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An efficient method of vibration investigation of an infinite string using the isogeometric
analysis (IGA) with B-spline basis functions is considered. The research objective is to compare
IGA, finite element method (FEM) and exact formulation approaches. In the IGA approxima-
tion a system is divided into a set of regularly distributed coordinates assembled in a uniform
knot vector. Transverse displacements are described by linear, quadratic, cubic and quartic
B-spline basis functions. The geometrical and mass matrices are found for all types of approxi-
mations. The equilibrium conditions for an arbitrary interior element are expressed in the form
of one difference equation equivalent to the infinite set of equations obtained by numerical IGA
formulation for this dynamic problem. Assuming the wavy nature of a vibration propagation
phenomenon the dispersive equations are obtained. The ranges of vibration frequencies for the
dispersive and reactive cases are determined. The influences of the adopted discretization, mass
distribution and initial axial force effects on the wave propagation phenomenon are examined.
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1. Introduction

An isogeometric approach to analysis of structural systems is a recently de-
veloped new technique. The basic concept of this method is presented in papers
by Hughes, Cottrell, Bazilevs and Reali [3–6]. IGA is a generalisation of
the classical finite element method and, geometrically, it is based on the com-
puter aided design (CAD) approach. Due to that IGA has a lot of common
features with FEM and meshless methods. The essence of IGA method is to
employ B-spline basis functions to describe the geometry and displacements of
the analysed system. These common functions are linear combinations of poly-
nomial curves described using a uniform knot vector which is a set of regularly
distributed coordinates.
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The goal of this study is to examine the efficiency of IG in the analysis
of the propagation of a wave in an infinite string, which is accomplished by
comparing the IG, FEM and analytical formulation approaches. The authors
used in their investigations the very efficient difference equation methodology
presented in their previous articles, e.g., Rakowski [12, 13] and Rakowski
and Wielentejczyk [14, 15]. The fundamental work concerning dynamics of
discrete systems, practically cited in all the publications in this field, is the
monograph by Brillouin [1]. Brilloouin defined basic concepts of travelling
wave propagations in periodic systems treated as the continuous ones with pe-
riodic inhomogeneities. Similar structures were analysed in many later works,
and the most important were publications by Mead et al. [9, 10]. In these two
articles many efficient methods for dynamic analysis of continuous systems were
developed. Furthermore, the finite element method was applied for dispersive
analysis of such systems in, e.g., Oris and Petyt [11], Belytschko and Min-
dle [2] and Rakowski [12]. In these works, based on equilibrium equations
for every node, the authors defined the characteristic equations, whose roots
(discrete waves numbers) allowed to determine the ranges of frequencies for
which the system is dispersive or reactive (the numerical effect). The qualita-
tive differences occurring in dynamic behaviour of one- and two-dimensional
discrete models in comparison with continuous ones was explained in, e.g.,
Inhlenburg and Babuška [8]. In the paper by Hughes, Reali and San-
galli [7], investigations of smooth basis functions generated by IGA were ini-
tiated. The comparison of them with standard Co finite elements was done
for the structural dynamics of a finite domain and for the wave propagation
in an infinite system. In addition, the eigenvalue problem of free vibrations
and the Helmholtz equation of the time-harmonic wave propagation were ana-
lysed.
This paper is a continuation of the previous work of the authors presented

