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A numerical computation-based analysis of the free vibration analysis of uniform beams
with rectangular cross-sections is presented in this work using finite element analysis. The
approach involves dividing the beam into segments at the crack section, which is then mod-
elled for simulation for eigenfrequencies on the ABAQUS platform. The numerical simulation
results are in excellent agreement with the findings of previous research, confirming the ef-
ficacy and applicability of the developed beam model. A sequential comprehensive approach
towards analysis of the effects of the position and depth of the cracks on the natural frequencies
are addressed in numerical results. The research findings confirm that the simulation model is
suitable for the vibration analysis of beams or beam-like elements with different cross-sections.
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1. Introduction

The widespread use of metallic components is realized under a variety of
static and progressive dynamic loads during service. In this context, many engi-
neering systems inevitably encounter structural defects, including cracks as a re-
sult of mechanical vibrations, critical environmental conditions, corrosion, ex-
tended service periods and cyclic loads, etc. The initiation of transverse cracks in
key structural components poses an alarming consequence of reducing structural
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functionality and, subsequently, the risk of catastrophic failure of the structure.
The flexibility induced due to cracks modifies the dynamic conduct of the struc-
tural element as it reduces the stiffness of the beam, ultimately leading to failure.
Thus, for structural safety, the investigation on crack behavior under dynamic
conditions is a significant technical and scientific issue that requires a compre-
hensive research attention. In this context, research attempts were undertaken
for compiling the related vibration-based analyses in order to understand and
emphasize the significance of crack analysis for beams [1–3].

The shifting of vibration signatures under dynamic settings may be used
to understand how structural abnormalities cause damages such as stiffness
changes, structural deterioration, and fatigue characteristics [4]. When a frac-
ture or a fault that resembles a crack is present, the problems with evaluating
the vibration of beams become more complex. Yet, the problem remains of
great interest since a robust and all-encompassing research effort to examine
the frequency changes of fractured beams is seldom addressed and far from
complete [5].

Researchers have calculated the natural frequencies of fractured Bernoulli-
Euler beams with open fractures by solving boundary value problems and motion
equations. A number of methods have been put forth for this purpose, includ-
ing the formulation of equations to account for changes in natural frequencies
brought on by cracks in beams [6], a Galerkin solution for symmetric double-edge
mid-span cracks, derivation of natural frequencies for a damaged cantilever beam
with single-edge and double-edge cracks, and more [7, 8]. The approaches for ad-
dressing vibration issues in damaged structures have been thoroughly studied,
and a continuous cracked beam vibration theory for simply supported beams
with single-edge and double-edge cracks has been devised and experimentally
proven [9]. Heaviside and Dirac’s delta distribution functions have been used
in works to handle beam vibration issues with numerous open fractures and to
derive dynamic stiffness matrices for cracked frames [10]. Researchers have em-
ployed rotating springs to depict single fractures or a reduction in stiffness along
the damaged length to imitate cracks [11, 12]. The stiffness reduction is caused
by changes in the material’s cross-sectional area or Young’s modulus. Addition-
ally, the strain energy density function and fracture mechanics techniques have
been used to experimentally develop the relationship between crack depth and
equivalent spring stiffness.

Alshorbagy et al. [13] examined the dynamic characteristics of a function-
ally graded beam with the variation of material distribution axially or transver-
sally through the depth of the beam. Soltani et al. [14] developed a numerical
technique for free vibration and stability analysis of thin-walled beams with
flexural–torsional coupling effect. Biswal et al. [15] presented a finite element
analysis of a cracked beam using the Timoshenko beam theory and Hamilton’s
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principle while considering the effect of structural damping. Canales and Man-
tari [16] presented the vibrational behavior of isotropic and laminated beams
using the Carrera unified solution and Ritz method. Lee and Lee [17] ob-
tained a transfer matrix method to analyze the free vibration characteristics
and eigenvalue analyses of a functionally graded beam. The matrix was derived
from the correlation of displacement and forces at the beam ends. Corrêa
et al. [18] examined the accuracy of the generalized or extended finite element
approach for the free vibration analysis of curved beams. Yang et al. [19] pro-
posed a CUF-1D method to accurately predict natural frequencies and dynamic
response of thin-walled composite beams. Given the significance of cracks and
crack-like structural discontinuities, a notable amount of research was addressed
to damage analysis in structural elements for a spectrum of materials using dif-
ferent methods [20–24].

