 11 the computed response of the total pressure and friction drag coefficient
and total lift coefficient, to free-stream velocity fluctuations are presented, The lift
coefficient was considered in addition to the drag, since alternate shedding produces
an asymmetrical pressure distribution and so results in a significant amount of lift.
The impulsive start was initiated at a non-dimensional time of 63.50 corresponding
to a time level after the completion of the limit cycle. Repetitive results start in the
second cycle. The effect of the impulsive start is noticeable only during the first 1/2
cycle, Similar to the three cases investigated at Reynold’s number 40, the friction
drag coefficient follows a very smooth and sinuous curve. The friction drag anticipates
the velocity extrema but not however by as great a value as does the pressure of total
drag coefficients. In this respect the resuits obtained for this Reynold’s number
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largely parallel those obtained at a Reynold’s number 40, The extrema in lift
coefficient lag the extrema in velocity fluctuations. There does not exist as far as is
known any results either experimental or analytical that predict the response of the
lift coefficient in a fluctnating stream. Thus the results obtained here for the lift
may be assumed reasonable only in view of the satisfactory results obtained for the
drag. At time 78.0, the flow patterns, Fig. 12, show the start of formation
of an attached vortex on the upper rear half. From time 80.5 through the peak at
81.5 the formation of a vortex on the lower rear half and shedding from the upper
rear half of the cylinder can be seen.

In Fig. 13 the vorticity response to free-stream velocity fluctuations at Reynolds
number 200 and a non-dimensional frequency of 0.149 are shown. According to
Lighthill’s analysis the phase advance angle is 2 degrees and 40.6 minutes with
a corresponding time advance of 0.05. There appears to be a definite lag in the front
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quadrant as is shown by the curves at 15°, 25°, and 45°. However, at 105° just prior
to the fluctuating separation point, the phase advance corresponds to that of the
shear flow model. From Fig. 11 it is seen that the time advance of the friction drag
coefficient of the cylinder is about 0.50 non-dimensional time units, while for the
total drag it is 0.90,

Finally, Fig. 14a shows the relationship between the separation angles g, and
¢, relative to the oscillations in the free-stream for a Reynold’s number 200.
Furthermore, a qualitative comparison can be made with the recent results of Tatsuno
[16], Fig. 14b, where he investigated the vortex wake behind a circular cylinder
oscillating in the flow direction. Tatsuno’s results are for Reynold’s number 98.8



Fic. 14a. Separation point response to free-stream fluactuation Re=200, St=0.149

Fra. 14b. Experimental separation point response to free-stream fluctuations Re=98.8 (TATsUNO'

1

]
1>

~ 1.0

juu }

0.9 k

A (o1

O

=

o
-

n 60

Lt

—_

LU

=

<1

=

o 0 Re = 200

g CIRGULAR FREQUENCY = 0.935
= AMP. = Ol

u 40 1 ! .

80 70 80 90

NON—DIMENSIONAL TIME

Ugtu :

- /\
. /\v N

Re = 98.8
Ug = 0.445 cm /s
CIRCULAR FREQ. = ¢.0523 cps

DIAMETER = 2.22 cm
DISPLACEMENT = £0.55¢cm

o=
8
|
fud

=~ @ 1)
o] [} S
T i T

(4]
o
1

(%]
(@]
|

SEPARATION ANGLES ¢ and ¢,
B
(=)
!

e
[e]

TIME

1972)

1506



NUMERICAL SOLUTIONS OF THE VISCOUS FLOW PAST A CIRCULAR CYLINDER 507

whereas the present results are for Reynold’s number 200, so direct comparison
cannot be made, however the numerical results exhibit a similar behavior as the
experimental results,

7. CONCLUSIONS

a. For the Reynold’s number 40 flow in the stagnation point region (0= 145,
the phase advance or “time of anticipation” was found to be negative for the low
and medium frequency cases and positive only for the high frequency. The phase
advance for all three frequencies investigated at this Reynold’s number, remained
essentially constant in the stagnation region, and in this regard the results of this
study compare favorably with those of LIGHTHILL.

b. Moving toward the separation point it was found that the “time of anticipa-
tion” increases with downstream distance. This was found to be true for all cases
investigated. Furthermore, just prior to separation the phase advance is essentially
45° in all cases. This is in excellent agreement with the conjectural reasoning of
LiguTHILL and verifies that his suggested “shear-wave” approximation is valid
near separation.

