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VIBRATIONS OF THE THREE-LAYER SHELL WITH DAMPING
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In this paper the analytical method [17-18] has been used for solving the problem of vi-
brations of the three-layer shell with damping. External layers are modelled as the MINDLIN
shells and the internal layer possesses the characteristics of a viscoelastic one-directional WIN-
KLER foundation. Small transverse vibrations of the three-layer shell with damping is excited
by the dynamical non-uniform loading moving at the constant velocity v*. Numerical results
are presented in the diagrams.
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1. INTRODUCTION

Compound systems coupled together by viscoelastic constraints play an im-
portant role in various engineering and building structures. Since 1923, the
TIMOSHENKO model [1] for various compound constructions has been applied.

Cylindrical shells with a wide range of geometrical and physical parameters
are component parts of many modern structures subjected to the action of dif-
ferent loads. The development of various vibration models becomes an urgent
problem due to the structural features of layer shells operating under different
conditions of mechanical loading.

The classical theory of cylindrical shells, which is based on the Kirchhoff-
Love hypothesis, is widely used for the evaluation of the stress-strain state or
vibration of isotropic thin elastic shells. Among numerous precise models applied
to the investigation of shells made of modern materials, due to their practical
validity, visualization and completeness, the REISSNER model is used. The dy-
namic problem of elastic homogeneous bodies was presented by GRINCZENKO [2].
The problem of simulation of the acoustic properties of the larger human blood
vessels was considered by BORISUK [3]. In the paper by JEMIELITA [4], the cri-
teria of choice of the shear coefficient in plates of medium thickness have been
considered.
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Coupled problems of the thermomechanical behavior of viscoelastic bodies
under harmonic loading were presented by KARNAUCHOW and KIRICZOK [5]. Vi-
brations of elastic compound systems subjected to inertial moving load was pre-
sented by BoGACz [6] and SzZCZESNIAK [7, 8]. The problem of non-axisymmetric
deformation of flexible rotational shells was solved by PANKRATOVA, NOKO-
LAEV and SWITONSKI [9] with the use of the classical Kirchhoff-Love model
and the improved Timoshenko model. The problem of vibrations of the ele-
ments of shell constructions were described by GRIGORENKO [10]. The problem
of laminated plates and shells was presented by LEWINSKI, TELEGA [11]. The
dynamic problem of elastic homogeneous bodies was presented by TARANTO and
Mc Graw [12] and KURNIK and TYLIKOWSKI [13]. The interlayer is a one- or
two-directional viscoelastic Winkler layer, but it can also be a multiparametric
viscoelastic layer presented by WOZNIAK [14].

In the above complex cases, especially where viscosity and discrete elements
occur, it is recommended to adopt the method of solving the dynamic prob-
lem of a system in the domain of function of complex variable following the
papers by TSE, MORSE, HINKLE [15], N1zIOL, SNAMINA [16] and CABANSKA-
PrAaczkIEWICZ [17, 18]. The property of orthogonality of free vibrations of com-
plex types was first described by CREMER, HECKEL, UNGAR [19] and CABAN-
ski [20] for discrete systems with damping, for discrete — continuous systems with
damping by NASHIF, JOHNES and HENDERSON [21], and for continuous systems
with damping by NOWACKI [22].

The aim of this paper is to present a method of solving the problem and dy-
namic analysis of free and forced vibrations of a three-layer system with damp-
ing, which consists of two elastic shells connected by a viscoelastic interlayer
subject to axially symmetric loading F»(z,t) non-uniform with respect to the
axial coordinate, moving at the constant velocity v*.

2. FORMULATION OF THE PROBLEM
2.1. Statement of the problem

Let us consider the free and forced vibrations problem of a three-layer system
with damping. The external layers of the complex system are cylindrical shells
made of elastic materials, which are connected by a viscoelastic interlayer shown
in Fig. 1. The elastic cylindrical shells are described by the Mindlin model and
are supported at their ends on circular edges (2.3). The viscoelastic interlayer
possesses the characteristics of a homogenous continuous one-directional Winkler
foundation and is described by the Voigt-Kelvin model [19, 21, 22].