in [16], where the dynamic responses of the infinite Rayleigh beam was exam-
ined using the difference equation methodology in IGA approach. The same
method of analysis is adopted in this paper for the examination of vibration of
an infinite string. Following this, the geometry and displacements of the con-
sidered linear string system are approximated by identical B-spline basis func-
tions. These functions are the linear combination of polynomials created on the
basis of the uniform knot vector defined as a set of regularly distributed co-
ordinates. The quadratic, cubic and quartic B-spline functions are used in the
calculation. The aim of this work is to assess the accuracy of this methodol-
ogy in the dynamic analysis of infinite one-dimensional systems. The research
is focused on a comparison between IGA, FEM and exact formulation. Addi-
tionally, the influences of parameters such as density of control points, mass
distribution and initial axial force effects on wave propagation in the system
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are investigated. The analytical IGA problem is formulated using the finite dif-
ference equation (FDE) methodology. The geometrical and mass matrices for
the interior element of string, located between two adjacent control points, are
found. The equilibrium conditions are expressed in the form of one difference
equation equivalent to the infinite set of equations defined in the numerical IGA
formulation. This approximation enables us to obtain the analytical solution
of the wave propagation problem for any regular distribution of control points.
Using this approach, the convergence of the discrete system described by IGA
and FEM methods (finite difference equation formulation) with the continu-
ous system (differential equation formulation) is examined. This approach can
clearly identify the causes of errors and explain the “parasitic” effects resulting
from approximation methods. Assuming the wavy nature of string vibration, the
dispersive equations of a propagation phenomenon are obtained. The analytical
form of these equations makes it possible to efficiently find the influence of the
required control point density (the length of the finite element in FEM formula-
tion), mass distribution, order of the B-spline basis functions, initial axial force
effects, and physical and geometrical parameters of a string on the results of
calculations. The conclusions can be extended to an arbitrary one-dimensional
finite system for any shape of wave propagation. The representations of dis-
persion equations are given in the form of diagrams of passing bands. They
enable us to select correctly the discretization of the system in which both the
required accuracy of results and time of numerical computations are taken into
account. The passing bands are compared to the exact ones for continuous sys-
tems.
The paper has the following layout. In Sec. 2, the graphical and analytical

forms of the B- spline basis functions for the uniform knot vector are presented.
In the next step, they are employed to define the IGA equilibrium equations.
From the strain and the kinematic energy expressions the geometrical and con-
sistent mass matrices are obtained for any interior element. These matrices are
formulated for linear, quadratic, cubic and quartic B-spline basis functions. Us-
ing the regular distribution of the control points (the identical functions between
adjacent control points) the equilibrium conditions are derived in the form of
one difference equation for various orders of the B-spline basis functions. These
equations make it possible to easily identify the numerical errors in discrete
systems with respect to continuous ones.
Subsequently in Sec. 3 the dispersion equations are discussed. These equa-

tions are obtained under assumption of the wave propagation function resulting
from the imposed boundary conditions of the analysed system. The functions
are derived for consistent and lumped mass models taking into account the axial
force effects. Based on these equations, a detailed dispersive analysis is carried
out. The passing band diagrams, determined for the entire range of frequencies,



200 J. RAKOWSKI, P. WIELENTEJCZYK

give the possibility to evaluate IGA applicability in the analysis of examined
structures. The influence of the initial axial force effects, the mass distribution,
density of control points and the order of the B-spline basis functions on pass-
ing bands are examined. The results are compared with FEM and analytical
solutions.
In Sec. 4 the concluding remarks are presented.

2. Difference equation formulation

In this section, the analytical and graphical form of the B-spline basis func-
tions is presented. Afterwards, the geometrical and consistent mass matrices are
obtained for different orders of the basis functions assuming the regular distri-
bution of control points. They are derived from the strain and the kinematic
energy expressions. Taking into account the regular division of the system the
equilibrium equations are expressed in the form of a single difference equation re-
placing the infinite number of equilibrium equations for an infinite system. The
difference equilibrium equations are formulated for various orders of B-spline
basis functions, that is, for the lumped and consistent mass model.

2.1. B-spline basis functions

B-splines are polynomial curves consisting of linear combinations of B-spline
basis functions. B-spline basis functions are described with the use of coordinates
of a knot vector. In one-dimensional parametric space, the knot vector is written
as {x1, x2, ..., xi, xi+1, ..., xn+p+1} where xi ∈ R is the i-th knot, i is the knot
index I = 1, 2, ..., n + p + 1, p is the polynomial order, and n is the number of
basis functions, see for instance Hughes et al. [6].
The B-spline basis functions are defined starting with constant functions for

p = 0:

(2.1) Ni,0(x) =

{
1 if xi ≤ x < xi+1

0 otherwise

and for p = 1, 2, 3, . . ., they are defined as

(2.2) Ni,p(x) =
x− xi

xi+p − xi
Ni,p−1(x) +

xi+p+1 − x

xi+p+1 − xi+1
Ni+1,p−1(x).