The research discussed above addresses the vibration of beam-like structures
in the presence of cracks, providing a sound idea about the effects of cracks
on natural frequencies. However, the existing literature mostly highlights the
impact of a single crack on the natural frequency of the beam. The study of
vibration in multi-cracked beam structures is not fully covered and remains
incomplete. Furthermore, a systematic and in-depth analysis regarding multiple
cracks presents a significant scientific research perspective. Thus, keeping these
aspects in consideration, the present work is undertaken.

2. Mathematical modeling

The geometric dimensions – length (L), width (b) and thickness (h) – for an
isotropic beam with a rectangular cross-section are shown in Fig. 1. The crack

Fig. 1. Typical laminated composite cracked beam element with rectangular cross-section and
co-ordinate axes.
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positions are defined at L1, L2 from the left end and the depth of the transverse
crack is denoted as a. The cracked beam model can be extended to multiple
cracks located at L3, L4, ..., Li. The intact beam finite element (FE) modeling is
conducted in line with [9], whereas the cracked beam FE is modeled as below.

In the present analysis, the FE formulation is presented using an 8-noded
isoparametric element from the ABAQUS library, using a brick element. Thus,
considering this brick element, the displacement fields can be assumed based on
the first-order shear deformation theory (FSDT) as per [25]:

u(x, y, z) = u0(x, y) + zθx,(2.1)

v(x, y, z) = v0(x, y) + zθy,(2.2)

w(x, y, z) = w0(x, y),(2.3)

where the displacement components are u, v and w along the coordinate system
x, y and z, respectively, u0, v0 and w0 are the respective displacement compo-
nents of the midplane section, and θx and θy denote rotations in the x-z and
y-z planes, respectively.

The idea of analyzing the isotropic beam through a layer-wise model is
adopted from previously addressed notable research works on the dynamics
of layered beams [26–28]. Consenquently, the beam simulation model was de-
veloped layer-wise to facilitate the smooth assignment of transverse cracks. To
study the effects of cracks on the natural frequencies, an infinitesimal element of
the layer-wise composite beam (LCB) encompassing the cracked region is identi-
fied for study to govern the local compliance matrix adequately, as demonstrated
in Fig. 1. Within this frame of reference, the local compliance matrix for the
element is written as:

(2.4) cij =
∂2
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where A is the cracked surface area and D1, D2, D3, and D12 are the material
parameters coefficients and expressed as:
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The stress intensity factors KI, KII, and KIII are accounted for crack modes I,
II, and III respectively [29], bij accounts for the local compliance of the composite
material, and the characteristic equation roots are µ1 and µ2 [30].

The determination of the compliance matrix or flexibility matrix effectively
and conveniently defines the stiffness matrix of the cracked beam. The total
flexibility matrix is calculated by measuring the cracked and intact portions.
In order to obtain the equivalent compliance coefficients to represent the stiff-
ness matrix for the cracked element, the length and mass of cracked element
are considered as zero [31]. An archetypal rectangular composite cracked beam
element is illustrated in Fig. 1 and it is modeled by applying stress intensity
factors in fracture mechanics. Using stress intensity factors, the cracked section
local compliance matrix is written in line with [32]:

(2.5) [C] =
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where Li denotes crack location.
The crack simulation in ABAQUS follows the concept of inverting the local

compliances to obtain the stiffness matrix of the cracked element and subse-
quently evaluating the stiffness of the cracked beam. Kisa [31] conducted a crack
modeling for a 2-noded three degrees of freedom (DOF), and the stiffness matrix
is presented as the inverse of the compliance matrix as follows:

(2.6) KC =

 [C]−1 − [C]−1

− [C]−1 [C]−1


(6×6)

.

