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The aim of the present work is to understand the effect of drilling parameters (drill speed
and feed rate) during the drilling of a Saffil fiber-reinforced Al metal matrix composite (MMC)
under minimum quantity lubrication (MQL) condition. The effect of drilling parameters on
individual response characteristics is evaluated and the optimum drilling parameters are also
investigated using a multi-response optimization technique known as the entropy-weighted
technique for order performance by similarity to ideal solution (EWTOPSIS). The drilling
parameter optimization is performed with the aim of minimizing surface roughness in the drilled
hole, roundness error in the drilled hole and feed force during drilling. The drilling parameters
have a significant effect on individual responses. Weights were assigned to each response using
the entropy weight method, and closeness coefficients were calculated to obtain the optimal
level for the drilling parameters. A drill speed of 11 m/min and a feed rate of 0.05 mm/rev are
the optimal combination to minimize the desired output responses simultaneously.

Keywords: Al metal matrix composite; drilling; parameter optimization; entropy weight;
Grey relational analysis.

1. Introduction

Modern construction materials used in the construction of machines, and
especially in means of transport, must exhibit improved properties, particularly
strength, when compared to other materials. The breakthroughs came with
the development of metal matrix composites (MMCs) with continuous fibres
and whiskers as reinforcement. They were developed in the 1970s [1]. Compos-
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ite materials consist of at least two materials with clearly defined boundaries,
forming them through the sharing of the total volume. When integrated, they
form a material with properties different from those of an individual compo-
nent. Composite materials are heterogeneous on a microscopic scale, but ho-
mogeneous on a macroscopic scale. They consist of the so-called matrix and
reinforcement. Compared to matrix metals, composites offer many advantages,
such as higher specific strength, higher temperature resistance, lower thermal
expansion coefficient, and better wear resistance. These properties make com-
posites ideal for applications in the automotive, aviation, space, and electronic
industries [2]. Among metal composites, the most commonly used are those have
aluminium alloys as a matrix. Aluminum matrix composites (AMC) have found
applications in a variety of engineering applications and are well known for their
strength-to-weight ratio. In addition, AMCs are characterized by good stiffness,
high corrosion resistance, a high specific modulus, and excellent wear resistance
properties [3].

The most common methods for producing ceramic-reinforced aluminum com-
posites are casting, powder metallurgy, and spray deposition [4, 5]. However,
often additional manufacturing techniques are necessary in the production cy-
cle to obtain the required dimensional tolerance and appropriate surface finish.
Machining offers such possibilities. The biggest challenge in machining of alu-
minum composites is the abrasive nature of the reinforcement. This is a serious
risk to cutting tools. Tools wear more rapidly when machining aluminum com-
posites compared to aluminum alloys [6, 7]. Therefore, it is recommended to
use tools made from sintered carbides and polycrystalline diamond [8]. Various
manufacturing techniques are used to make a hole in a composite. For holes with
a small diameter of up to 1 mm, laser drilling is considered the ideal method [9].
Electrical discharge machining (EDM) may be a method for minimizing blade
wear [10]. However, in the case of nearly all types of composites, drilling remains
the most frequently performed operation to make a hole [11].

Much work has been conducted to investigate the impact of drilling process
input parameters and cutting tools on the final MMC components. For the
SiCp/Al drilling, Huang et al. [12] emphasized that variations in the feed rate
play a key role in determining drilling performance. Similarly, Rajmohan et al.
[13] also found that the feed rate is the main parameter influencing the machining
rather than the drilling speed in SiC/Al356 hybrid composites. With regard to
tool life, it has been observed that drilling speed has a minimal effect, while
the tool life is significantly reduced due to variations in the feed rate. Addi-
tionally, tool service life mainly depends on the hardness of the reinforcement,
the chemical composition of the matrix, and the reinforcement material for the
drilling operation. The quality of MMC drilled surfaces depends on the material
of the drilling tool, the matrix material, feed rate and cutting speed [14].
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Composites are materials difficult to machine. The effect of reinforcement
has a significant impact not only on the cutting tool’s life, but also on cutting
forces and the quality of the finished products. Therefore, a lot of research is
being conducted on the optimization of machining parameters to obtain the
best technological results. In this work, our aim is to obtain the optimal level of
drilling speed and feed rate to minimize surface roughness of drilled hole, round-
ness error in the drilled hole, and feed force during the drilling operation. This
becomes a case of multi-criteria decision making (MCDM) or multi-response op-
timization, where we attempt to optimize input variables for multiple response
variables simultaneously. Various methods are available for multi-response op-
timization, including the multi-response signal-to-noise ratio method (MRSN),
weighted signal-to-noise ratio method (WSN), grey relational analysis (GRA),
principal component analysis (PCA), and technique for order preference by sim-
ilarity to ideal solution methods (TOPSIS), among others.