¢. LiGHTHILL also surmises that the separation point would fluctuate considerably
and with an amplitude that increases with frequency. It was verified by this study
that the amplitude of the separation point travel does increase as the frequency
increases. It was not feasible in this study to define limits to the extent of this travel,

d. Although not directly comparable with Lighthill’s work it is noteworthly
that the integrated friction yields a friction drag coefficient that in all cases
investigated anticipates the velocity extrema. A positive time of anticipation exists
also for the pressure and total drag coefficient.

e. A good description of the movement of the separation angles relative to the
free-stream oscillations can be obtained from the present formulation.
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STRESZCZENIE

NUMERYCZNE ROZWIAZANIA PROBLEMU LEPKIEGO OPEYWU WALCA KOLOWEGO
- Z UWZGLEDNIENIEM FLUKTUACH PREDKOSCI W KIERUNKU STRUMIENTA

Qtrzymano rozwigzanfe numeryczne dwuwymiarowych, zaleznych od czasu rownan Naviera-
Stokesa, opisujacych niedcifliwy oplyw walca kolowego z uwzglednieniem fluktuacii predkodci
przeplywn swobodnego w kierunku ruchu. Fluktuacie przeplywu wywolane sg jedynie zmianami
jego wartoci, a nie kierunku. Zaleine od czasu réwnania rozwiszuje sig za pomecy schemato
réznicowego, posiadajacego whasnodci zachowawcze i unoszeniowe w sformudowaniu funkeji prada
i wirowosci. Przyjeto zmienmy wymiar siatki pedziate dla uzyskania takiego wymiaru komoérki
elementarnej, ktory bylby zgodny ze strukturg przeplywuy, a wiec siatke gesisza zaloZono w obsza-
rach podwyiszonych gradientéw.

Wyniki przedstawiono dla liczb Reynoldsa od 40 do 200 oraz dla bezwymiarowych czgstoscl
strumienia swobodnego w zakresie od 0.02 do 3.2. Wyniki wykazuja dobrg zgodnodé z rozwiaza-
miami analityczoymi Lighthilla (1954) oraz z danymi do$wiadczainymi uzyskanymi przez Chena
i Ballengee’go (1971) oraz Tatsuno (1972).

Pezwme

YK CIIEHHLBIE PEIEHIA TIPOBJIEMEI BS3KOTO OBTEKAHUS KPYIOBOTO
HWAHHAPA C YUETOM @IVKTYATIAH CKOPOCIM B HATIPABIEHAN IOTOKA

TlomyieHo YACIEHHOE PeieHHe ABYMEDHELX, 3aBHCAIIAX OT BPEMCHH, ypasmepmii Hasbe-
Croxca, ORMCHBAIOLIAX HeckwMaeMoe OGTexaAWe KPYTOBOTO IMIHHAPA C yIeTOM hryrTyanmit
CKOPOCTH CBOOONHOTO TOYCHHS B HANPABICHHY HBMKCHHSL. OIyETYauHN TeICHWS] BHI3BAHLI M3ME~
HEHVAME TONBKO €r0 SHAYCHWSE, HO He HAIPARNECHUL, JaBACAIMS OT BPEMEHE YPABHEHIs! PEHIGIOTC
¢ FIOMOLBIO PA3HOCTHOM cxeMEl obIamaoIiell ChORCTRAMEA COXPAHHA H IEPCHQGCA B GropMyTHPOBKE
dynxmE Toka ¥ puxpe. TIpmmar TepeMeHHEDl pasMep CETEH HCNCHAS JUid HOJYIeHHS TaKora
pasMepa DHeMeHTapHOM syelkE, KoTopas COBIAjANA 651 cO CTIPYKTypoOi Tedemms ,T.e. Oonee
TYCTYIO CETKY NPEeNTIONEHO B ODJACTAX C HOBBIHCHHEIMH IDAJHCHTAMM.

PesynbTaTH IpeCTABICHS! g yucen PefiHonbaca ot 40 zo 200 1 mrs GespasMepHiblX 9acToT
cBoBOREOTO mOTOKa B METepBame oT 0,02 mo 3,2. Pesyisrarsl MOXashIBAiOT XOPOMIEE COLTACHS
¢ apanmTHdecKuMy permenmnvir JladTxmmia (1954), a Take C SKCHEPAMEHTAIBHEIME JaHHBIMI,
nonyuerusivu Yenom u Bamremxom (1971) m Tatcyso (1972).
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