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1. INTRODUCTION

Diffusion is the transfer process of the mass of a substance from the high
concentration regions to low concentration regions. NOWACKI [1-4] developed
the theory of thermoelasticity with mass diffusion based on classical Fourier’s
and Fick’s laws. SHERIEF et al. [5] established a generalized theory of thermoe-
lasticity with mass diffusion by modifying Fourier’s and Fick’s laws.

The first model for single porosity deformable solid was given by B1oT [6].
ATFANTIS and colleagues [7-9] developed the theory for deformable materials
with double porosity. In a double porosity elastic material, there are macro pores
in the body but in addition there is a micro porosity arising because of fissures
or cracks in the solid skeleton. KHALILI and SELVADURALI [10, 11] and GELET
et al. [12] established the basic governing homogeneous equations in the linear
theory of thermoelasticity for solids with double porosity. Considerable research
has been conducted in this field. While all the theories developed by the above
mentioned authors were based on Darcy’s law. IESAN and QQUINTANILLA [13] de-
rived a non-linear theory of thermoelastic solids with double porosity structure
without using this law. In a similar manner, KANSAL [14] developed a linear gen-
eralized theory of thermoelastic diffusion with double porosity. SVANADZE [15]
developed the classical potential method in the linear theory of thermoelastic-
ity for materials with a double porosity structure based on the mechanics of
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materials with voids. MARIN et al. [16] approached transient elastic processes
and steady-behavior state in a cylinder consisting of a linear elastic body with
a dipolar structure only subjected to some boundary restrictions at a plane end.
AMIN et al. [17] obtained new uniqueness results for anisotropic thermoelastic
bodies with a double porosity structure based on the Betti reciprocity relation
that involve some thermoelastic processes.

In a triple porosity elastic material, the body possesses three levels of pore
structures. The first is the largest visible porosity known as macro porosity,
the second represents an intermediate case which is known as meso poros-
ity, and the final scenario is referred to as a micro porosity. SVANADZE [18] and
STRAUGHAN [19] presented the governing equations for the theories of elasticity
and thermoelasticity with triple porosity, respectively. SVANADZE [20-25] stud-
ied various boundary value problems concerning elastic solids and thermoelastic
solids with triple porosity.

The need for theories addressing multiple porosity elasticity and the asso-
ciated mathematical, physical and numerical analyze is undoubtedly driven by
the myriad of applications that currently exist and continue to emerge. The first
application area is in mathematical biology and the associated field of health.
Replacement of damaged long bones in humans is a major problem for a surgeon
because the porosity of the bone can vary from 14% in the outer layer of bone
to 42% in the inner layer. Indeed, to adequately model a long bone one may re-
quire a multi-porosity theory applicable to a graded porosity material. Another
very important area of application for multiple porosity elasticity is geophysics.
For example, a careful description of landslides may require employing the dou-
ble porosity theory. STRAUGHAN [26] discussed various applications of multiple
porosity in his book.

Fundamental solutions play an important role in solving various boundary
value problems. The reason is that an integral representation of the solution of
a boundary value problem using a fundamental solution is often more easily solved
by numerical methods rather than a differential equation with specified bound-
ary and initial conditions. When investigating boundary value problems of the
theories of elasticity and thermoelasticity by the potential method, it is necessary
to construct fundamental solutions of corresponding systems of partial differen-
tial equations and to establish their basic properties. Numerous authors [27-33]
constructed fundamental solutions by means of elementary functions in different
theories of elasticity and thermoelasticity involving double and triple porosity.

In this paper, the constitutive relations and field equations for anisotropic
generalized thermoelastic diffusion with triple porosity are derived in Sec. 2.
After reducing the anisotropic system of equations into an isotropic system
of equations, the fundamental solution for steady oscillations is constructed in
terms of elementary functions in Secs. 3 and 4. In Sec. 5, the fundamental
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solutions for pseudo-, quasi-static oscillations and equilibrium are constructed.
Finally, some basic properties of fundamental matrix are established in Sec. 6.

2. BASIC EQUATIONS

Based on the work of IESAN and QUINTANILLA [13], the law of conservation
of energy for an arbitrary material volume V' bounded by a surface B at time ¢
can be written as

\% \%

+ /[fzuz + (2w, — qiwi| d B,
B
where U is the internal energy per unit mass, p is the density, ¢; are the compo-
nents of heat flux vector q, F; are the components of the external force per unit
mass, u; are the components of displacement vector u, f; are the components
of surface traction vector f occurring on the surface B, v; are the volume frac-
tion fields corresponding to macro-, meso-, micro-pores respectively, x; are the
coefficients of equilibrated inertia, A; are the extrinsic equilibrated body forces
per unit mass associated with macro-, meso-, micro-pores, respectively, {2;; are
the components of equilibrated stress vectors corresponding to v; measured per
unit area of surface B, respectively, and w; are the components of outward unit
normal vector zo to the surface B.
The components f; are related to the stress vectors by the relation:

(2.2) fi = 0jiwj,

where 0;(= 04j) are the components of the stress tensor.
By using Eq. (2.2) in Eq. (2.1) and applying the divergence theorem, we
acquire

(23) /p[ulul + K111 + Koo + K3lglg + U] dV = /p[quz + A; Vz] dVv
Vv 1%
+ /[Uj@j@i + O'jiibi,j + Qij,jl'/i + Qz'jl./@j — qi’i] dVv.
\%4

Since Eq. (2.3) is valid for every part of the body, therefore the local form of
the conservation of energy is obtained as follows:

(2.4)  pligil; + w1011 + Kot + k3t + U] = p[Fyu; + A; 1)

+ 0ji g + 0jitt g + Qi vi + il — gie
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Let us consider a second motion that differs from the given motion only by
a constant superposed rigid body translational velocity. We assume that x;, U,
Ai, p, Vi, $2i5, qi, F;, 0j; do not vary due to this superposed rigid body velocity.
Equation (2.4) is also true when 4; is replaced by ; + p;, where p; are arbitrary
constants, and all other terms remain unchanged. Therefore, from Eq. (2.4), we
arrive at

(25) p[(uz + pz)uz 4+ K111 + Kolnln + Kalialg + U] = /)[F;(uz + pz) + A; Vz]

+ 0ji i (0 + i) + 0jit j + 2450 + 2450 5 — i
By subtracting Eq. (2.4) from Eq. (2.5), we obtain
(2.6) wilojig + pF; — piig] = 0.