Now following Kisa [31], the stiffness can be improvised. For example, by
extending Eq. (2.2) to a 3-noded LCB with five degrees of freedom, the resulting
stiffness matrix for the cracked element is given by:

(2.7) [Kcrack] =
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During vibration simulation, the ABAQUS platform is capable of generating
a very defined mesh divisions that essentially capture eigenfrequencies effec-
tively, regardless of the total global DOFs in the system. Thus, the ABAQUS
finite element suite presents an advantage to be used for modal simulation re-
sults.

The cracked laminated beam stiffness matrix is given by:

(2.8) [Kcbe] = [Ke]− [Kcrack] ,

where [Kcbe] is the stiffness of the cracked beam element, [Ke] is the stiffness
of the non-cracked beam element, and [Kcrack] is the stiffness of the cracked
element.

The governing eigenvalue equation for LCB with a crack is

(2.9)
(
[K]− ω2 [M ]

)
{∆} = 0,

where [K] is the cracked beam stiffness matrix, [M ] is the beam mass matrix,
ω is the frequency, and {∆} is the vector of degrees of freedom.

The mass matrix will not change due to the initiation of cracks. The mass
matrix can be represented as:

(2.10) Me =

+1ˆ

−1

+1ˆ

−1

[N ]T [P ] [N ] |J | dξ dη,

where [N ] accounts for shape function, [B] is referred to as the strain-displacement
matrix, and |J | is the Jacobian determinant.

The shape functions for an 8-noded isoparametric element are
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and [P ] is known as the inertia matrix.

3. Simulation of finite element modeling using ABAQUS

A linear beam FE model is erected in the ABAQUS platform for record-
ing simulation results. The pre-processing begins with developing the laminated
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beam geometry and assigning elastic properties to each layer. After assigning
material properties, assembling is performed and crack signatures are defined.
The pre-processing step is followed by analysis, involving fixing boundary con-
ditions, selecting suitable mesh size and simulating crack. The analysis is then
followed by post-processing, where the modal analysis is performed and the
simulated results for eigenfrequencies are recorded. Mode shapes and numerical
modal frequencies from the ABAQUS platform are presented in Fig. 2.

Fig. 2. Beam modelling and simulation using ABAQUS.

According to the ABAQUS documentation, using a well-structured mesh
composed of hexahedral elements (C3D8R) often yields a solution of comparable
accuracy while being more cost-effective. This is supported by insights observed
in previous notable research work [33].

4. Results and discussions

The results of beam vibration frequencies are obtained from numerical ana-
lysis for an aluminum beam with transverse open cracks and presented with
respect to different parameters. In view of the analysis, the results are catego-
rized as follows:

• convergence study,
• comparison of present FE results with previous studies,
• simulated results for different parameters.
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4.1. Convergence study

In order to facilitate a definite and suitable mesh division, the beam FE
model is simulated in the ABAQUS platform for natural frequencies of vibra-
tion concerning different fiber orientations. In line with [16], the convergence
study is performed, considering material type, geometry and elastic properties in
equal measures and the same domain of analysis. The results are summarized
in Table 1. From the convergence study, a mesh division of 4500 elements is re-
ported to exhibit optimal results in comparison with [16]. Consequently, further
vibration study in this research work is performed employing this mesh division
consistently.

Table 1. The convergence of non-dimensional fundamental natural frequency (ω̃) of beam.
E = 100 GPa, ν = 0.3, L/h = 10 (clamped-clamped boundary condition), ω̃ = ωL2

h

√
ρ
E

.

Mesh division Non-dimensional natural frequency (ω̃)

1000 elements 6.324

2000 elements 6.521

3000 elements 6.633

4000 elements 6.756

4500 elements 6.754

5000 elements 6.753

Ref. [16] 6.977

4.2. Comparison of present FE analysis with previous studies

The precision and proficiency of the present FE modeling through ABAQUS
are validated with regard to previous studies. Vibration frequencies for a cracked
cantilever beam, specifically for the relative crack depth (RCD), recorded through
ABAQUS, are compared with those obtained from [34] in the same testing do-
main, using exact material parameters as in [34]. The results are summarized in
Table 2. The present results demonstrate good agreement with those obtained
in [34]. The geometry and material details are listed below.