Butola et al. [15] investigated hybrid aluminum composites reinforced with
sugar cane ash, peanut shells, and jute. The weight proportions of the rein-
forcement were 3 wt%, 6 wt%, and 9 wt%. These materials were turned, and
optimization was performed using genetic algorithm (GA) and response surface
methodology (RSM) methods. It was found that for composites with 3% and
9% reinforcement, the depth of cut had the greatest impact on achieving mini-
mum roughness. The optimal value of the input parameters given by RSM was
1000 rpm, a feed rate of 0.15 mm/rev, and a depth of cut of 0.3 mm for all three
composites. Senthilkumar [16] optimized electric discharge machining (EDM)
parameters for machining aluminum alloy to obtain the minimum surface rough-
ness and maximum layer thickness using TOPSIS. The surface roughness and
layer thickness obtained through TOPSIS were 4.55 µm and 112.08 µm, respec-
tively, with the optimal level of 10 amps for current, a 500 µs pulse on time, and
a 500 µs pulse off time.

The turning of ceramic-reinforced aluminum was optimized by Ramak-
rishnan et al. [17]. The ANNOVA method was employed to calculate cutting
regression models, and the TOPSIS method to calculate the optimal parame-
ters. The maximum material removal rate (MRR) (6.021 cm3/min) was obtained
at the maximum values of speed (1750 rpm), feed (1.5 mm) and cutting depth
(0.8 mm). The feed had the most substantial influence on attaining the max-
imum MRR, followed by the depth of cut. Conversely, the minimum surface
roughness (0.26 µm) was achieved with the minimum values of speed, feed, and
depth of cut. In this case, the feed had the greatest impact on achieving mini-
mum roughness.

Reddy et al. [18] investigated the drilling process of a TiC-reinforced alu-
minum composite. The volume content of the reinforcement was 10%. The
ANOVA GRG analysis showed that the helix angle of the drill bit had the great-
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est impact on the technological effects (63.2%), followed by the feed with a share
of 34%. The speed at 2.7% had the smallest contribution to the optimization of
the drilling parameters when drilling this material. The optimal drilling pa-
rameters identified by the GRA method were as follows: the largest used he-
lix angle (40◦), the average spindle speed (500 rpm) and the lowest feed rate
(0.1 mm/rev). Abbas et al. [19] investigated the high speed drilling process for
Al/SiC metal matrix composite. They analyzed thrust force, hole diameter, de-
lamination factor, surface roughness, tool wear and chips analysis at different
spindle speeds (3000–9000 rpm) and feed rates (0.05–0.2 mm/rev). They found
that moderate drilling speeds between 5000 and 7000 rpm are suitable for drilling
Al/SiC metal matrix composite in terms of all parameters.

The growing interest in composite materials makes it very important to un-
derstand their machinability. The substantial differences in properties between
the matrix and reinforcement make these materials difficult to machine. In ad-
dition, the vast variety of these materials means that continuous research is
needed on their machinability and the optimization of input parameters in the
machining process to obtain the highest-quality results of machining. Despite
improvements in machining techniques, dry machining alone is not sufficient for
all industrial needs. It is also evident that cooling and lubrication also have
significant effect in the drilling process of composites. In most cases, immersion
lubrication is employed during machining, but this increases cost of manufactur-
ing and pose problems related waste disposal. To overcome these issues, innova-
tive methods of cooling and lubrication, such as cryogenic cooling and minimum
quantity lubrication (MQL) are used, showing good results in terms of machin-
ing response. However, it should be noted that the use of MQL can generate
oil mist through compressed air mixed lubricating oil, which is hazardous to
operators. Since the early 2000s, the MQL has been considered a sustainable
alternative to flood lubrication. It is also known as near-dry machining, as it
consumes 10 000 times less fluid volume when mixed with air, thereby reducing
fluid consumption [20].