Because the quantities in the square brackets are independent of g;, from Eq. (2.6)
we obtain

(2.7) ajij + pFi = pi.

Equation (2.4) with the assistance of Eq. (2.7) yields a simplified form of the
conservation of energy

(2.8) pU = oyt j + i j — qii — Vi,
where 75,1 = 1, 2, 3, satisfy the following relations
i +11+ pAr = priin,
(2.9) 2955 + 1o+ pAa = prais,
2355 + 13+ pAs = prsiis.

Following NOWACKI [34], the balance of entropy can be expressed as
(2.10)

. i Pn; i P; p
d = ;dB— —_— ;dB= ——=T;——2—n+—=n;1;|dV,
/pS V+/ <T>w /< T )w /|: T2 TU+T277 ) V,
1% B B 1%

where S and P are entropy and chemical potential per unit mass respectively,
7; are the components of mass diffusion flux vector n, and T is the absolute
temperature.

Equation (2.10) can be written in the local form

: i P qi P; P
2.11 S =1 — — 2. e 4 T T
( ) P +<T>Z < T >Z T2 K T771+T27h K

) )
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The right-hand side of Eq. (2.11) is the entropy source

qi P; P
%:_ﬁri_?n szT > 0.

Based on the above relations, Eq. (2.11) can be represented in the form of an
inequality called the Clausius-Duhem inequality

gi r Pi P
(2.12) pS + % - ﬁT Tl ?zm + il 2 0.
The equation of conservation of mass is
(2.13) nj;=—C,

where C' is the concentration of the diffusion material in the elastic body.
Inequality (2.12) using Eqgs. (2.8) and (2.13) becomes

(2.14) pTS —pU + Oij€ij + Qijui,j —Tiv; — %Tﬂ + PC — P,ini + ?T}ZTJ >0,

where e;; = %(u” + u;;) are the components of the strain tensor.
The Helmholtz free energy function I' is defined as

(2.15) r=U-TS.

By applying Eq. (2.15) into inequality (2.14), we obtain
. . ; . P
(2.16) — p[I" + TS|+ 0ijéij + Qi 5 — Vit — %Tl +PC = Pani+ mnils 2 0.

The function I" can be expressed in terms of independent variables e;;, v;, v; j,
T,T;, C,and C;. Therefore, we have

or or or oI . or . oI . or .
T Cijt Vit i+ T+ T+ 250+ 5 C
Oeij alji 81/”

2.1 I =
(2.17) oT or; " aC oC;

Inequality (2.16) using Eq. (2.17) becomes
or . or or or
R o e o o

p o0 o or
Pac

. J2
G ¢.-%ip _p T, > 0.
Por, T P, T T i i
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The inequality should hold all rates é;;, v, v ;, T, T i, C, and CZ Hence, the
coefficients of the above variables must vanish, that is,

- ar - ar by Or
045 = paeijv i — p8Vi7j7 T payiv
or or or or
2.18 - p=,% _ _
(2.18) 5= o Pacc o~ ac,
q;

P
_TT,i — Pn; + TniT,i > 0.

Let us introduce the notations
(b:‘V—V[), QZT—T[),

where ¢ = (p1, b2, ¢3), T is the reference temperature of the body chosen such
that |Ti0] < 1, and vq represents the volume fraction fields in the reference
configuration.

In the linear theory, the independent variables are e;;, ¢;, ¢; j, 6, and C. It
is assumed that the undeformed body is free from stresses and has zero intrinsic
equilibrated body forces and entropy. If the body has a center of symmetry, then
we have

2pF = Cijki€Cij€kl — 2aijeij9 — 2bijeijC + 201‘3'61']'(;51 + Qdijei]’gbg
+ 2fii€ijh3 + a1t + aodi 4+ azdi + 20up1de + 205h203 + 206h361
+ Aijjd1iP1,5 + Bijdoipaj + Cijd3i03, + 2D;jd1,:02

pC.6?
0

— 2a0C 4 bC?.

+ 2E;jp0,ip3,5 + 2F;p3 i1, — 2000 — 26,0,C —

Using the above equation in the system of Egs. (2.18), the following constitutive
equations are obtained:

(2.19) Oij = Cijrierl + Cijd1 + dijdo + fijd3 — a0 — bi;C,

;= Aijo1i + Dijoai + Fijoss,
(2.20) 295 = Dijop14 + Bijdai + Eijd3,
235 = Fijd1,i + Eijbai + Cija,

1 = —cijeij — o191 — a2 — agpz + €10 +&1C,
(2.21) Ty = —d;jei; — cupr — aopa — aspz + (20 + e2C,
Y3 = —fijeij — asdpr — aspa — azps + €30 + 3C,
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pCe0
0

(2.22) pS = ajjei; + i + + aC,

(2.23) P = —bijeij —&;¢; —ab + bC.
Equations (2.7) and (2.9) with the use of Egs. (2.19)—(2.21) become

(2.24)  cijmer; + cijdr; + dijda; + fijds,; — aiibj — bi;C 5 + pFi = i,

—¢ijeij + Aijd1,i + Dijgo,ij + Fij¢sij — a1 — augr — a3

+ 00 +e1C+ pAy = Pﬁlﬁgla
—dijeij + Dijo145 + Bijdoij + Eij3j — aud1 — asda — as¢3

+ 020 + £2C + pAy = priadha,
—fijeij + Fijor,ij + Eijb25 + Cij¢sij — ad1 — aspa — azps

+ 030 + e3C + pAz = prsds.