Small transverse vibrations of the three-layer shell with damping are excited
by the axially symmetric loading Fs(z,t), non-uniform with respect to the axial
coordinate, moving at the constant velocity v*, shown in Fig. 1.
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Fi1G. 1. Dynamic model of the three-layer shell with damping for the axially symmetric
non-uniform loading.

The phenomenon of small axially symmetric transverse vibrations for the
three-layer shell with damping is described by the following non-homogeneous
system of conjugate partial differential equations [17]:
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Here wi(z,t), wa(z,t),u;(z,t), u2(z,t) are the displacements of shells I and IT;
Y1 = Pi1(z,t), Y2 = a(x,t) are the angles of rotation of cross-sections of the
shells I and II; Fy, Fy are Young’s moduli of materials for shells I and II; Gy, G
are the moduli of shear of materials for shells I and II; p;,ps are the mass
densities of materials of shells I and II, K 1, Ké are the correction coefficients; k
is the coefficient of interlayer reaction; r1, 79 are the radii of shells I and II; ¢ is
the coefficient of viscosity of the interlayer; hq, ho are the thicknesses of shells I
and II; [ is the length of the three-layer shell; v, v, are Poisson’s coefficients;
t is time; z, z are the co-ordinate axes; F»(z,t) is the axially symmetric loading.

For the assumed support of the shells, the functions appearing in the
Egs. (2.1), (2.2) should satisfy the following boundary conditions:

w1 |:1::0 = 0, w1 |a:=l =0, w2 [a::O = 0, w2 |z:l =0,

(2.3) ¥y |z=0 =0, Uy |g=1 =0, u2 |z=0 = 0, 42 |z=1 =0,
B e Bl g
dz bl | dz S dz o dz iy
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2.2. Separation of variables

An analytical method of solving the problem of free and forced vibration of
a cylindrical three-layer shell with damping is based on separation of variables.
Let us assume the solution of the considered problem in the following form:

[ wy(z,t) ] Wi (z)
ul(xa t) Ui (il?)
21 Uy (z
(2.4) Z:((m t)) o ij(;) exp (ivt)
u9 (112, t) UQ(:L')
Rz (z,1) d Py(z) i

and substitute the Eq. (2.4) in the system of differential equations (2.1) and
(2.2). By the assumption that Fy(z,t) = 0, the homogenous system of conjugate
ordinary differential equations describing the complex modes of free vibrations
of the three-layer shell with damping is obtained:
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where i = —1. Here Wy = Wi(z), W= Wa(z), U, = Ui(z), U =Us(z)
are the complex vibration modes of shells I and II; ¥; = ¥y (z), ¥, = Uy(x) are
the complex rotation modes of shells I and II; v is the complex eigenfrequency
of free vibrations of the three-layer shell with damping.

In the case of the simplified model for u; = us = 0, the system of Eqgs. (2.5)
has the following form:

d2£p1 dW1 o 9
R17$_2— + N1 (E > W1> + :lle o O,
?W,  d¥ 1%
ol ( d i & d_l> — 81— + p Wiv? — (W1 — Wa)(k + icv) = 0,
(2.7) 7 % ™
' d*P, AW, e
RQW + Ny (% - Wg) + S =0,
d?Wy  d¥y W, . :
Ny ( A2 s E) e 52; + puoWor” + (W1 - Wg)(k ~ 12 zcy) =0.
Here:
E1hy Eshy
2.8 LA e 89 =
o : & e V12p)7'1 g (1- 1/22p)r2

2.3. Solution of the boundary value problem

Searching for a particular solution of the system of differential equations (2.7)
in the form:

W1 (:17) A
v C

(2.9) W;Q(ZZ) =i exp(rz)
!1’2 (.'17) D

the homogeneous system of algebraic equations is obtained:

N
A ZZr+C(r +p}) =0,

Ry

1
A(r* +p}*) + B—(k +icv) — Cr = 0,

N

(2.10) <
B 221 + D(r? +p}) =0,

Ry

1
AF(k +icv) + B(r? + p%*) — Dr = 0.
2
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where:
i p 1 - 1
P = R_l('zll/?-Nl)» P = N [Mll/Z—k—wl/—Eﬁ] ;
(2.11)
py = L(521/2 —~i¥al Py = i pav® — k —icv — l82 -
Ry ; Ny o

The system of equations (2.10) has a nonzero solution provided the determinant
of the coefficient matrix of this system is equal to zero

N
R—lr 0 r? + p} 0
1
1
r2 + pi* F(k +icv) —r 0
0 G o 0 2 *
1 Rzr peinp
E(k +icv) T2 +pi* 0 —r

The characteristic equation (2.12), after expansion of its determinant, is
equivalent to one of the following fourth-order algebraical equation

(2.13) r +asr® +asr? +a; T +ag =0

where r = r? and a3, ag, a1, ag are coefficients of the Eq. (2.13) corresponding
to the complex frequency v.