In one of the earliest study on MQL, Varadarajan et al. [21] evaluated dry
machining, flood cooling and MQL during hard turning AISI 4340 steel. Dur-
ing machining, MQL was found to be efficient in reducing surface roughness,
cutting force, cutting temperature and chip-tool contact length, leading to an
extended tool life. Kannan et al. [22] studied the machinability of an aluminum
matrix nanocomposite under dry and MQL conditions. Machining under MQL
condition reduced tool wear and cutting force due to the lubricating effect of oil
mist, thereby reducing friction and heat. The high fluid pressure also contributed
to effective chip breaking, thereby improving surface roughness. Numerous ar-
ticles have presented the effectiveness and benefits of MQL during machining
[23, 24].
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The subject of the present research is an aluminum metal matrix compos-
ite material. The matrix of the tested material is a multi-component aluminum
casting alloy with the designation AlSi9Mg, and the reinforcement is made of
ceramic fibers called Saffil. The impact of machining parameters under the influ-
ence of MQL is investigated in this work. In this study, we employ the entropy-
weighted TOPSIS methodology to obtain the optimal level of drilling speed and
feed rate for minimizing surface roughness of the drilled hole, roundness error in
the drilled hole, and feed force during the drilling operation. The effect of drilling
parameters on individual responses with MQL lubrication is also investigated.
Despite extensive research on the machinability of MMCs, further work on this
topic is needed. This arises from the wide variety of composite materials, which
differ in matrix material, reinforcement, reinforcement shape, arrangement, and
volumetric content of the reinforcement, making it difficult to compare published
research results and relate them to a specific newly designed composite mate-
rial. The test results presented broaden the understanding of the machinability
of aluminum composite materials. They are also part of the research conducted
at Wroclaw University of Science and Technology on increasing the efficiency of
manufacturing elements from these materials.

2. Materials and methods

2.1. Materials

An aluminum alloy EN AC-43330 (AlSi9Mg) cast aluminum is used as ma-
trix for the composite preparation. The chemical composition and properties
of aluminum alloy EN AC-43330 (AlSi9Mg) are presented in Tables 1 and 2,
respectively.

Table 1. Chemical composition of aluminum alloy EN AC-43330 (AlSi9Mg).

Al Si Cu Mg Mn Fe Ti Zn

rest 9.5 <0.05 0.35 <0.1 <0.18 0.15 0.07

Table 2. Properties of aluminum alloy EN AC-43330 (AlSi9Mg).

Density
[g/cm3]

Tensile strength:
yield [MPa]

Tensile strength:
ultimate [MPa]

Young’s modulus
[GPa]

Brinell
hardness

2.5 210–230 280–290 71 91–94

The strength of the composite material is determined by the reinforcement.
Saffil fibers used in the tested material are one of the most frequently used ma-
terials for the reinforcement of metal matrix composite. Saffil ceramic fibers are
used as the reinforcement in the aluminum metal matrix. They belong to a group
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of high–strength materials, as they are characterized by good resistance to high
temperatures, high tensile strength and a high modulus of elasticity [25]. The
chemical composition and properties are presented in Tables 3 and 4, respec-
tively.

Table 3. Chemical composition of Saffile fiber.

Al2O3 SiO2 Fe, Cr, Ni, Na, Mg, Ca, chlorides

96–97% 3–4% Trace amounts

Table 4. Properties of Saffil fiber [26].

Density
[gm/cm3]

Tensile
strength
[MPa]

Compressive
strength

[GPa]

Young’s
modulus

[GPa]

Rupture
modulus

[GPa]

Durable up to
temperature

[◦C]

3.3–3.5 1200–1800 14 700–26 700 300–330 300–340 1600

2.2. Fabrication of composite

The MMC composites are produced using a squeeze casting process. In
squeeze casting, applied pressure improves the bonding between Al alloy matrix
and Saffil fiber. In this process, 10 vol% of Saffil fiber is added to the aluminum
metal matrix. A Saffil fiber block is created by mixing Saffil fibers with a silica
binder, pouring the mixture into a mould, filtering off the solution, drying the
profile with hot air and firing it at a temperature of 950◦C. Figure 1 shows initial
image of Saffil fiber with created Saffil fiber block and Fig. 2 shows the SEM im-
age for Saffil fiber.

a) b)

Fig. 1. Saffil fiber (a), and Saffil fiber block (b).

