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Rayleigh wave speed in transversely isotropic material is studied. A very simple technique
is adopted to solve the secular equation. Speed in some transversely isotropic materials is
calculated.
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1. INTRODUCTION

Waves propagated along the plane surface of elastic solid were first studied
by RAYLEIGH [1], an explicit formula was obtained for wave speed. After that
RAHMAN and BARBER [2] and NKEMIZz1 [3] derived the secular equation and
a formula for Rayleigh waves speed respectively. A computer software MATHE-
MATICA was also used by some researchers, e.g. ROYER [4], to find exact values
of the speed. PHAM and OGDEN [5], TING [6], DESTRADE [7], OGDEN and PHAM
[8], DESTRADE [9] have discussed the explicit secular equation and wave speed.
Recently PHAM and OGDEN [10] presented the formula for Rayleigh wave speed
in orthotropic elastic solids.

The aim of this paper is to study the Rayleigh wave speed in a transversely
isotropic material. We have found that the secular equation for a transversely
isotropic material is exactly the same as that obtained by PHAM and OGDEN [10]
for an orthotropic material if c44 is replaced by css.

2. BOUNDARY VALUE PROBLEM AND THE SECULAR EQUATION

Consider the semi-infinite stress-free surface of a transversely isotropic mate-
rial. We choose the rectangular co-ordinate system in such a way that the z3-axis
is normal to the boundary and the body occupies the region z3 < 0.
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Following the paper by PHAM and OGDEN [10] let us consider the plane har-
monic waves propagating in the z,-direction of the z,z3-plane, with displacement
components (uj, ug, ug ) such that

(2.1) u; = ui(z1,23,1), tx=rls,i3 ug = 0.

Generalized Hooke’s law for a transversely isotropic body may be written as
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where €;; is the strain tensor

1 .
_(u‘i,j 1 uj,’i)) i=1,2,3,

(2.3) €ij= 3

0;; is the stress tensor and ¢;; > 0, i = 1, 3, 4; c11c33 — c%3 > 0, which are the
necessary and sufficient conditions for the strain energy of the material to be
positive definite.

By using the above equations one can write
o011 = C11u1,1 T C13U3,3,
(2.4) 033 = C13U1,1 T €33U3,3;
013 = caa(ur,3 +u3,1)-
Equations of motion for infinitesimal deformation may be written as follows.
Oij5 = p’lzi .
In terms of displacements, these equations can be written as

c11u1,11 + caau1,33 + (13 + caq) U3 31 = puy,
(2.5)
caqu3 11 + c33u3 33 + (13 + caq) u1,13 = pi3.

The boundary conditions of zero traction, on the plane z3 = 0, are

(2.6) ax =0, . i=1,3:
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Usual requirements are that the displacement and the stress components decay
away from the boundary and vanish far away from the boundary, that is

(2.7) u; — 0, Gy Y (6,7 =1i8) a8 I3 ¥ —c0

Considering the harmonic waves propagating in the zi-direction, by following
the paper of PHAM and OGDEN [10] we write;

(2.8) uj = @;(kz3) exp [ik(z1 — ct)], i=1.8

where k is the wave number, ¢ is the wave speed and ¢;, j = 1,3 are the functions
to be determined.
Substituting (2.8) into (2.5) we obtain

(c11 — pc?)p1 — caap| — i(caa + c13)p3 =0
(2.9)

(cag — pc?)ip3 — cazply — i(cas + cr13)p) =0

and the boundary conditions take the form

(2.10) 1c131 + 033(,03 205 (,Dll +ip3 =0 on z3=20
and
(2.11) @i 05 =0  as z3=—00,

thus the above boundary value problem becomes the same as that of PHAM and
OGDEN [10] if we replace c4q by cs5, and hence the secular equation will also be
the same as that of [10], which is as follows.

(cas — pc?) [0%3 —ca3 (e11 — pc?) ] +pc?\/ezzcas/ (e11 — pc?) (caa — pc?) =0

This implies

2 2
& (044 — pc? k13 o
pc 3 ctaak d = e F =)
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To simplify, let

2 2
(2.13) N s b it el

) )} -] =
C11 C33 C11 C11€33

Therefore, the above mentioned equation (2.12) becomes

9%
e gl =0.
u \[ 1_u( p—u)

w¥(l-u)=(1-p-w’b-u)

This implies

or
(2.14) (1-a)u®+{a—2(1 —p) — b} u?
+{(1-p)?+2b(1—p)} u—b(1 —p)?