(2.25)

The linearized form of Eq. (2.11) is
(226) pT()S = —{qi-
Using Eq. (2.22) in Eq. (2.26), we obtain
(2.27) To[aijéij + i + aC’] +pCel = —q; ;.
The generalized Fourier’s law of heat conduction equation is
(2.28) @i + 10Gi = —Kij0 5,
where K;; are the coefficients of thermal conductivity tensor, g is the thermal
relaxation time that will ensure that the heat conduction equation will predict
finite speeds of heat propagation.
Equation (2.28) with the help of Eq. (2.27) becomes

0 0?
(2,29) (875 + T03152>[T0(aijeij + li; + CLC) + pCeG] =K; »971‘]‘.

Similar to Eq. (2.28), the generalized Fick’s law of mass diffusion is
(2.30) i+ 700 = —Jii Pj,

where J;; are coefficients of diffusion tensor, and 70 is the diffusion relaxation
time ensuring that the equation satisfied by the concentration will also predict
finite speeds of propagation of matter from one medium to the other.
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Using Egs. (2.13) and (2.23) in Eq. (2.30), we obtain
(2.31) — Jijlbrieriij + €xPr,ij + ab i — bC ;5] = C+7°C.
If we take
Cijkt = A0igOg + i 0ji + 1030k, ag; = V184, bij = 2055,
cij = R16;5, dij = R0, fij = N304, Aij = A1dij,
B;; = Asdyj, Cij = A3dij, Dij = A4dij, Eij = Asd45,
Fi; = Agbj, K;; = Ko;j, Jij = Ddyj,

where 6;; is Kronecker’s delta and A, u, U1, 92, Ry, Ro, N3, Ay, ..., 46, K, D
are material constants, in Eqs. (2.24), (2.25), (2.29), and (2.31), the governing
equations for homogeneous isotropic generalized thermoelastic diffusion with
triple porosity in the absence of body forces are obtained as

pAu+ (A4 p)Vdiv u+ R1,;Ve, — 91V — 9.VC = pi,
—%1 divu + (A1 A — 061)¢1 + (A4 A — Oz4)gb2 + (A6 A — 046)¢3
+00+e1C= p/ﬂ@.b.ly
—Rodivu+ (A4 A —ag)p1 + (A2 A — ag)da + (A5 A — as)ds
+ 050 + £9C = prads,
—Rzdivu+ (Ag A — o)1 + (A5 A — a5)p2 + (A3 A — a3)¢3
+ 030 + e3C = prsds,

(2.32)

0 0? )
<<9t + Tgat2> [To(’l91 diva+ 4;¢; + aC) + ,0069] = KA0,

. o
_DA[”&leVu-f-SngZ-f-ae—bC]-’— (at+T 8‘[:2>C:0’

where A, V are respectively, Laplacian and Del operators.

In the upcoming sections, the chemical potential has been used as a state
variable rather than concentration. In an isotropic medium, Eq. (2.23) becomes

(2.33) P = —192 divu — Ek(lsk —af + bC.
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The system of Egs. (2.32) with the aid of Eq. (2.33) can be rewritten as

pAu + (N + @)V div u+ o;Ve; — VO — VP = pil,

—ordivu4 (A1 A — B1)d1 + (A4 A — By) o + (Ag A — Bg) s
+&0 + v P = pri1¢n,

—09 divu + (A4 A — 54>¢1 + <A2 A — 52)¢2 + <A5 A — B5>¢3
+ &0 + v P = prago,

2.34 .
@39y divat (AgA — Be)di + (As A — By)ds + (A3 A — B)ebs
+ &30 + v3P = praos,
0 % .
— a —}—7‘0@ To[Cldlvu+§Z¢i +770—|—§P] + KAG = 0,
(24 X [Cadivu+ vi¢; + <0+ wP] + DAP =0
ot T 12 2 A1V i D S w =V,
where
w:bil) CQZw’&27 gl :191-}—0142, Gi:%i_€i§27
N =)= (i, ¢ = aw, v = &w, Bi = oy — €404,
Ba =0y —e1v2,  fBs=as5—ev3, P = s — e3v1, & =4 +cey,
n:ng;e—&—cm, 1=1,2,3.

3. STEADY OSCILLATIONS
Let x = (1, 22, ¥3) be the point of the Euclidean three-dimensional space E3,
— (2 2 2\1/2 _ (o8 8 &
|X|— ($1+x2+$3) 7Dx— <87:E1787$2’87$3)

The displacement vector, volume fraction fields, temperature change, and
chemical potential functions are assumed as:

(3.1) [u(x,t), d(x,t),0(x,t), P(x,t)] = Re [(u*, b*, 0%, P*)eﬂwt}’

where w is the oscillation frequency.
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Using Eq. (3.1) in the system of Eqs. (2.34) and omitting asterisk (*) for
simplicity, the system of equations of steady oscillations is obtained as

where

pAu+ (N 4+ p)Vdiv + pw?lu + 0;Ve; — (VO — (VP = 0,

—opdivu + (Al A— ’)/1)¢1 + <A4 A— 54)¢2 + <A6 A— 66>¢3
+§19 + v P =0,

—ogdivu+ (A4 A — By)pr + (A2 A — y2) 2 + (A5 A — B5) 3
+&20 +v2P =0,

—ozdivu+ (A A — Bg)op1 + (A5 A — B5)p2 + (A3 A — 73) b3
+ 530 +uv3P =0,

TlTO[Cl divu + 62@] + [KA + 7'177T0]9 + T¢Iy P = 0,

G divu + v + 0] + [DA + m'w]P = 0,

1

= Bi — priw?, 71 = w(l — wwTp), = w1 — wr?).