The block heated to 700◦C is placed in a mould, and liquid aluminium is
poured over it. Pressure is exerted to the surface of the metal by means of a ram.
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Fig. 2. SEM image for Saffil fiber.

The ram and the mould containing the block are heated to the temperature of
150–300◦C [27]. Due to the properties of the reinforcement fibers, compared
to the matrix, the tested composite is characterized by an increase in hardness
(by 50%) and tensile strength (by 60%). The yield point also increases (by 40%).
Figure 3 shows metallographic polished section of the tested Al MMC sample.
It shows evenly distributed Saffil fibers in the aluminum matrix.

Fig. 3. Metallographic polished section of the tested composite.

2.3. Drilling of composite

Drilling tests were carried out on a Csepel RF 50/1250 radial drilling ma-
chine. The MMC samples were in the form of blocks with a 120 mm diameter.
A carbide drill with the designation 6537 VHM TiAlN and a diameter of 9.9 mm
was used to for drilling. A fresh tool was used for each drilling condition (al-
lowing for two holes). TiAlN was used as the coating for the sintered carbides,
which is characterized by good adhesion, high strength, and abrasion resistance.
The machine was equipped with an attachment of Accu-Lube Mini booster
for MQL. The cooling lubricant in the form of aerosol was fed with the help
of nozzle near the drill bit. An oil mist of Lb5000 lubricating oil was generated
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at an operating pressure of 7 bar and an oil flow rate of 180 ml/hr. Table 5
shows properties of lubricating oil used. Each test was performed twice, and
results were recorded to minimize the error. A brief summary of experimental
conditions is shown in Table 6, and the experimental setup is depicted in Fig. 4.

Table 5. Properties of Lb5000 oil.

Lb5000 Oil

Density
[kg/m3]

Solidification
temperature

[◦C]

Flash point
[◦C]

Stickiness
in 40◦C

Solubility
in water

850 50 190 18 No

Table 6. Summary of experimental conditions.

Machine Csepel RF 50/1250 radial drilling machine

Drill type Carbide drill, 6537 VHM TiAlN, diameter: 9.9 mm

Work piece Saffil/Al metal matrix composite

Drill speed [m/min] 11, 22, 44

Feed rate [mm/rev] 0.05, 0.075, 0.112, 0.17

a) b)

Fig. 4. Drilling setup with oil mist feeding arrangement (a), and measurement of surface
roughness with Mitutoyo Surftest SV-3200 (b).

The quality of the drilled holes was assessed by measuring errors in shape
(roundness) and surface roughness. Roundness for the drilled hole was measured
with a Taylor-Hobson device of the Talyrond 265 type. The drilled hole’s surface
roughness was measured with the Mitutoyo Surftest SV-3200 roughness tester.
The 2D roughness measurements were carried out along a measuring length of
4.8 mm. The surface roughness was measured at four different locations and the
average results were used for analysis.
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During the drilling process, the feed force and the cutting torque were mea-
sured. A measuring circuit was used for this purpose, which consisted of a piezo-
electric dynamometer type 9257A from KISTLER, an electric signal amplifier
type 5011 from the same company, and an oscilloscope type TDS 5054B from
Tektronix.

3. Results and discussion

The primary aim of this work was to determine the best value for drill
speed and feed rate within the range of tested parameters to minimize surface
roughness of the drilled hole, roundness error in the drilled hole and the feed
force during the drilling of Saffil fiber-reinforced Al MMC. The experimental
run conditions and the average values of responses are presented in Table 7.

Table 7. Experimental run conditions and average values of responses results.

Test
no.