For a uniform knot vector written as {0, 1, 2, 3, 4, . . .} the suitable B-spline
basis functions of order p = 0 (constant), p = 1 (linear), p = 2 (quadratic),
p = 3 (cubic), p = 4 (quartic), p = 5 (quintic) are presented in Fig. 1.
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a) b) c)

d) e) f)

Fig. 1. Selected a) constant, b) linear, c) quadratic, d) cubic, e) quartic and f) quintic B-spline
basis functions for the knot vector {0, 1, 2, 3, 4,. . . }.

The B-spline basis functions have an identical shape for an arbitrary one-
dimensional interior element (xi, xi+1). The nonzero analytical B-spline equa-
tions described over this element (Ni,0 = 1) for various orders p are

(2.3) for p = 1 (linear)

{
Ni−1,1 = 1− η,

Ni,1 = η,

(2.4) for p = 2 (quadratic)





Ni−2,2 =
1

2
(1− η)2,

Ni−1,2 =
1

2
+ η − η2,

Ni,2 =
1

2
η2,

(2.5) for p = 3 (cubic)





Ni−3,3 =
1

6
(1− η)3,

Ni−2,3 =
2

3
− η2 +

1

2
η3,

Ni−1,3 =
1

6
+

1

2
η +

1

2
η2 − 1

2
η3,

Ni,3 =
1

6
η3,
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(2.6) for p = 4 (quartic)





Ni−4,4 =
1

24
(1− η)4,

Ni−3,4 =
11

24
− 1

2
η − 1

4
η2 +

1

2
η3 − 1

6
η4,

Ni−2,4 =
11

24
+

1

2
η − 1

4η
2 − 1

2
η3 +

1

4
η4,

Ni−1,4 =
1

24
+

1

6
η + 1

4η
2 +

1

6
η3 − 1

6
η4,

Ni,4 =
1

24
η4,

where η = (x− xi) /a.
The graphical representation of these functions is shown in Fig. 2.

a) b)

c) d)

Fig. 2. a) Linear, b) quadratic, c) cubic and d) quartic B-spline basis functions for the interior
element {xi, xi+1}.

2.2. Geometrical and mass matrices

The geometrical and mass matrices for the string can be derived from the
expression of the strain Ep and the kinematic energy Ek, see Rakowski [13] as
follows:
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(2.7) Ep =
1

2

∫
H

(
∂w

∂x

)2

dx, Ek =
1

2

∫
ρAẇ2dx.

Transverse displacements w are connected with displacements of control points
using IGA description by the following relation:

(2.8) w(x) =

n∑

i=1

Ni,p ui.

The vector ui includes n discrete displacements of control points wr.
Using (2.8) the expression for energies (2.7) can be transformed into matrix

notation of the following form:

(2.9) Ep =
1

2

∫
H
∂BT

∂x

∂B

∂x
dx, Ek =

1

2

∫
ρAḂT Ḃdx,

where B and BT are the regular and transposed vectors corresponding to the
control points and including the B-spline basis functions from Eqs. (2.3)–(2.6).
Ḃ denotes the first derivative of the vector B with respect to time t, Ḃ = ∂

∂t( ).
Assuming regular division of one-dimensional system and based on the B-

spline basis functions the geometrical KG and the consistent mass M matrices
corresponding to transverse displacements w are derived below.
Matrices for the first-order of B-splines (p = 1) are

(2.10) KG =
H

a

[
1 −1
−1 1

]
, M =

ρAa

6

[
2 1
1 2

]
.

Matrices for the second-order of B-splines (p = 2) are

(2.11) KG =
H

6a




2 −1 −1
−1 2 −1
−1 −1 2


, M =

ρAa

120




6 13 1
13 54 13
1 13 6


.