If we replace w by —u:7, where 7 is a complex number and Re(r) > 0 in
Egs. (3.2), we obtain the system of equations of pseudo-oscillations as

where

pAu+ (XN + p)Vdiv - pr’lu+ oV — (VO — GVP =0

—o1divu + (Al A — ﬁl)(ﬁl + (A4 A — ,84)9252 + (AG A — /86)¢3
+&10 + v P =0,

—02 divu + (A4 A — ﬂ4)¢1 -+ (A2 A— 52)@52 + (AB A — /85)¢3
+ &0 4+ v P =0,

—ogdivu+ (Ag A — Bg)od1 + (A5 A — B5)pa + (A3 A — F3) 3
+€39 + U3P = 07

T1To[G divu + &) + [KA + 7inTo)0 + 11 To P = 0,

7o divu + v;¢ + <6) + [DA + 7] P = 0,

3i = Bi + priT?, 1=7(1-1770), 7t=7(1—717Y).

If we put p = 0, i.e., neglecting inertial effect in Eqgs. (3.2), we obtain the
system of equations of quasi-static oscillations as
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[/LA + ()\/ + ,u)V diV] u-+o;Vop; — (VO — (VP =0,

—ordivu+ (A1 A — B1)p1 + (A1 A — Ba)p2 + (As A — Bs) 93
+ 519 + UIP — 07

—o9divu + (A4 A — ﬁ4)¢1 + (AQ A— 52)¢2 + (AB A— /85)¢3
(3.4) + 60+ vaP =0,

—ozdivu+ (A A — B6)p1 + (As A — B5)p2 + (A3 A — B3)¢3
—1—539 + UgP = O,
TlT()[Cl divu + &@] + [KA + T1a§T0]9 + Ty P =0,
G divu + vid; + <0 + [DA + m'w]P = 0.

If we place w = 0 in Egs. (3.2), we obtain the system of equations in the
equilibrium theory of thermoelastic diffusion with a triple porosity as

[IMA + ()\/ +u)V diV] u+o;Vop; — 1V — (VP =0,
—ordiva+ (A1 A — B1)o1 + (As A — Ba)d2 + (As A — Bs) P3
+£0+v1P =0,

—oadivu+ (A4 A — By)p1 + (Aa A — Ba)pa + (A5 A — B5) 93
(3.5) +&20 + v2 P = 0,

—ogdivu+ (Ag A — Bg)p1 + (As A — B5)p2 + (A3 A — 3) s
+&30 +v3P =0,

KAO =0,
DAP =0.
We introduce the second-order matrix differential operators with constant coef-
ficients
F(z)(Dx) - (Fg(;,)(DX)> ’
8x8
where )
FD(Dy) = [uA + pu?)dpg + (N
Pq( ) = [HA + pw]dpg + ( +'u)333p033q’
FO_(Dy) = —FY, (Dy) = 02
p;q+3( x) =~ q+3;p( x) = Uqaixp’
(1) 9 (1) 9
FPDx) = —Gry  FDx) = —Car,
p7 ( ) Cl axp p8 ( ) CQ 8.%'10
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FDs e s(Dy) = A)A — 5,
Fi3) (Dy) = F{ (Dy) = AuA — By,
Fiy) (Dy) = ;) (Dy) = AA — f,
Fi§ (Dy) = Fy) (Dy) = A5A — s,
EDaDy) =&, F(Di) = v,

(1) 9
F;/(Dyx) = 111 To5—,
s Oxy

F7(%)(Dx) = KA + mnTp,

FD(Dy) = 76T,
0

(1) 1
F, (Dx) =T C2 Bmp

8p

1 1
FEE;]2)+3(DX) = TlUp? Fég’?)(DX) = Tlga
F(Dy) =DA+7'w,  pqg=1,2,3.

Here ¢« = 1,2, 3,4 corresponds to static, pseudo-, quasi-static oscillations, and
equilibrium theory of thermoelastic diffusion with a triple porosity, respectively.
The matrices F¥(Dy), i = 2,3,4, can be obtained from matrix F((Dy) by
taking w = —u1, p = 0, and w = 0, respectively,

and

where
2

0,04’

Fpq(Dx) = pdpg + (X' + 1)

Fpiap3(Dx) = ApA,
Fy5(Dy) = Fr(Dy) = A4,

ﬁ‘46<Dx) = ﬁ64(Dx) = AgA,
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Fs6(Dy) = Fg5(Dy) = A5A,
Frr(Dy) = KA, Fgs(Dx) = DA,
ﬁp;q+3(Dx) = ﬁp+3;q(Dx) =0,

Fii(Dy) = Fip(Dy) = Frg(Dy) = Fyr(Dy) = 0,
p,gq=1,23 [1=1,...,6, k=178

The system of Eqs. (3.2)—(3.5) can be represented as
FOD,)U(x) =0, i=1,234,

where U = (u, ¢, 0, P) is a eight-component vector function on E3. The matrix
F(Dy) is called the principal part of operator F(®)(Dy).

Definition 1. The operator F()(Dy), i = 1,2,3,4, is said to be elliptic if
|F(m)| # 0, where m = (my, mg, ms).
Ay Ay Ag
Since [F(m)| = p2AKDo|m|*6, X = X +2u, o = | Ay Ay As |, therefore
Ag As As
operator F()(D,) is an elliptic differential operator iff

(3.6) pAK Do # 0.

Definition 2. The fundamental solutions of the system of Eqs. (2.36)-
(2.39) (fundamental matrices of operators F()) are the matrices G (x) =

(Géifz (x))8X ¢ satisfying conditions
(3.7) FO(D,G(x) =d(x)I(x), i=1,23,4,

where §(x) is the Dirac delta, I = (J,4)sxs is the unit matrix, and x € E>.