Drill speed
[m/min]

Feed rate
[mm/rev]

Surface
roughness

[µm]

Roundness
error
[µm]

Feed force
[N]

1

11

0.05 2.2 18.46 194.16

2 0.075 3.17 15.17 251.33

3 0.112 3.32 38.26 334.69

4 0.17 5.82 43.2 456.99

5

22

0.05 3.65 22.04 168.57

6 0.075 3.42 15.56 247.8

7 0.112 3.36 11.69 327.8

8 0.17 5.62 99.27 490.38

9

44

0.05 3.59 42.76 185.73

10 0.075 3.53 23.37 232.41

11 0.112 2.39 20.89 332.59

12 0.17 5.04 73.21 484.9

Based on experimental results, it is difficult to predict the optimal drilling
parameters that would simultaneously minimize all responses.

3.1. Effect of drilling parameters on individual response

3.1.1. Surface roughness. Figure 5a shows the main effect plot for surface
roughness, revealing the impact of individual parameters on surface roughness.
In the case of drill speed, the surface roughness value increases for the drill
speed in the range from 11 m/min to 22 m/min and next decreases for 44 m/min.
In the case of feed rate, the surface roughness value increases for the feed rate
range from 0.05 mm/rev to 0.075 mm/rev and then decreases with a subse-
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a) b)

Fig. 5. The main effect plot for surface roughness [µm] (a), the interaction plot for surface
roughness [µm] (b).

quent increase for 0.17 mm/rev. Figure 5b shows interactive effect of drilling
parameters for surface roughness. Analyzing the interactive effect, it is evident
that a drill speed of 11 m/min and a feed rate of 0.05 mm/rev are optimal for
achieving the minimum value for surface roughness individually.

3.1.2. Roundness error. Figure 6a shows the main effect plot for round-
ness error in the drilled hole, showing the effect of individual parameters on
roundness error. In the case of speed, the roundness error value increases from
11 m/min to 44 m/min. In the case of feed rate, the roundness error value de-
creases from 0.05 mm/rev to 0.075 mm/rev and then increases to 0.17 mm/rev.
Figure 6b shows the interactive effect of drilling parameters for roundness error
in the drilled hole. Analyzing the interactive effect, it is evident that a drill speed
of 22 m/min and feed of 0.112 mm/rev are optimal for achieving the minimum
value for roundness error individually.

a) b)

Fig. 6. The main effect plot for roundness error [µm] (a), the interaction plot for roundness
error [µm] (b).
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3.1.3. Feed force. Figure 7a shows the main effect plot for feed force during
drilling hole, showing the influence of individual parameters on feed force. It
is interesting to note that drill speed does not have a significant effect on feed
force. In the case of feed rate, the feed force value increases from 0.05 mm/rev
to 0.17 mm/rev. Figure 7b shows the interactive effect of drilling parameters
for feed force during drilling hole. Examining the interaction effect, it becomes
evident that drill speed and feed have a significant interaction effect on feed
force. When analyzing the interactive effect, it is evident that a drill speed of
22 m/min and a feed rate of 0.05 mm/rev are optimal for achieving the minimum
value for feed force individually.

a) b)

Fig. 7. The main effect plot for feed force [N] (a), the interaction plot for feed force [N] (b).

As seen from the above discussion, individual responses require different
combinations of drilling parameters to achieve the minimal value. In order to
obtain the best combination of drill speed and feed rate for achieving minimal
values for surface roughness, roundness error and feed force the entropy-weighted
grey relational analysis (EWGRA) was performed as explained further.

3.2. Entropy weight calculation for response variable

In 1948, Shannon proposed the EWM [28], and Zeneley further improved it
in 1982. The EWM is an effective method to assign weights to identified criteria
or responses in MCDM [29–31]. According to Wang et al. [29], the EWM is
an objective weighing process based on neutral data and it can overcome the
shortcomings of the subjective weighing method. The EWM is a highly successful
strategy for calculating weights to assess response indicators. The following steps
outline the process of calculating EW [32]:

Step 1. Normalization of decision matrix.

Let there be n response variable with m values, and the decision matrix is
represented as:
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(3.1) A = (aij)mn =

 a11 · · · a1n
...

. . .
...

am1 · · · amn

.
Since response variables may be with different units, it is necessary to normalize
the data within the range of 0 to 1. Equation (3.2) is used to normalize the
beneficial response and Eq. (3.3) is used to normalize the non-beneficial response.