Table 2. First natural frequency comparison for clamped-free beam with an open crack
(L1/L = 0.25 from clamped end).

Frequency mode RCD
Ref. [34]

Present
FEM Spectral model

Fundamental frequency
0.05 26.12 26.138 26.147

0.25 25.83 26.075 25.94

0.5 25.196 25.196 25.22
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4.3. Simulated results

The simulated results for eigenfrequencies of a cracked beam for different
boundary conditions are recorded on the ABAQUS platform. The boundary
conditions are considered as clamped-free (CF), clamped-clamped (CC) and
simply supported (SS). An aluminum beam is considered for the investigation
with the following material properties E = 70 GPa, G = 26 GPa, Poisson’s ratio
= 0.3, and ρ = 2700 kg/m3. The length of the beam is set to 750 mm, and the
width and depth are both 35 mm.

4.3.1. Effect of CF boundary condition on the natural frequencies of a cracked
beam. The beam simulation model, developed in ABAQUS, is inflicted with rel-
ative crack depth (RCD) of 0.25, 0.5, and 0.75 at relative crack positions (RCP)
of 0.1, 0.3, 0.5, 0.7, and 0.9. For the crack effect analysis, each crack depth is
increased at each RCP, and the results are graphically presented in Fig. 3. The
figure illustrates the fundamental natural frequencies for the isotropic beam sub-
jected to CF boundary condition at various relative crack positions for varying
relative crack depths. It is observed in Fig. 3 that when the crack is positioned
at 0.1L, there is a significant decrease in the magnitude of natural frequencies
with an increase in RCD. Furthermore, the gradual shifting of crack locations
from the fixed end results in an increase in natural frequency, approaching the
magnitude closer to the intact beam. Moreover at 0.9L crack position, changes
in frequencies are insignificant compared to the frequency magnitude of the in-
tact beam. It is observed that the change in natural frequency is maximum when
the crack is at the fixed end and near the free end, the natural frequencies are
nearly equal to those of the intact beam.

Fig. 3. Variation in fundamental frequency for CF beam concerning crack depth and location.
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4.3.2. Effect of CC boundary condition on the natural frequencies of cracked
beam. The effect of CC boundary condition on the natural frequency is pre-
sented graphically in Fig. 4. In this analysis, the RCD and RCP are considered
as earlier for the CF beam. The depiction in Fig. 4 shows minimal changes
in frequency magnitude when cracks are located at 0.1L and 0.9L. Further-
more, at the crack position 0.3L and 0.7L, no noticeable changes in frequencies
are observed. Furthermore, the frequency magnitudes are more closely aligned
with the intact beam. However, a significant decrement in the fundamental fre-
quencies is observed at the 0.5L crack position. The maximum changes in the
natural frequencies in the case of CC boundary condition occur at the cen-
ter of the beam. This is attributed to the fact that the beam is restrained at
both ends.

Fig. 4. Variation in fundamental frequency for CC beam concerning crack depth
and location.

4.3.3. Effect of SS boundary condition on the natural frequencies of cracked
beam. Figure 5 shows the summary of crack effects on natural frequencies, con-
sidering SS boundary condition. It is observed in Fig. 5 that the graphical curve
follows the same trend as that of the CC beam. However, the magnitudes of fre-
quencies lie between the frequency magnitudes of the CF and CC beams. The
maximum reduction in frequencies is observed at the center of the beam. When
the cracks are located at 0.1L and 0.9L, the deviation in frequency values is
very small compared to that of CC boundary condition. In addition, very small
changes can be observed at the crack position 0.3L and 0.7L.

4.3.4. Effect of crack position on the natural frequencies of a laminated
beam. In order to study the effect of crack position on the natural frequencies
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Fig. 5. Variation in fundamental frequency for SS beam concerning crack depth and location.

of the beam, crack locations at 0.1L, 0.3L, 0.5L, 0.7L, and 0.9L are considered.
Fixed (CC) and cantilever (CF) support conditions are considered for this part
of the analysis.