4. ConsTRUCTION OF G(!(x) IN TERMS OF ELEMENTARY FUNCTIONS
Let us consider the system of non-homogeneous equations

(4.1) pAu+ (N + p)V div + pw?lu — 0,V + 11T VO + 71 GVP = H,

(42) opdivua + (Al A — ’yl)qbl + (A4 A — ﬁ4)¢2
+ (A6 A — Bg) g3 + mTo&f + 711 P = X7,



486 T. KANSAL

(4.3)  oadiva+ (A4 A = Ba)p1 + (A2 A — y2)po + (As A — B5) 3
=+ 7'1T0§29 + TIUQP = XQ,

(4.4)  ozdiva+ (A A — Bg)d1 + (A5 A — B5)p2 + (A3 A — 73) 3
+ ’7'1T0€39 + T1U3P = Xg,

(4.5) — G divu + & + [KA + mnTpl0 + P =Y,

(4.6) — G divu 4 vip; + 16Tl + [DA + 7' w]P = Z,

where H is a three-component vector function on E?, and X;, Y, and Z are
scalar functions on E3.
The system of Egs. (4.1)—(4.6) may also be written in the form

(4.7) FO'(D,)U(x) = Q(x),

where FOT is the transpose of matrix FU, Q = (H,X;,Y, Z), and x € E3.
After applying the operator div to Eq. (4.1), we obtain

(4.8) A + pw?] divu — 0;A¢; + 11 THAD + 7' AP = div H.
Equations (4.2)—(4.6) and (4.8) may be expressed in the form
(49) NO(A)S = Q.

where S = (divu, §,0, P), Q = (¢1,...,906) = (divH, X;,Y, Z), and

NO(A) = (Néi,?(m)ﬁ 6

M+ pw?  —oiA —o A —a3A G THA rlGA
o1 A1A — v AYA — By AgA — Bg 16170 o
B 02 AgA = By A2A =y AsA—B5 T Tl
N o3 AeA = Bs AsA =5 AsA—v3  7m&T0 o
—Q1 & &2 S KA+ minTo N
—(o 1 ) U3 16T} DA +1'w 656

Equations (4.9) may also be written in determinant form as

(4.10) ri)s =w,
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where
1<~
\Il:(%,...,%), Wp: EZN'L(;D)(A)SDM
=1
PO@) = ZINO@), A=3KDe p= L

and Nf;) is the cofactor of the element Ni(;) of the matrix N1,
On expanding I'M(A), we see that

6
r@a) =@ +x,

i=1

where \?, i = 1,...,6, are the roots of the equation I'M(—m) = 0 (with re-
spect to m).
Applying operator I'™(A) to the Eq. (4.1) and using Eq. (4.10), we obtain

(4.11) FOA) A+ )u=T, N= %,
where
1
v = m Ir'(AH — VI 4w — oW1 + 11GTows + 7' W] |-

From Egs. (4.10) and (4.11), we obtain
(4.12) 0 (A)U(x) = ¥(x),

where ¥ = (P Wy, ..., W) and

7
O (A) = rM(A)A +A2) = [[(A + ),
=1
1 6 1
o (a) =V =T[a+r3), 6l =o
=1

p=1,23, gh=1,..8  1=4,.,8  g#h
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The expressions for ®’ and ¥, p = 2,...,6, can be rewritten in the form
1 6
v = [F(l)(A)J +uwl(Aa)v div} H+ > wl (A)Vy;,

H 1=2
(4.13)

6
7 = wl) (A)divH+ > wl)(A)gi, 1=2,...,6,
=2

where J = (0;;)3x3 and

Ap b

(1)
N (A
%P(A)Zplg(), p=1,..6, 1=2_.6.

From Eqgs. (4.13), we have
(4.14) ¥(x) = RV (D1)Q(x),

where

2
Wy = L PO A+ w® (a2
R;; (Dx) ; (A)dij + wiy ( )axiaxj’
RY D0 =wa) 2 RY, Dy =w®a) L
ip+2\ X Ip ox;’ p+2 X pl ox;’
R, D) =w( (D), i,j=1,23  pl=2.6

From Egs. (4.7), (4.12), and (4.14), we obtain
(4.15) FO(D,)RM (D) = 01 (A).
We assume that

A2 # N #0, pl=1,..17, p#L

1 ~ ~ ~ ~
wi(A) == (W) NP (D) —au N (A) +nGToNG (A) +7 NG (A),
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Let
7
1
Y000 = (v00) L ve0 =30
8% 8 g=1
1 6 1 1
i) =Y e, Y ) =0,
g=1
p:1’2737 l:4”"78’ 1”]_17 787 Z#]’
where
eL)‘g|x|
So(%) = An|x|
4.16 U 6
( ) T%;) = H ()‘12 - )‘3)717 Té}z) = H ()‘12 - )‘%)717
i=1,i#g i=1,i%h

Lemma 1. The matrix Y defined above is the fundamental matrix of operator
oW(A), ie.,

(4.17) (A YW (x) = 6(x) I(x).

Proof. To prove the lemma, it is sufficient to prove that

(4.18) rOA) A+ (x) = 6(x),
(4.19) rO@Y ) = o).
Consider
7 Z (—1)j+1z‘
Z 1y _ J=1
™ = )
i—1 &
where
7 7 7 7
a1 =[O85 = ) TTO3 = M) 5 =20 JTO2 = A (A8 = A3,
i=3 j=4 =5 p=6

i=3 j=4 1=5 p=6
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7 7 7 7
2 | TR | [SEERH | [EYEPH Y | [CEEP WP EPHE
i=2,i#3 j=4 1=5 p=6
7 7 7 7
R | ECSEPH I | CSEPHT | [CE R || [CEERHIPYEPE)
i=2,i#4 j=3,j#4 1=5 p=6
7 7 7 7
= ] C1-2) II O3=x) I Q3= )O3 -2)08 -3,
i=2,i#5 j=3,j#5 1=4,1#5 p=6
7 7 7 7
w= [] Oi=2) JI Q3= [T (3= [ Gi-x)08-x),
i=2,i#£6 j=3,j#6 1=4,1#6 p=5,p#£6
6 6 6 6
zr=[JOF =2 JTO8 =MD T8 = D) TTOF = A (A3 = A9),
i=2 j=3 1=4 p=5
7 7 7 7 7
_ )\2 _ )\2 )\2 _ )\2 )\2 _ )\2 )\2 _ )\2 )\2 _ )\2 )\2 _ )\2
ZB—H( 1 z)H( 2 g)H( 3 I)H( 4 p)H( 5 i) (A6 7).
i=2 j=3 1=4 p=5 k=6