NMaij =
aij

max aij
,(3.2)

NMaij =
min aij
aij

.(3.3)

In this work, all three responses-surface roughness, roundness error and feed
force are undesirable, so Eq. (3.3) is used for normalization. After normalization
of the response, the probability of the response is calculated using Eq. (3.4):

(3.4) Pij =
aij
m∑
i=1

aij

.

Step 2. Calculation of entropy for each index.

(3.5) Ej = − 1

lnm

m∑
i=1

PijlnPij , j = 1, 2, 3, ..., n.

Step 3. Calculation of degree of deviation for each response.

(3.6) Dj = |1− Ej | , j = 1, 2, ..., n,

where Dj measures the degree of deviation of essential information for the j-th
criterion.

Step 4. Calculation of entropy weight.

(3.7) wj =
Dj
m∑
j=1

Dj

,

where wj is the importance weight of the j-th criterion.
The entropy weight calculation and weights in terms of percentage for each

response are shown in Table 8.
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Table 8. Entropy weight calculation.

Calculation Surface roughness Roundness error Feed force
m∑
i=1

Pij lnPij −2.4455 −2.3370 −2.4244

Ej = − 1
lnm

m∑
i=1

Pij lnPij 0.9841 0.9405 0.9456

Dj = |1− Ej | 0.0159 0.0595 0.0244

wj =
Dj

m∑
j=1

Dj
0.16 0.60 0.24

% Weight 16% 60% 24%

3.3. Optimization using TOPSIS method

In the area of multi-criteria decision making, TOPSIS is a simple and ap-
propriate methodology for obtaining a solution in multi-response optimization.
TOPSIS was proposed by Hwang and Yoon in 1981 [33]. It is based on the
principle that the optimal solution has the shortest distance from the positive
ideal solution and the maximum distance from the negative ideal solution. In
essence, TOPSIS provides a solution that is farthest away from the hypothetical
worst and closest to the hypothetical best solution.

Numerous researchers employed TOPSIS for optimization. For example, Ma-
nivannan and Kumar [34] implemented TOPSIS for optimizing cryogenically
cooled EDM drilling parameters, while Thirumalai and Senthilkumar [35]
used NSGA II and TOPSIS for optimizing machining parameters in the turning
of Inconel 718. TOPSIS was used for the selection of better alternatives from
the non-dominated solutions. Singh et al. [36] used TOPSIS for optimizing dis-
charge current, pulse on duration, and dielectric fluid pressure to improve EDM
process performance. The step-wise implementation of the TOPSIS method in
the current research work is presented below [37–39]:

Step 1. Construction of decision matrix.

In multi-objective problems using TOPSIS, the averaged values of every output
response for every experiment are arranged in the form of matrix known as
a decision matrix, as per Eq. (3.8):

(3.8) D =



x11 x12 x13 · · · · · · x1n
x21 x22 x23 · · · · · · x2n
x31 x32 x33 · · · · · · x3n
· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·
xm1 xm2 xm3 · · · · · · xmn

,

where n represents response variables with m corresponding alternatives/values.
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Step 2. Normalization of decision matrix.

Response variables may have different dimensions and scales, requiring con-
version into non-dimensional characteristics for mutual comparison across the
criteria. The decision matrix is further normalized using Eq. (3.9):

(3.9) rij =
xij√
m∑
i=1

x2ij

, i = 1, 2, ...,m; j = 1, 2, ..., n.

Step 3. Calculation of weighted normalized matrix.

In this step, the normalized response variables are multiplied by respective
weights, as obtained from the EWC presented in Subsec. 3.2. The final values
of weights are 16% for surface roughness, 60% for roundness error, and 24% for
feed force, as presented in Table 8; the weighted normalized matrix is calculated
using Eq. (3.10):

(3.10) vij = wj ∗ rij , i = 1, 2, ...,m; j = 1, 2, ..., n.

The values of the normalized matrix and weighted normalized matrix for tensile
strength, flexural strength and impact strength are presented in Table 9.

Table 9. The values of the normalized and weighted normalized response variables.