This is the simplified secular equation and can be solved for u.

3. RAYLEIGH WAVE SPEED FOR SOME MATERIALS

Consider the following transversely isotropic materials.
1-Cobalt. Elastic constants for cobalt are as follows [11]:
e = 2.59 x 101 N/m?,  ¢3 = 1.11 x 10" N/m?,
cs3 =3.35 x 10" N/m?,  ¢44 = 0.71 x 10! N/m?,
2

G LI gh ey o WL G il 31T oty Lol o g iiopn

C33 C11 C11€33
Thus (2.14) becomes

0.788060u° — 1.778182u? + 1.2065644 — 0.201804 = 0.

Put
(—1.778182)

e R ) )
3(0.788060)  ° e

This implies
2% — 0.16610652 + 0.044508 = 0

=01 5

o 0_2606_5 — - 0eEsNs . O- Qﬂ‘f‘ﬂ = 0.022254,
P? + Q% = 0.000325623 > 0,

<0

= 0.

Z=-[Q+VP3+QY? - Q- VP?+ Q%' = —0.504303.
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This implies

u = —0.504303 4+ 0.752135 = 0.247832.

Similarly we can determine the value of u for other transversely isotropic mate-
rials what is evident from the following table in which stiffness/elastic constants

are taken from [11].

Stiffness 10** (N/m?) Density | Raleigh

Material p Wave
Speed

ci1 c12 €13 €33 = Caq4 U (kg/m®) | (m/s)

Cobalt 2.59 1.59 L1123 350021 0.247832 8900 2685.55
Cadmium 15162042 0.41 0.509 0.196 | 0.147016 8642 1404.77
Titanium boride | 6.90  4.10 3.20 4.40 2.50 0.233471 4500 5983.28
Zinc 1.628 0.362 0.508 0.627 0.385 | 0.183415 7140 2045.01
Magnesium 0.5974 0.2624 0.217 0.617 0.1639 | 0.244048 1740 2894.65

ACKNOWLEDGMENT

We are thankful to Dr. Faiz Ahmad, King Fahad University, Saudi Arabia,

for useful guidance.

REFERENCES

. Lorp RAYLEIGH, On waves propagated along the plane surface of an elastic solid, Proc.
R. Soc. Lond., A 17, 4-11, 1885.

. M. RanmMAN and J. R. BARBER, Ezact ezpressions for the roots of the secular equation
for Rayleigh waves, ASME J. Appl. Mech., 62, 250-252, 1995.

. D. Nkemizli, A new formula for the velocity of Rayleigh waves, Wave Motion, 26, 199-205,
1997.

. D. ROYER, A study of the secular equation for Rayleigh waves using the root locus method,
Ultrasonics, 39, 223-225, 2001.

. Puam CHr VINH and R. W. OGDEN, On formulas for the Rayleigh wave speed, Wave
Motion, 39, 191-197,2004.

. T. C. T. TiNG, A unified formalism for elastostatics or steady state motion of com-
pressible or incompressible anisotropic elastic materials, Int. J. Solids Structures, 39,
5427-5445, 2002.

. M. DESTRADE, Rayleigh waves in symmetry planes of crystals: ezplicit secular equations
and some ezplicit wave speeds, Mech. Materials, 35, 931-939, 2003.

. R. W. OGpEN and Puam CH1 VINH, On Rayleigh waves in incompressible orthotropic
elastic solids, J. Acoust. Soc. Am., 115, 530-533, 2004.



328 A. REHMAN, A.KHAN, A.ALI

9. M. DESTRADE, P. A. MARTIN and C. T. TING, The incompressible limit in linear

anisotropic elasticity, with applications to surface wave and electrostatics, J. Mech. Phys.
Solid, 50, 1453-1468, 2002.

10. Puam CHi VINH and R. W. OGDEN, Formulas for the Rayleigh wave speed in orthotropic
elastic solids, Arch. Mech., 56, 3, 247-265, 2004.

11. F. AumaD and A. RAHMAN, Acoustic scatering by transversely isotropic cylinders, Inter-
national Journal of Engineering Science, 38, 325-335, 2000.

Received December 12, 2005; revised version August 23, 2006.