Matrices for the third-order of B-splines (p = 3) are

(2.12)

KG =
H

120a




6 7 −12 −1

7 34 −29 −12

−12 −29 34 7

−1 −12 7 6


,

M =
ρAa

5040




20 129 60 1

129 1188 933 60

60 933 1188 129

1 60 129 20


.
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Matrices for the fourth-order of B-splines (p = 4) are

(2.13)

KG =
H

5040a




20 109 −69 −59 −1

109 950 −186 −814 −59

−69 −186 510 −186 −69

−59 −814 −186 950 109

−1 −59 −69 109 20



,

M =
ρAa

362880




70 1121 1581 251 1

1121 22810 42996 11446 251

1581 42996 110430 42996 1581

251 11446 42996 22810 1121

1 251 1581 1121 70



,

where ρ is a density of material, H is an initial axial force, A is a cross-section
area, a is a regular spacing of control points, w is the transverse displacement
function of string.

2.3. Difference equilibrium conditions

If we take into account the suitable order of B-spline functions and regular
division of the system we can express the equilibrium conditions for transverse
vibrations of the infinite string in the form of finite difference equations, e.g.,
see Rakowski [13]. These recurrent equations replace infinite number of equi-
librium equations with a finite system. The transverse displacements of selected
control points for harmonic excitation of a string are described by the following
function:

(2.14) w(r) = wr exp(iωt),

where wr is the transverse displacement amplitude of control points (coordinate
r in discrete notation), ω is the transverse vibration frequency, t is the time,
and i is the imaginary number, i =

√
−1.

Based on the geometrical and mass matrices from Eqs. (2.10)–(2.13) the
difference equilibrium equations for the lumped and consistent mass model and
suitable order of the B-spline basis functions are formulated as follows:

• for p = 1

– transverse vibrations for the lumped mass model

(2.15) ∆2wr +Ω2wr = 0,



ISOGEOMETRIC APPROXIMATION FOR DYNAMICS. . . 205

– transverse vibrations for the consistent mass model

(2.16) ∆2wr +
Ω2

6

(
∆2 + 6

)
wr = 0,

• for p = 2
– transverse vibrations for the lumped mass model

(2.17)
(
∆4 + 6∆2

)
wr + 6Ω2wr = 0,

– transverse vibrations for the consistent mass model

(2.18)
(
∆4 + 6∆2

)
wr +

Ω2

20

(
∆4 + 30∆2 + 120

)
wr = 0,

• for p = 3

– transverse vibrations for the lumped mass model

(2.19)
(
∆6 + 30∆4 + 120∆2

)
wr + 120Ω2wr = 0,

– transverse vibrations for the consistent mass model

(2.20)
(
∆6 + 30∆4 + 120∆2

)
wr +

Ω2

42

(
∆6 + 126∆4 + 1680∆2 + 5040

)
wr = 0,

• for p = 4

– transverse vibrations for the lumped mass model

(2.21)
(
∆8 + 126∆6 + 1680∆4 + 5040∆2

)
wr + 5040Ω2wr = 0,

– transverse vibrations for the consistent mass model

(2.22)
(
∆8 + 126∆6 + 1680∆4 + 5040∆2

)
wr

+
Ω2

72

(
∆8 + 510∆6 + 17640∆4 + 151 200∆2 + 362 880

)
wr = 0,

where Ω2 = ρAω2a2/H denotes the frequency parameter.
The above central difference operators are as follows:

∆2 = E−1
r − 2 + E1

r ,

∆4 = E−2
r − 4E−1

r + 6− 4E1
r + E2

r ,

∆6 = E−3
r − 6E−2

r + 15E−1
r − 20 + 15E1

r − 6E2
r + E3

r ,

∆8 = E−4
r − 8E−3

r + 28E−2
r − 56E−1

r + 70− 56E1
r + 28E2

r − 8E3
r + E4

r ,

where En
r is Boole’s shifting operator, E

n
r = En(fr) = fr+n.
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2.4. Limits of the difference equilibrium equations

The convergence of difference Eqs. (2.15)–(2.22) to the exact differential
equations of continuous systems is examined below.
Taking for example Eqs. (2.19) and (2.20) and dividing both sides by a4, we

can rewrite them in the following form:

(2.23) H

(
a4

∆6

a6
+ 30a2

∆4

a4
+ 120

∆2

a2

)
wr + 120ρAω2wr = 0,

(2.24) H

(
a4

∆6

a6
+ 30a2

∆4

a4
+ 120

∆2

a2

)
wr

+
ρAω2

42

(
a6

∆6

a6
+ 126a4

∆4

a4
+ 1680a2

∆2

a2
+ 5040

)
wr = 0.