The roots r; of the Egs. (2.13) or (2.12) are described by means of parameters
Ay in the form r; = (=171 i), where j = (2v - 1), 2v; v=1, 2, 3, 4.

Dependence of the parameters A, on the complex frequency v can be de-
scribed by the Eq. (2.13) or (2.12). The values of the parameters ), will be
determined by the formula (2.29).

Replacing the parameter r by the roots r; in the functions (2.9) and applying
the Euler formulas, the general solution of the system of differential equations
(2.7) is the set of the following functions:

4
Wi(z) =Y (Apsin Az + A}F cos \p),
(2.14) 27
U (z) = Z (C; cos Ayz + C)F sin Ay z),
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(2.14)

[cont.]

=1

Wa(z) = Z (B;, sin \yz + B* cos A\yz),
¥y(z) =

4
Z (D} cos Az + Dy sin Ay z)

u=1

Using the Egs. (2.10), the following relations between the constants appearing
in (2.14) have been established:

B* B**
b* = i S * % = v
v A,T), b’u A:}* )
S C* o C**
(2.15) Cy = A_I*J’ Cy = AZ*,
v v
D* D**
d* = _‘U7 o
4 Al L A
where:
*k * N1
(Pl = A%)(Pl = ’\3) = E"\g
b* ] b** o b = 1
v v v N I
Cllpti=idd)
Rl 1 v
N
(2.16) i
&= Fl & Qu = s
Byrr ’\v
N-
B
df):dv:bup;Q_A%, iy =—d?’.

After substituting (2.15) in (2.14), general solution of the system of differen-
tial equations (2.7) takes the following form:

Il
NE

Wi (z) (A7 sin A\yz + Ay cos A\yz),

c
Il
—

cv (A5 cos Az — A} sin A\yz),

S
5

Il
M-

(2.17) “Zl
Wa(z) = Z by (Ay sin A\yz + A" cos Ay),
v=1
4
Wy(z) = Y _ dy(A} cos Ao — A}* sin \yz).

e
Il
—
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According to the boundary conditions (2.3) concerning w;(z), ¥ (z), we(z),
Wy(z), the functions Wi (z), ¥ (z), Wa(z), ¥a(z) in the Egs. (2.17) should satisfy
the following boundary conditions:

Wi |z=0 =0, Wi |g=1 =0, W3 |g=0 =0, W |g=1 =0,

2.18 1/ iz 1
(2.18) d¥, & d, _d_xz Ay dbyt 0.

= 0’ S
=0 dz

=1

Bl TR

o=l

Applying the boundary conditions (2.18) to the functions (2.17), one obtains
the homogeneous system of algebraic equations, which in the matrix notation
takes the following form:

(2.19) Y X =0.

Here X == A}, A3, A3, A AT A", AT, AZ*]T are the vectors of unknowns
of the system of equations, and

(2.20) Y =[Yisjlss

is the characteristic matrix of the system of Egs. (2.19).
The first subsystem of the system (2.19) has the form:

1 1L 1 1 At
h b b A
(2'21) Ci )\1 CQ)\Q 63)\3 C4/\4 Ag*

didx: Sadsidydaodi g AT

from which it follows that A}* = A3* = A" = A}* =
The other subsystem of the system (2.19) leads to the following set of equa-
tions:

P 8811 8912, 8813 . S%14 1 [ A T
b18511 b28812 b38$13 b48814 A%
(2.22) .| =0
C18811 C€28812 C38813 C4S8S14 A3
d18811 d23312 d38313 d43314 AZ

where: ss11 = sin A\ il, ss12 = sin Aol, $813 = sin A3l, sS14 = sin A\yl.
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The condition of solving the system of Egs. (2.22) is vanishing of the char-
acteristic determinant, that is
3511 88100 (:8643 8B4
b13811 b23312 b3$813 b43814
(2.23) =B
C18511 C28812 (38513 C48514

d1ssi1 dpssiz d3ssiz dassig

Expanding the determinant (2.23), the following characteristic equation has
been obtained:

(2.24) sin A1l sin Aol sin A3l sin A4l = 0.