On simplifying the right-hand side of the above relation, we obtain

7
(4.20) St =0

Similarly, we find that

7 7 2
Srbod-a =0 S| [T0d- ) =0
=2 i=3 j=1
7 3 7 4
TETTINED Sl | § (TEP0] B Sl b (R B
i=4 J=1 i=5 j=1
7 . 5 6 )
>ori? [ TT03 -] =0, [TP03 -3 =
i=6 j=1 j=1
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Now consider

7 z:2 79 ' 7
H2 A+ 22 { erg; +Zr}] A= A2)g(x )}
Using Eqgs. (4.20)—(4.22) in the above relation, we obtain
7 7
PO Y60 =TI +38) | )08 - 20
: =2 - g=2 ]
=TT+ 08 808 - 22|36 + 08~ sy
= o 7 2 :
= TIa 0| S [ 1108 -
i= 9= j= -
7 7 _
=TT 0| S0y | TI02 - 22| |36 + 08 = )]
=4 g=3 - 7j=1 : ,
=TT +20)| 3oy [ TI0% - 22|
i—4 g=4 ! j=1
7 7
=TT+ o) | TI02 - 22|36 + 02 = )]
=5 g=4 : j=1 : )
=T+ > ri T2 - 22) |
[T +8)| Sty | TT0% - )]
i=5 9=5 j=1
7 7
=TT+ 03| 308y | T8 - )] 360+ 0~ sy
1=6 g=>5 j=1
7 7
= [T+ 08| Sty | TI0% - )0
=6 g=6 j=1
7
= (@) S0ty | T8 - )] 360+ 0 = sy
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Equation (4.19) can be proved in the similar way.
We introduce the matrix

(4.23) GW(x) = RM(D,) YW (x).
From Eqgs. (4.15), (4.17), and (4.23), we obtain

FO(D,)GM(x) = FY(D )RV (D) YV (x) = @ (A) Y (x) = §(x) I(x).
Hence, G (x) is a solution to Eq. (3.7) for i = 1.

Theorem 1. If the condition (3.6) is satisfied, then the matrix G™)(x) defined
by Eq. (4.23) is the fundamental solution of the system of Egs. (3.2) and the
matrix G()(x) is represented in the following form:

G = (G)

8x8

Gl x) = R DY x), G x) =R} DY) (%),

g=1,...8, h=123 [1=4,.,8

5. CONSTRUCTION OF MATRICES G()(x), i =2 3,4

5.1. Pseudo-oscillations

We introduce the matrix
(5.1) G (x) = RY(Dy)Y?(x),

where, the matrices R(?)(Dy) and Y ?)(x) can be obtained from matrices R(Y) (Dy)
and Y (x), respectively, by taking w = —¢7 and repeating the above procedure
after Eq. (3.7).

Theorem 2. If the condition (3.6) is satisfied, then the matrix G(? (x) defined
by Eq. (5.1) is the fundamental solution of the system of Egs. (3.3).

5.2. Quasi-static oscillations

In this case, the matrix N®)(A), operator I'®)(A) and matrix operators
oG (A), R®)(D,), YO (x), and G®)(x) are obtained as
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(0 NOI) = (Fw)
6x6
by —0 —03 —03 T1G1To TG
o1 A1A — B AgA — By AgA — Bg 161710 iy
| o2 AdA =By AsA -y AsA—fs 718210 Tlug
| o AsA—Bs AsA—B5 AsA— B 718310 Tlug ’
=S| & 13 &3 KA+macTy — 7ls
—(s U1 V9 V3 71570 DA + @ 66

= (), ~5(w)

5
(1) r®a) = ATJa+u),
i=1
where p?, i = 1, ..., 5, are the roots of the equation \ﬁ(3)(—m)] = 0 (with respect
to m).

(i) 00 (A) = (@S,?m)) ,
8% 8
5
0 () = r®(a)a = A T[(A +422),
=1
3 > 3
(8 =Py =aA[(a+r?),  0%(@) =0,
=1
p=1,23, g,h=1,..8, l=4,..8, g # h.
. 1 - ~ - ~
(iv) wi(A) _—glu[(A’Jru)NS)(A)—akNIS?,2+1(A)+71§1T0ngg)(A)JrTl(2N152)(A) :
]V(S)(A)
(3) _ 'pl _ _
wpl (A) _T7 p—l,...,6, l—2,...,6,

where ]\72-(]:-3) is the cofactor of the element Ni(f) of the matrix N®).

) RO(D,) = (R;?mx))g .
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3 3 0 3 3 0
R’L(;]))+2(DX) = wgp) (A)ai"l)@’ RI(%QQJ(DX) = wél) (A) 6:&"
R}(D?Q;Z—FQ(DX) = wj(;?)(A>7 i,)=1,2,3, p,l=2,..6.
- YO = (v00)
8x8

Y (x) = rPer(x) + 1o (x) + Z ) oG (x

5 5 5
iy Z( 11 u?) 11w

p=1 \j=Lj#p

5 5
(3) _ .03 _ -2 B _, -4 2 2y—1
Tig =Tol = Hl‘i ) T2 = My H (i — 1)~
i=1 i=1,i£l

7“2 l+1 = —,ul H l=1,..5.
i=1,17#l

On introducing the matrix
(5:2) G (x) = R¥(Dx) YV (x),
we obtain
FO(Dy) GO (x) = FO) (DR (Dy) Y (x) = 03 (A) YO (x) = §(x) I(x).
Hence, G®)(x) is a fundamental solution to Eq. (3.7) for i = 3.