Test

Normalized matrix
for response variables

Weighted normalized matrix
for response variables

Surface
roughness

Roundness
error

Feed
force

Surface
roughness

Roundness
error

Feed
force

1 0.328 0.897 3.189 0.052 0.538 0.765

2 0.472 0.737 4.128 0.076 0.442 0.991

3 0.494 1.858 5.497 0.079 1.115 1.319

4 0.867 2.098 7.505 0.139 1.259 1.801

5 0.543 1.071 2.769 0.087 0.642 0.664

6 0.509 0.756 4.070 0.081 0.453 0.977

7 0.500 0.568 5.384 0.080 0.341 1.292

8 0.837 4.822 8.054 0.134 2.893 1.933

9 0.535 2.077 3.050 0.086 1.246 0.732

10 0.526 1.135 3.817 0.084 0.681 0.916

11 0.356 1.015 5.462 0.057 0.609 1.311

12 0.750 3.556 7.964 0.120 2.134 1.911
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Step 4. Determination of the positive ideal (best) and negative ideal (worst)
solutions.

The positive ideal (best) solution enhances the desired response variables
and the negative ideal (worst) solution diminishes the desired response variab-
les. The positive ideal and negative ideal solutions are calculated using Eqs. (3.11)
and (3.12):

• the positive ideal solution:

(3.11) A+ =
{
v+1 ,v

+
2 , ..., v

+
n

}
=
{

(max i vij | j ∈ J) ,
(

min i vij | j ∈ J ′
)
|1, ...,m

}
,

• the negative ideal solution:

(3.12) A− =
{
v−1 ,v

−
2 , ..., v

−
n

}
=
{(

min i vij | j ∈ J ′
)
, (max i vij | j ∈ J) |1, ...,m

}
,

where J = {j = 1, 2, ..., n| j}: associated with the beneficial response variables,
J ′ = {j = 1, 2, ..., n j| j}: associated with the non-beneficial response variables.

The evaluated values of the positive ideal (best) and negative ideal (worst)
solutions are presented in Table 10.

Table 10. The values of the positive ideal and negative ideal solutions.

Response variable Positive
ideal solution

Negative
ideal solution

Surface roughness 0.052 0.139

Roundness error 0.442 2.893

Feed force 0.664 1.933

Step 5. Calculation of distance from ideal solution. The distance of each alter-
native from the positive ideal solution (S+

i ) and from the negative ideal solution
(S−i ) are calculated using Eqs. (3.13) and (3.14):

S+
i =

√√√√ n∑
j=1

(
vij − v+j

)2
, i = 1, 2, ...,m,(3.13)

S−i =

√√√√ n∑
j=1

(
vij − v−j

)2
, i = 1, 2, ...,m,(3.14)
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where S+
i is the distance between the i-th alternative and the positive ideal

solution, and S−i is the distance between the i-th alternative and the negative
ideal solution.

The evaluated values of the distance of each alternative from the positive-
ideal (best) and the negative-ideal (worst) solutions are presented in Table 11.

Table 11. The values of the positive and negative separation distances.

Test no. Positive
separation distance

Negative
separation distance

1 0.140 2.630

2 0.328 2.627

3 0.940 1.882

4 1.403 1.639

5 0.203 2.584

6 0.314 2.621

7 0.637 2.632

8 2.761 0.005

9 0.808 2.039

10 0.349 2.435

11 0.668 2.369

12 2.103 0.760

Step 6. Closeness coefficient of each alternative solution.
The relative closeness of each alternative to the positive ideal solution is calcu-
lated using Eq. (3.15):

(3.15) Ci =
S−i

S+
i + s−i

,

where 0 < Ci ≤ 1, i = 1, 2, ...,m.

Step 7. Ranking the preference order.
The ranking order is to be managed with respect to the values of closeness
coefficient (Ci) in descending order from 0 to 1. The value which is closest to
1 attains the first rank and it should be selected as the best among multi-
ple decision-making response variables. The evaluated values for each alterna-
tive/experiment and corresponding ranking are presented in Table 12.

From the calculation and closeness coefficient presented in Table 11, it can be
concluded that the value of closeness coefficient corresponding to experiment 1
with a drill speed and feed rate at 11 m/min and 0.05 mm/rev, respectively,
is the optimal combination of process parameters to achieve minimal value for
surface roughness, roundness error and feed force.
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Table 12. The values of closeness coefficient and ranking.