It is obvious that Eq. (2.24) has to be satisfied by each of the following simple
equations: sinAjl =0, sinAyl =0, sinA3l =0, sin\4 = 0, from which it
follows that A\ = Ao = A3 = X\y = .

The characteristic equation (2.24) may now be rewritten in the form:

(2.25) sinAl =0
where:
(2.26) A=a + 18

is in the general case a complex number.
Owing to the relation (2.26), Eq. (2.25) takes the following form:

(2.2% sin el cosh Sl + cos al sinh Sl = 0.

The roots of equation (2.27) are as follows:

(2.28) o= %75 BIELY) motgpad 3 uniss:
Finally, in accordance with the roots (2.28) and relation (2.26), the roots of

characteristic equations (2.25) have the following form:

(2.29) A==

The solutions of the system of equations (2.22) corresponding to eigenvalues
An are A}, = A}, = A3 = A}, = A} In further considerations it is assumed
that 45 =1
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Substituting r = i\, into the Eq. (2.13) and carrying out the necessary
transformations, one obtains the following equation of frequency:

(2.30) Braff+adft+d P +af =0

where: a#, a# ; af&, a# are coefficients corresponding to eigenvalues),. The so-

lution of the equation (2.30) is an infinite sequence of complex eigenfrequencies:
(2.31) Vi =g ey =22 %5 oo

The relations (2.16) and (2.11) taken for A\, = A = A, and v = v, assume
the following form, respectively:

N

(ot = X3) (la — A2) ~ 202
b=t —=p =
n n n )
s ey
Rl 1n n
Ny
: —A
(2 32) C* =Cp = —Rl . Cp = — C**
: p{n = )\% s
N
o
d iy = b"p;nQ— 2 dy =—d*
and:
» 1 ] *ok 1 . q
plan_l(‘zluzl_Nl)a plnzﬁ; |:,u,11/721-—k—7,01/n—a.31:| )
(2.33)
* 1 w32 * % 1 9 . 1
Dop— R—2 (:21/" — N2) 3 Doy = —]\—/; Wov, — k —icvp — ESQ s

Using the previously obtained results, i.e. Aj* =0forv =1, 2, 3, 4; A} = 1;
Ans Vn, by, cn, dp in the Egs. (2.17), one obtains four following sequences of the
complex eigenmodes:

Wil2) = sin Az,

Wi (&) =:CrCO8 AR,
(2.34) in(2) i

Waon(z) = by sin A, z,

Yo (x) = dp, cos Ap.
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The system of equations (2.6) can be rewritten in the following form:

21— 4 vi, AW,
Wi = e 5
d.’IJ2 £ E1h1 L " dz g
(2.35)
d2U2 e Vop 2 Vop dWs
7 gt
A5 - P 2 ok rs T

A general solution of the system of differential equations (2.35) for A = A,
v = vy and dW;/dz = 0, dWy/dz = 0 has the form

U (z) = Gy 5in Az + GLYicosdqa;
(2.36)
Usn(z) = Hy sin A\pz + H, ¥ cos Apz.

Here G}, G}¥, H,,, H}* are constants.
A particular solution of the system of differential equatlons (2.35) by means
of eigenmodes Wy, Wa, of Egs. (2.34) has the convolution form

T

Uln(z) = s sin Ay (z — z*) cos A\pz*dz”*,
T
0
(2.37)

T
Uzn(z) = ~~?‘f—bn/sin/\n(x —z%) cos A\pz*dz”*.
0

The general solution of the system of equations (2.35) is presented in the
following form:

Uln(z) = Ufn(m) o Ul*;:(x)’
Uzn(z) = Uzy(2) + Usp ().

(2.38)

According to the Egs. (2.3) containing u; and ug, the functions U; and Us
have to satisfy the following boundary conditions:

Ul |$=0 = 0: Ul l:l::l = 0,
(2.39)
Uz |z=0 = 0, Us'lg=1 =0.