Knowing that

(2.25) lim
a→0

(
∆j

aj
wr

)
=
∂jw

∂xj
, lim

a→0

(
an

∆j

aj
wr

)
= 0,

where j is the derivative order (j, n = 1, 2, 3. . .), the limit for a tending to 0 in the
above difference equations attains identical form for all types of approximations:

(2.26) H
∂2w(x)

∂x2
+ ρAω2w(x) = 0,

where w = w(x) is the vertical displacement amplitude of the continuous string.
This procedure gives the same final differential equation of motion for vari-

ous p.

3. Dispersive analysis

In this section, the effective method of results’ evaluation obtained from
FEM and IGA approximations is proposed.
The presented method enables us to make the qualitative analysis of the

accuracy and efficiency of numerical calculations for the entire range of vibration
frequencies taking into account the discretization, the order of the B-splines basis
functions p and the mass distribution.
All examinations are performed on the basis of the analytical dispersion

equations derived from the difference equilibrium equations which include the
relationships between the wave number k and the frequency parameter of vibra-
tion Ω.
The image of the function Ω(k) shows the so-called passing bands in the

dispersion system. The comparison of the passing band convergence to the ex-
act results provides the complete verification of the accuracy of the adopted
approximation method.
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3.1. Dispersive equation – exact solution for continuous system

The differential equilibrium equation for transverse vibrations of the infinite
string is of the form (2.26). Assuming that displacements decay in infinity and
the travelling wave occurs in the system, the exact solution for amplitudes of
the differential equation can be given as follows:

(3.1) w(x) = C exp(ikwx).

In the above formulas x is a coordinate, kw = k/a, i =
√
−1, C is an arbitrary

constant, kw is an imaginary exact wave number of transverse wave motion, i is
the imaginary number, and a is regular spacing of control points.
Substituting the solution for the continuous system (3.1) into equation (2.26),

we obtain the exact string dispersive equation for continuous system described
by discrete variables:

(3.2) Ω2
e = k2,

where Ω2
e = ρAω2a2/H denotes the frequency parameter.

Equation (3.2) shows that the vibrations of a continuous string have the
form of a travelling wave in the entire examined frequency range. The frequency
parameter Ω is real for every value of the wave number k. The continuous system
is always dispersive and passing bands are unlimited contrary to those in the
approximation methods (FEM, IGA).

3.2. Dispersive equations – FEM analysis

The difference equilibrium equations and suitable dispersive equations using
FEM methodology for the infinite string were derived by Rakowski in [13]. In
the case when a travelling wave occurs in the system the dispersive equations
for different mass distribution are as follows:

• transverse vibrations for the lumped mass model

(3.3) ∆2wr +Ω2wr = 0,

• transverse vibrations for the consistent mass model

(3.4) ∆2wr +
Ω2

6

(
∆2 + 6

)
wr = 0.

Assuming that the displacements decay in infinity and the travelling wave occurs
in the system the solutions are as follows:

(3.5) wr = C ′ exp(ikr),
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where C ′ is an arbitrary constant, i is the imaginary number, k is the discrete
wave number and r is node coordinate.
In the case when a travelling wave occurs in the system the dispersive equa-

tions for different mass distribution are as follows:

• transverse vibrations for the lumped mass model

(3.6) Ω2 − 2f = 0,

• transverse vibrations for the consistent mass model

(3.7) (3− f)Ω2 − 6f = 0,

where f = 1− cos k, Ω2 = ρAω2a2/H.
Equations (3.6) and (3.7) are obtained for finite element approximation with

linear shape functions.