Test no. Closeness coefficient Ranking

1 0.950 1

2 0.889 4

3 0.667 9

4 0.539 10

5 0.927 2

6 0.893 3

7 0.805 6

8 0.002 12

9 0.716 8

10 0.875 5

11 0.780 7

12 0.265 11

3.4. ANOVA for closeness coefficient

ANOVA is a statistical method used to understand the effect of process
parameters on multiple response characteristics. The analysis was performed at
a 95% confidence interval, and the results of ANOVA for the closeness coefficient
are presented in Table 13. The results of factor response are considered using
the higher-the-better criteria and employing MINITAB software.

Table 13. ANOVA for weighted closeness coefficient.

Factors DF Seq SS Adj MS % Contribution F-Value P-Value

Speed [m/min] 1 0.01576 0.01576 1.68 0.54 0.480

Feed rate [mm/rev] 1 0.66089 0.66089 70.45 22.76 0.001

Error 9 0.26139 0.02904 27.87

Total 11 0.93804

Fig. 8. Main effect plot for weighted closeness coefficient.
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ANOVA results reveal that the feed rate is most significant parameter, with
a P-value of 0.001 (<0.05) and a contribution of 70.45%, followed by a drill
speed with a contribution of 1.68%.

As shown in Fig. 8, it is more significantly affected by feed rate rather than
drill speed.

3.5. Confirmatory tests for TOPSIS

After the evaluation of optimal process parameter using TOPSIS, confirma-
tory tests were conducted two times with a drill speed of 11 m/min and a feed
rate of 0.05 mm/rev. The results of confirmatory experiments are shown in Ta-
ble 14.

Table 14. Results from the confirmatory experiment.

Sr. no. Surface roughness [µm] Roundness error [µm] Feed force [N]

1 2.12 18.45 194.11

2 2.21 18.44 195.1

Average 2.17 18.45 194.61

The results of the confirmatory experiment were compared with the results of
test no. 8 which had a minimal value of the closeness coefficient of 0.02 under the
worst machining parameters. The comparative results are presented in Table 15.
The closeness coefficient calculated for the confirmatory experiment is 0.953. As
observed in Table 11, there is a significant improvement in all response charac-
teristics. The surface roughness of the drilled hole shows a 61.41% improvement,
the roundness error in the drilled hole shows an 81.4% improvement and there
is a reduction of feed force value by 61.31% during drilling. The improvement
in the weighted closeness coefficient for the weighted closeness coefficient of the
worst machining conditions is about 97.90%.

Table 15. Comparison of confirmatory experiment results.

Worst maching
condition

Optimal reinforcement
Improvement

[%]
Predicted Experimental

Drill speed [m/min] 22 11 11

Feed rate [mm/rev] 0.17 0.05 0.05

Surface roughness [µm] 5.62 2.2 2.17 61.41

Roundness error [µm] 99.27 18.46 18.45 81.4

Feed force [N] 490.38 194.16 194.61 60.31

Weighted closeness
coefficient

0.02 0.953 97.90
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4. Conclusions

Considering the current trend in the application of Al MMC in various en-
gineering fields, it becomes necessary to determine the suitable machining pa-
rameters to improve the quality of machined specimen or work piece. The main
aim of this work was to improve the quality of drilled hole in terms of mini-
mizing surface roughness, reducing roundness error, and minimizing feed force
during drilling operations. The results of this study involved selecting the best
combination of drilling parameters from the range of parameters used in the ex-
periment, guaranteeing the minimum surface roughness, the highest hole shape
quality and the lowest feed force. The following conclusions have been made
based on this work:

• It is evident that when we consider individual response we obtain different
combinations of drilling parameters required to minimize each response
and at the same time showing negative effect on another response.

• Drill speed has a significant effect on surface roughness and roundness
error but it is not that much effective in the case of feed force. Changing
the cutting speed results in a 65% difference in surface roughness and
more than a threefold increase in roundness error. Maximum changes in
feed force along with the change in drilling speed are at the level of 15%.

• Through EWTOPSIS, a drill speed of 11 m/min and a feed rate of
0.05 mm/rev are the best combination in the range of tested parameters
to minimize surface roughness, roundness error, and feed force during the
drilling of Saffil fiber-reinforced Al MMC.

• The results of this work can be used to improve the surface quality along
with geometric accuracy and at the same time minimize feed force during
drilling of Saffil fiber-reinforced Al MMCs.
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