• Effect of position of crack on CF beam for single crack on vibration. The
variations in vibration frequencies with respect to the position of a crack for
the cantilever (CF) boundary condition are shown in Fig. 6. To analyze the single
crack effect on natural frequencies, a relative crack depth of 0.375 is introduced
at various locations. The FE simulation results for vibration frequencies, pre-
sented in Fig. 6, show that the maximum reduction in natural frequencies with
respect to the intact beam is observed when the crack is located at 0.1L from
the clamped edge. It is observed that the beam frequencies of vibration are least
affected when cracks are positioned far from the clamped edges, as opposed to

Fig. 6. Variation in vibration frequencies with respect to crack positions for CF beam
with a single transverse crack and a/h = 0.375.
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those located near the fixed end. Cracks near the free end exhibit almost equal
frequencies of vibration as that of the intact beam. This observation agrees
perfectly with the findings made by Kisa and Brandon [11], who employed
a component mode synthesis analysis and FEM.

• Effect of position of crack on CF beam for double crack under free vibra-
tion. The variations in natural frequencies due to the position of two cracks
for CF beam are shown in Fig. 7. Since previously it was found that the max-
imum reduction in natural frequency occurs at a position of 0.1L, the analysis
is conducted for the double crack, the crack is located constantly at 0.1L, and
the second crack is defined at 0.3L, 0.5L, 0.7L, and 0.9L positions, respectively.
The results presented in Fig. 7 show that the maximum reduction in vibration
frequencies concerning two cracks occurs at locations 0.1L and 0.3L from the
fixed end with respect to the non-cracked beam.

Fig. 7. Variation in vibration frequencies with respect to crack positions for CF beam
with double transverse crack and a/h = 0.375.

• Effect of position of crack on CF beam for triple crack under free vibra-
tion. The variations in natural frequencies with respect to the position of three
cracks are shown in Fig. 8 for the CF beam. Previously, it was found that the
maximum reduction in natural frequency occurs at positions 0.1L and 0.3L and
therefore two cracks are kept constant at crack location 0.1L and 0.2L, while
the third crack is defined at 0.5L, 0.7L, and 0.9L, positions respectively. The
results presented in Fig. 8 show that the maximum reduction in vibration fre-
quencies concerning three cracks occurs at locations 0.1L, 0.3L, and 0.5L from
the fixed end with respect to the non-cracked beam. Following this methodol-
ogy, the multi-cracked beam may be analyzed for critical crack location and
subsequently its severity can be assessed for structural functionality.
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Fig. 8. Variation in vibration frequencies with respect to crack positions for CF beam
with triple transverse crack and a/h = 0.375.

• Effect of position of crack on CC beam for single crack under free vibration.
The computed results for the natural fundamental frequency of the beam with
a single transverse crack concerning crack positions are presented in Fig. 9 for
the fixed (CC) boundary condition. A crack depth of 0.375h is considered for
analysis. Following the sequential analysis observed for the CF beam, in order to
analyze the effect of single transverse crack, the locations under observations are
0.1L, 0.3L, 0.5L, 0.7L, and 0.9L, respectively. It is noticed from Fig. 9 that the
crack located at 0.5L from the fixed support results in a maximum reduction in
all modes of the natural frequency with respect to the intact composite beam.

Fig. 9. Variation in vibration frequencies with respect to crack positions for CC beam
with a single transverse crack and a/h = 0.375.

• Effect of position of crack on CC beam for double crack under free vibration.
Figure 10 demonstrates the changes in natural frequencies due to the position
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Fig. 10. Variation in frequencies of vibration with respect to crack positions for CC beam
with two transverse cracks and a/h = 0.375.

of a double crack for CC boundary condition. For the analysis of the double
crack, the crack location at 0.5L is kept constant, as it results in a maximum
reduction in frequencies of vibration for a single crack. The second crack is varied
at 0.1L, 0.3L, 0.7L, and 0.9L positions, respectively. In this case, the maximum
reduction in vibration frequencies of LCB is observed at locations 0.1L, 0.5L
from the clamped support.