Introducing the boundary conditions (2.39) into Egs. (2.38), two other se-
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quences of complex eigenmodes are obtained:

z
Uin(z) = sin \yz — ? /sin An(z — %) cos \pz*dz®,
1
0
(2.40) )

Uspn(z) = sin Az — Efgbn / sinA, (z — z*) cos A\pz*dz™.
2
0

2.4. Solution of the initial value problem

The complex equation of motion has the form
(2.41) T = exp (i v t).

For v = v, , the Egs. (2.41) can be written in the following form:
(2.42) T, =&, exp (fvnt)

where @, is the Fourier coefficient.
Free vibrations of the three-layer shell with damping are expanded in the
following Fourier series:

1

8
=
S
&

3
’I_I_l

g
2
=
M8
-
Y
CY

3
lL

5

Gl

Yol
M8
S
A
8

3
Il
—

(2.43) = D, exp(ivpt).

M8
S
S
&

3
Il
—

18
S
3
&

r

L
S
I

8
N
3
C)

3
I

From the system of Eqs. (2.5) and (2.6), performing some algebraical trans-
formations, adding the equations together and then integrating them on both
sides in the limits from 0 to 1, the property of orthogonality of eigenmodes for
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the three-layer viscoelastic shell with Mindlin model is obtained:
l

@4t) [ ivn{in [WinWin + WiaWion + Uil + Uinli

0
2

hl
2k m(gplmgpln & Wlnwlm)]

+ po [W2mW2n + WonWaom + Uz Uan + U2n Uz

2

h3
+ 12_7‘%(g/‘2mw2n + %n!pzm)]

=+ C(Wln = W2n) (Wlm = WZm)}diU = Npbpnm

where:

l
. h2
(2.45) Nﬁ:/{m%[m<Wﬁ+Uﬁ 12#%)
0

h
+ g (WQQTL + U22n 1or 2W2n):| - C(Wln = W2n)2} dz.

Here 6,,, is the Kronecker delta.

The basis for solving the free vibrations problem are the following initial
conditions:

wl($70) = Wo1, '11)2(37,0) = wo2,
(2.46) u1(z,0) = ug1, uz(z,0) = upg,
¥ (z,0) = Yo, Py(z,0) = Ppo.

Applying conditions (2.46) in the series (2.43) and taking into account the
property of orthogonality (2.44), the formula for the complex Fourier coefficient
is obtained:

1

I
h?
(2.47) /{Wn p1{ Winwor + Uinuor +
0

Mg, )
n 122 1n¥01

h
+ p2 <W2nw02 + Uanugz +

12r 24@”462)}

¢ [(Win — Way) (wm L sz)] }dm.
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Changing the complex components appearing in the Eqgs. (2.43) into the
trigonometrical form and having in mind the existence of pairwise conjugated
components, the Eqgs. (2.43) take the following form:

[ w; bl Xig |
Uy & O1n
(2.48) 1. Ze‘”"t |y Ain cos (wnt + ©n)
wo 2 n b n n
n=1
() Oan
L 12} J k. L A2n |
§ Yln 1 )
Fln
15 .
i B sin (wnt + cpn)
FZn
L $29n J Y,
where:
X1n = ReWin, Yin = ImWi,,
©1n = Re Uiy, Iy = ImUyy,
A1n = Re¥yy,, 1, = Im¥yy,,
|$r| = \/C2% + D2, &, = arg &y,
(2.49)
X2n = Re W2na Y2n = ImW2m
©2,, = ReUyy, I, = ImUsy,,
Agn = ReWyy, $29n, = ImWyy,,
Cn = Re 9, 1 =1mo;,.