Theorem 3. If the condition (3.6) is satisfied, then the matrix G®)(x) defined
by Eq. (5.2) is the fundamental solution of the system of Egs. (3.4).
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5.8. Equilibrium theory

In this case, the matrix N®(A), operator I"¥(A) and matrix operators
0W(A), RW(Dy), YW (x), and G (x) are obtained as

A —01 —09 —03
~ ~ AA — Ay — AgA —
i) N@W(A)= <N(i)(A)> _ | o A =B AsA— By AgA = f
Ax4 o2 AyA — By AsA — By AsA — B5
o3 A¢A—Ps AsA—Ps AsA—Ps ), ,
NO@) - (V@) —a(Fe)
4x4 4x4
3
(ii) rvQ) =A H(A+wi2)a
i—1

where w?, i = 1,2, 3, are the roots of the equation \ﬁ(4)(—m)\ = 0 (with respect
to m).

(i) o(a) = (6f() .

8x8

0y (a)=r®a) = aTJa+wd), 05 (a) =0,
=1

p=1,2,378  g¢gh=1,..8  1=456, g#h

. 1 ~ -
(i) @)= [(Xw)zvﬁ)<A>—akN;§‘,2+1<A>} |
N (A)
wy (A) = ng ;o wiba) =o,
nie)= [c NO(a) ¢ N;i;lm)],
1 ~ _
@)= — [Cz () ka,Ej*,f’H(A)}
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3 3
wid(A) = AT[(A +eD)E wli(a) = AT[(A +w?)D7,

=1 =1
wi (A) =wif(A)=0, p=1,2,34, 1=234,  ¢=56,

where ﬁff) is the cofactor of the element Ni(;l) of the matrix N4,

) RO, = (A0,
8% 8
@y — L r@AYs @ 0?
R (Dy) T (8)3 + wi (&) 5 7
4 4 0 4 4 0
R§;}3+2(Dx) = wgp)(A)aTci’ Rl(—l—)?;z’(DX) = wz(l)(A) ox;’
Ry n(Dx) =wi (), RY(Dy) =R, ,(Dy) =0,

4 4 4 4
R (D) =wi) (8),  RY (D) = B (D) =0,
REMy) =wl(A), 4,j=1,2,3, p=2,..6 k=718 1=234.

(v Y00 = (14" <x>)m,

4
YW (x) = Ve (x) + iy e (x) + Zrl 0 4o5e(x

4 4~
Yk(k)( ) = 7"21 S (x) + Zré 3+1§g

YWx) =0, p=12378 k=456, ij=1..8  i#j,

where
R e“"g‘xl
GlX) = ——7— 1.2,3
9( ) 47’["X‘7 g ) &y 9y
2 2 2 92 2 2
(4) wiwy +wijwy + whws 4) () _g
' = 144 s Ty =T = | Wi s
wWiwWows aie]
(4) - >
49 4 2 2\—1 1 .
SEEE A | 7“21+1— —w? ] i-e)™h 1=1,23
i=1,i7#l i=1,i#l

If we introduce the matrix

(5.3) GW(x) = RY(D,) YW (x).
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then, we obtain
FO(Dy)GW(x) = FY(D,)RW(Dy) Y? (x) = @ (A) YW (x) = §(x) I(x).
Hence, G (x) is a solution to Eq. (3.7) for i = 4.

Theorem 4. If the condition (3.6) is satisfied, then the matrix G (x) defined
by Eq. (5.3) is the fundamental solution of the system of Egs. (3.5).

6. BAsIC PROPERTIES OF G(1)(x)

Theorem 5. Each column of the matrix G(!)(x) is a solution of the system of
Egs. (3.2) at every point x € E3 except the origin.

Theorem 6. If the condition (3.6) is satisfied, then the fundamental solution
of the system F(Dy)U(x) = 0 is the matrix

W) = (W)

8x8
W) = [0 1 o,
pg\X) = Xaxpaxq U pg |2\ X
AsA A AsAg — A4A
W (x) = %c{(xx Wis(x) = Wsa(x) = %“gf(xx
A As — ArA A{As — A
Wis(x) = Wea(x) = %cf(xx Wss(x) = %cf(x%
AgAg — AA
Wi (x) = Wes(x) = %cﬁxx
AlA —A * *
Waslo) = 2t Warloo = T g0 = L

Wig+3(X) = Wpis,(%) = Wig(x) = Wii(x) = Wrs(x) = Wer(x) =0,

~ 82
Ry, = ——— — Aé =1,2,3 k=1,...,6 l=17,8.
Pq Ba:paxq Prq» b, q ) Sy 9y ’ s Yy ’

Lemma 2. If condition (3.6) is satisfied, then

1

6.1)  Aw)(A) = A(A+)\2) NP(A) - ;ﬂl)(A)apl, p=1,..,6.
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Proof. Consider

a8 =~ W+ @)

— u N (A) + G TN (A) + Tlgzﬁzgy(m}.

1 1 (.~ ~
rO@) = INO()/5 = g{[m IO (A)

— R AN (A) + G ToANS (A) + TlggANIEé)(A)}.

Therefore,

1 ~
AuD(a) = —gﬂ{u’ £ ARD(A)

— o AN (A) + G ToANG (A) + 71g2aﬁgg>(A)}

- _
__ L [A PO(A)5p1 = (A + p?) Ny ()

Ap
~ a2 ) - Lrons
—g( + A7) Ny (A) p (A)dp1-
Theorem 7. If condition (3.6) is satisfied and x € E3 — {0}, then
W »*
1 -
Ggh (x) = D, Z;xlljgj(x) + Ry, w117 $7(%),
(1) (1) 9
Gg l+2 8 quﬂg GHQ;Q(X) = 87:9 Zﬂflu@j(x),
j=1
HMH Exlk]gj g.h=1,2,3, Lk=2,..,6,
where
51) AW 51') ~(1)
g = ]2 n (= )\2) Lipj = Nip (—)\3)7
A)\
(6.2)
1 1
T117 = 3 = j7l 17 76 p:27 76
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Proof. From Eq. (4.22),
Agj(x) = —)\?gj(x), j=1,..,1.