4.3.5. Effect of crack depth on the natural frequencies of laminated beam. To
analyze the effects of crack depth on natural vibration frequencies, five definite
RCDs a/h = 0, 0.125, 0.25, 0.375, 0.5, 0.625, and 0.75 are explored. For this
segment of the analysis, fixed (CC) and cantilever (CF) boundary conditions
are considered.

• Effect of depth of crack on CF beam under free vibration. The variations in
the beam vibration frequency with respect to RCD are presented in Figs. 11–13
for the aluminum beam with implications of a single, double, and triple crack,
respectively. The frequency measurements are done for the CF beam under free
vibration. It is found that for CF beams, the critical locations are 0.1L for
a single crack, 0.1L, 0.3L for two cracks, and 0.1L, 0.3L and 0.5L for three
cracks. For each case, the RCDs are varied from 0 to 0.75. It is noticed from
Figs. 11–13 that up to an RCD of 0.5, the changes in frequency are insignificant,
whereas a considerable reduction in natural frequencies is observed for an RCD
greater than 0.5. A definite outcome is noticed from the figures that the vibration
frequencies do not change significantly when the crack is located at the far
end, and then gradually shifts towards the fixed end, variations are observed in
natural frequencies. This phenomenon occurs because of the maximum bending
moment at the fixed end. The variations in fundamental frequency are very small
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Fig. 11. Effect of RCD for cantilever beam with a single crack.

Fig. 12. Effect of RCD for cantilever beam with a double crack.

Fig. 13. Effect of RCD for cantilever beam with a triple crack.
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or negligible compared to that of a non-cracked beam due to a crack at the free
end because of the least bending moment in that region. Also, it may be noted
that there are reduced vibration frequencies as the crack depth increases for any
particular location.

• Effect of depth of crack on CC beam under free vibration. The changes in
the beam natural frequencies concerning the RCDs under the clamped condi-
tion at both ends are shown in Figs. 14–16. The recorded single, double, and
triple crack results are summarized in these graphs, respectively. The analysis
procedure follows a similar trend as observed for the CF case. It is noticed from
graphical summarizations that for an RCD of 0.125 to 0.375, the fundamental
frequency variation is insignificant, whereas from a crack depth of 0.5h onwards,
the frequency falls quite significantly compared to the intact beam. The higher
mode frequencies also exhibit a similar pattern where the variations in natural

Fig. 14. Effect of relative crack depth for clamped beam with single crack.

Fig. 15. Effect of relative crack depth for clamped beam with double crack.
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Fig. 16. Effect of relative crack depth for clamped beam with triple crack.

frequencies for crack depths 0.125h to 0.375h are insignificant, but with increas-
ing crack depth, a considerable reduction in frequencies of vibration is recorded.
It indicates that the increased crack number severely affects the natural fre-
quency and noticeably decreases the beam vibration frequencies for an RCD
higher than 0.5.

5. Conclusion

In this study, the frequency-based analysis was conducted for a cracked
isotropic beam to examine the variations in beam frequencies with respect to
different beam parameters. The ABAQUS software, based on FEM, was em-
ployed for numerical computation. The following conclusions are drawn from
the presented results:

• The beam simulation model developed in the ABAQUS platform can pro-
vide consistent modal frequencies for all modes of interest, providing in-
formation on the crack effects on vibration frequencies.

• The convergence data obtained from numerical simulations further indi-
cates that a fine mesh division is essential in capturing the impact of
cracks on modal frequencies. Additionally, a fine-mesh division can effec-
tively produce the modal simulation results, regardless of the total degrees
of freedom in the global system. This is an advantage of using a FE suite
such as ABAQUS.

• Significant variations in vibration frequencies are observed for greater
crack depth.

• Cracks located near the clamped support exhibit the maximum reduction
in natural frequency for any particular crack depth.
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• Frequencies decrease with an increase in relative crack depth.
• The CF beam exhibits lower magnitude in natural frequency compared to

other boundary conditions, while the CC beam exhibits greater natural
frequency.
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