Finally, the equations (2.48) can also be expressed in the more usual form:

o0
wy = e @n| [Wia| cos (wnt+ Bn +xin),

n=1

o0
(2.50) up =Y e Py| |Unn| cos (wnt+ $p + P1n),

n=1

o
Uy = e By| W1 cos (wnt + Pn + B1n),

n=l
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o0
wy = Z e | By| |Wan| cos (wnt + P + X2n),

n=1

o0
(2.50) g & Z e ™| By| |Uan| cos (wnt + By, + 92n),

[cont.]
n=1

o0
Uy = Z g |Pn| [Pan| cos (wnt + P + Oan),

n=1

where:

(Wil = /X3, + Y5, [Wea| = /X5, + 15,
|U1n| = \V @%n+1—‘12n’ |U2n| B \ @%n_}_[gn’
(2.51) [P1n| = /A, + 03, [Wou| = /A3, + 03,

X1n = arg WIm X2n = arg W2m
Pin = arg Uin, don = arg Uan,
O = arg Y1y, o = arg Yop.

2.5. Solution of differential equations describing the forced vibrations problem

Small transverse vibrations of a three-layer shell with damping are excited
by axially symmetric inertial loading Fs(z,t) in relation to coordinate axis z,
moving in the direction of axis z at the constant velocity v* (see Fig. 1).

(2.52) Fy(z,t) = Pyd(z — v*t),

where P, is the force, §(...) denotes the Dirac delta function.
In order to solve differential equations (2.1), (2.2), the function of loading
(2.52) is expanded in the series

o0
h2
@58)  Fulot) = [ (Wan+ Vin + 512010
n=1

h2
+p2 (W2n i U2n £+ T#WQn)] fn
D

where Win, Wop, Uin, Uapn, ¥1n, Yo, have been described by the Egs. (2.34),
(2.40).
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The functions of displacements of the three-layer shell with damping are
expanded in the Fourier series

[ wy ] b W
U = Uin
21 Yin
2.54 = ) 55
(ot wo T; Wapn &
Ug Uan
| Yo | B2

Substituting (2.53) and (2.54) into the differential equations (2.1), (2.2), the
following equation of forced motion is obtained:

0
(2.55) Tn — WnTn = fn,

wheref, are the coefficients of distribution of the function of loading (2.52) in
the Fourier series.

Applying the property of orthogonality of the eigenfunction (2.44), the for-
mulas for coefficients of distribution of the loading are derived:

l

(2.56) / Win(z) + Wan(z) + Urn(z) + Usn(z)
0

+ Ui (z) + Yop (m)] Fy(z,t) dz.

The solution of the differential equation (2.55) has the form

t
(2.57) / [exp(ivn) (t — 7)) fn(T)dT.
0

To this end, the Fourier series (2.54) can be also rewritten in the following
form:

o0

Wy = Z [Win| |Tn| cos(x1n + §1)w
n=1

(2'58) u; = Z |Uln| |Tn| COS(’l91n ot fn)
n=l

(e}

U = Z |Wln| |Tn| Sin(eln =+ gn),

n=%
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o0
wy = [Wan| |Tn| cos(xzn + &),
n=1
o0
(2:98) wr =Y |Usal ITa] c08(93n + £n),
n=l

o0
Uy = |Won| |Tn| sin(0an + &n)

n=1
where:

k) Xin = argWin, xon =argWa,, Yi1p =argUi,, 9o, = argUsy,,
01, = arg ¥y, 0oy, = arg Yo, Enn—Ar@ Ly

2.6. Practical problems in the dynamical three-layer cylindrical shell
with damping

Here let us consider the dynamic load Fy(z,t), axially symmetric with respect
to the axis of symmetry, moving in the direction of the z-axis at a constant veloc-
ity v*, in a three-layer system containing a viscoelastic interlayer. The external
layers of the three-layer structure are the cylindrical elastic shells connected by
a visco-elastic interlayer.

The elastic shell is described by the Mindlin and the Kirchhoff-Love models
and is simply supported at the ends. The viscoelastic interlayer possesses the
characteristics of a homogenous continuous one-directional Winkler foundation
and is described by the Voigt—Kelvin model.

Small transverse vibrations of a three-layer shell with damping are excited
by the dynamical, axially-symmetric loading F5(z,t) non-uniform with respect
to axis z, moving in direction of axis x at the constant velocity v*, where

(2.60) Fy(z,t) = Pyd(z — v*t).
The numerical results are presented for the following data:

Ey=E=21-10'"Pa, E=10°Pa, ry=0.02m, r;={0.05,0.06,0.07} m,
2q=051, h={00%L 002,008  m; ~vg =03;7 [=05m, e¢=15Nsm?,
P =2-104N, v* =25 ms~2,

In order to determine the Fourier @,, coefficient, the following initial condi-
tions have been assumed:

wop = Ag sin (7rl_x) : woy = Ago Sin (ZZE) ;

As = 0.008 cm, Ay =0.01 cm.