Thus, we have

1 0?2 ~
_)\2< —Rgh>€j(><)= ghsi(x),  x#0.
J

8:cg8xh

Consider

(6.3) G (x) =R} Doy (%)

From Eq. (6.1), we have
1 S
64) Wi () = 5 (XN X)) + 5

Using Eq. (6.4) in Eq. (6.3), we obtain

7
82
6.5 A2 AN (-2
(6:5) Z{[ SRR 0
= J
T b )
J
Now,
roEyr =0, j=1,...6
r a2l =1, i="1,
and
( )\2+)\2) (1) é?v ]:17 767
(6.6)
(=2 + M) =0, j=1
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By virtue of Eq. (6.6), Eq. (6.5) becomes

6

D) = P L MFm_ye 1
Ggh<x>—axgaxh;{ prcaiile A)} 109+ Ry

axg anggj +Rgh z117 57(X).

The remaining formulae of the above theorem can be proved in the similar way.

Lemma 3. If the condition (3.6) is satisfied, then

6
7"2J 7"23 7"23 T2j T2j ,
j=1

(6.7)
: (1) ZG: Tgl') ﬁ A
10 J -2

D /A0 =1, = =1\ =—=

j=1 ’ j=1 77 =1 PWQNS)(O)
and

6 6 N
(6.8) Zl’llj = —(pOJQ)_l, ZZEHJ’)\? = —)\_1.
j=1 j=1

Proof. Consider
(6.9) N (=A2) = KDoA + BIAS + BoAd + Badd + BirZ + NJ(0),

where B, p = 1,...,4, are coefficients, independent of )\; and skipped due to
lengthy calculations.

It is easier to prove the relations (6.7) using Eq. (4.16).

From Egs. (6.7) and (6.9), we obtain

6 (1) 6
ng (=22 = ST - KDoAS + BiAS+ BoAl 4 BsA2 + B+ N (00X
]

j=1 j=1

1
D

= N{}(0) ZT
J

J=1
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and

AORD (A

j=1
6 ~
Z [ — KDoA 4+ BiAY + BaAS + Bsd! + BiA2 + N (0)] = K Do.

Therefore, from Eq. (6.2), we have

. . g) A (L 2 2y—1
;xllj = _Z A)\QNH (=A7) = = (pw) ™",
1
i:fmlj)\? = —]26:1 i)Nl(l)( )\3) = —KEQ = —X_l-
Theorem 8. The relations
(6.10) GS)(X) — Wpi(x) = constant + O(|x]|), pl=1,..8,

hold in the neighborhood of the origin.

Proof. For p,l =1, 2,3, consider
2

(1) _ 5 3
(611) Gpl (X) — Wpl(X) = 8xp8le11(X) + Rpl YQQ(X),
where
v Z - 9(x)
11 x11j§] X )
(6.12)
_ g* X
Yoo(x) = z117 57(x) + QL )
From Eq. (6.12), we have
6 !
—Z115 L)\J -1 x|
6.13) Y 1l
(6.13) Yii(x) =) ym x| o

Jj=1

: = Z)‘é -1 _ ’X‘
Zmllﬂz i X
j=1
119 8 LS —
:—&T[’X’;xm |X!<Z$11]/\ + >] 4ﬂj§$1lj/\j+ Ya3(x).
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Similarly,
(6.14) Vao(x) = — | 2 x| (wara2 — 1 “rnrhr + Yau(x)
. X)=——|— — —— )| -
22 St |X|ZE117 X|| T117A7 " 47T90117 7 44\X),
where
6 oo Iyl
1 D VI
Yi3(x) = Mz;:m] ZZ: TJ\XV n
= =3
(6.15) ’
v 1 SR A
Yau(x) = I 11727! !
1=3
Clearly
_ 9 0 —
Yrn(x) = O(|x[%), T%Yhh(X) = O([x]),
(6.16) .
? - ) — — .
02,02, rh(X) = constant + O(|x]|), k,i=1,2,3, h=3,4
Consider
O (1y_ @ (1) |3a 1
dzi \ x| ) %[ o2\ x| ) [xP [x]P|
Hence,
3
1 0% [ 1
A— = — | — ] =0.
B ;ax%<|x>
Therefore,
0? ~\ 1 1
6.17 — R, | — =6, A— =0.
(617 (3o~ ) g = w0

Equation (6.11) with the aid of Egs. (6.8), (6.13)—(6.17) becomes

2
0x,0x;

Y33(x) + Ry Y4a(x) = constant + O(|x|).

GY (%) = W (x) =

Similarly other formulae of Eq. (6.10) can be proved.
Therefore, matrix W(x) is the singular part of the fundamental matrix
G (x) in the neighborhood of the origin.
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7. CONCLUSIONS

The linear theory of thermoelastic diffusion with a triple porosity was de-
rived without utilizing Darcy’s law in the current paper. After reducing the
governing equations in an isotropic medium, the fundamental solution G(l)(x)
of system of Eqs. (3.2) for the case of steady oscillations was obtained. Addition-
ally, the fundamental solutions G (x), i = 2,3, 4, of system of Eqs. (3.3)-(3.5)
in the cases of pseudo-, quasi-static oscillations and equilibrium were obtained.
The fundamental solution G (x) of system of Egs. (3.2) makes it possible to
investigate three-dimensional boundary value problems in the theory of triple
porosity thermoelastic diffusion elastic solids using the potential method. Also
by this method, it is possible to construct fundamental solutions of the system
of equations for the linear theory of isotropic thermoelastic materials with triple
porosity.
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