3.3. Dispersive equations – IGA analysis

Assuming that the displacements decay in infinity and the travelling wave
occurs in the system the solutions of Eqs. (2.15)–(2.22) are the same as those in
Eq. (3.5).
Substituting Eq. (3.5) into the difference Eqs. (2.15)–(2.22) we can obtain

characteristic equations of the form:

• for p = 1

– transverse vibrations for the lumped mass model

Ω2 − 2f = 0,

– transverse vibrations for the consistent mass model

(3− f)Ω2 − 6f = 0,

• for p = 2

– transverse vibrations for the lumped mass model

3Ω2 − 2f(3− f) = 0,

– transverse vibrations for the consistent mass model

(f2 − 15f + 30)Ω2 − 20f(3 − f) = 0,

• for p = 3

– transverse vibrations for the lumped mass model

15Ω2 − f(f2 − 15f + 30) = 0,

– transverse vibrations for the consistent mass model

(f3 − 63f2 + 420f − 630)Ω2 − 42f(−30 + 15f − f2) = 0,
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• for p = 4

– transverse vibrations for the lumped mass model

315Ω2 − f(630− 420f + 63f2 − f3) = 0,

– transverse vibrations for the consistent mass model

(f4−255f3+4410f2−18900f+22680)Ω2−72f(630−420f+63f2−f3) = 0,

where f = 1− cos k, Ω2 = ρAω2a2/H.

4. Dispersive analysis – passing bands

Based on the previously derived dispersion equations for various approxima-
tion methods (FEM, IGA) the diagrams of the passing bands of the travelling
wave are found. They present the relationship between the frequency parameter
Ω and the discrete wave number k ∈ (0, π).
The proposed diagrams clearly show the influence of approximation methods

on propagation wave phenomenon in the system. The progress of them depends
on the control density points (mesh density in FEM), types of approximation
functions, mass distributions and axial force effects and they can indicate errors
of these methods in relation to the exact approach.
In Fig. 3a the passing bands Ω(k) of an infinite string approximated by

IGA for various orders of the B-spline basis functions p and the lumped (lower
branches) and consistent (upper branches) mass model are presented. The IGA

a) b)

Fig. 3. a) The IGA passing bands of the infinite string and b) the comparison of the IGA
passing bands to the exact solution Ωe for the following order of B-spline basis functions:

p = 1 (- - -), p = 2 (⋄ ⋄ ⋄), p = 3 (◦ ◦ ◦), p = 4 (+++), exact (—).
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passing bands are compared with exact ones (the solid line). The passing bands
for FEM approach with linear shape function are the same as for the first-order
B-spline basis function (p = 1).
Figure 3b greatly simplifies evaluation of numerical calculations’ accuracy.

It shows the deviation of the IGA frequency parameter Ω with respect to the
exact solution Ωe for continuous system. For orders p = 3 and p = 4 of the basis
functions and consistent mass model, the errors of the IGA do not exceed 10%.
For a wide range of the passing bands the errors are less than 5%. The lumped
mass model for increasing order of the B-spline basis functions gives results
varying significantly from the exact solutions. The error rises with increasing
values of the discrete wave number k. Such a dynamic behaviour, due to the
adoption of the lumped mass model, indicates that the IGA coincides only in
a very narrow range, i.e., for very low values of the frequency parameter Ω
(high density of mesh control points a) with the exact solution. The reason of
this phenomenon is difficulty in formulating the difference equilibrium equation
for the lumped mass model taking into account the influence of a mass acting
at adjoining control points. The main problem is to obtain the diagonal mass
matrix for IGA approximation, see Cottrell, Hughes and Bazilevs [4].

5. Conclusions

The efficiency of IGA approach using the vibration analysis of one-dimensional
system is presented. The difference equation method is adopted for the analy-
sis of transverse vibrations of the discrete infinite string. The geometrical and
mass matrices are formulated. The results are obtained in analytical closed form
and compared with the FEM and exact ones. The convergence of the difference
equilibrium equations of motions to the exact ones is investigated. Assuming
regular structure of the system and the difference formulation of the problem,
and despite infinite numbers of unknowns, it is shown that the solutions can
be obtained in analytical closed form what gives the possibility of qualitative
and quantitative evaluation of dynamic behaviour of one-dimensional infinite
systems.
The influence of adopted discretization model, mass distributions and ini-

tial axial force effects on wave propagation phenomenon are examined. The
frequency ranges of passing bands are determined. It can be noticed that the
lumped mass model limits very much the usefulness of the IGA for the dynamic
analysis of infinite discrete strings.
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