(2.61)
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Some results concerning the time-dependence of the distributions of free vi-
brations wy, ws for external layers I and II in the system of two cylindrical shells
connected by a viscoelastic interlayer for o = 0.51, are presented in Fig. 2. The
thicknesses of the internal and external layers the same. ;

a) 0.01; wlcm]
0.008
0.006

0.004
Wi

0.002 ;
4_ 25:\; i) t[s]

.001 B2 0.003 O D84—

-0.002
w2

-0.004

0.01; wlcm]
0.008
0.006

0.004 Wi

0.002
A t[s]

.001 02 0.003 hans

-0.002

-0.004 N

o.01; Wwlem]
0.008

0.006

0.002 5]
.001 02 0.003 WJ

W2

-0.002

-0.004

Fic. 2. Free vibrations of the three-layer system of two cylindrical shells coupled

by a viscoelastic interlayer for Xo = 0.51 and various thickneses of the interlayers:

a) 71 = 0.02 m, 72 = 0.05 m, h = 0.01 m; b) 71 = 0.02 m, r2 = 0.06 m, h = 0.02 m;
¢) r1 =0.02m, 72 = 0.07 m, h = 0.03 m.
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Free vibrations of the three-layer cylindrical shell for the thickness of the
interlayer A = 0.01 m shown in Fig. 2a reach the values by approximately 5%
smaller than those in Fig. 2b for thickness A = 0.02 m. The free vibrations of
the three-layer cylindrical shell presented in Fig. 2b reach the values by approx-
imately 4% smaller than those in Fig. 2c for thickness i = 0.03 m.

In conclusion, it may be noted that as the thickness of the interlayer increases,
free vibrations of the three-layer system decrease more slowly with time t.

The effect of moving force in the three-layer shell with a viscoelastic inter-
layer is presented in Fig. 3 for thickness of the interlayer » = 0.01 m. The
diagrams show the real part of the trajectory of dynamical displacements of a
point of the three-layer shell for the velocity v* = 25 ms™! and various times
t = {0.01, 0.02} s, where z* = v*t.

We consider two cases: in the first case “a” where the Kirchhoff-Love model
wy,w; occurs, in the second case ,b” where the Mindlin model w;, wsy occurs.

In the case of a viscoelastic interlayer of a small thickness » = 0.01 m (Fig. 3),
a difference of dynamic displacement occurring between the cases I and II is

a)

wi[cm]

-0.0002

-0.0004

-0.0006

-0.0008

-0.001

-0.0012

wo[cm]

-0.01

-0.02

-0.03

-0.04

-0.05
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e AT S
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0.1 0.7 or—10.4 0.5
-0.02 Vi
v
"/Wz
-0.04) | /
|\\ ’,'.
-0.08 \\\ //’ w,
'\,H /
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Fic. 3. The trajectory of dynamical displacements of a movable point of the viscoelastic
three-layer cylindrical shell with the velocity and the various times for the moving force:
a) for the Kirchhoff’s-Love model, b) for the Mindlin model.

significant. In the case when the three-layer system with damping is loaded by
a moving force (Fig. 3), the amplitudes of forced vibrations for the viscoelastic
three-layer cylindrical shell with the Mindlin model w;, wy reach the values
approximately by 11% larger than the amplitudes of forced vibrations for the
cylindrical shell when the Kirchhoff-Love model w}, w3 is used.

3. CONCLUSIONS

The analytical method presented in this paper can be applied to solutions of
free and forced vibrations of various engineering structures consisting of shells
connected by viscoelastic constraints, subject to dynamical, axially symmetric
loading F5(z,t), non-uniform in relation to axis  and moving at the constant

velocity v*.
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Numerical investigations revealed that the problem of free and forced vibra-
tions for various engineering structures consisting of shells subjected to the action
of dynamic load can be solved using the Kirchhoff-Love model [18]. When we
consider a problem of free and forced vibrations for various engineering structures
under moving concentrated loading, it is necessary to use the Mindlin model.
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