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QUASI-STATIC MOTION OF COMPRESSIBLE HYPO-ELASTIC SPHERE
AND CYLINDER

GUO ZHONG-HENG and LII WEN-LIN (PEKING)

The present paper deals with the quasi-static motion of compressible hypo-elastic bodies of
grade zero and grade one. The initial-boundary problems of the raidal motion of a sphere and
the plane-radial motion of a cylinder have been studied in detail, their exact solutions being ob-
tained. It has been concluded that for any fixed moment the density of mass and the stress field of
the body are homogeneous, while the velocity of the particle is in proportion to its distance from
the centre of the sphere (or, from the axis of the cylinder).

1. BASIC EQUATIONS

The concept of hypo-elasticity was proposed by TRUESDELL [1, 2] in 1955. In
the same year NoLL [3] proved that every elastic body in finite deformations is
a hypo-elastic one. In 1960 BERNSTEIN [4, 5] gave the condition for a hypo-elastic
body being, at the same time, Cauchy or Green elastic. Thus hypo-elasticity is
a concept wider than elasticity. It has been indicated in [6] that the constitutive
equation of a compressible isotropic homogeneous hypo-elastic body has the fol-
lowing form:

DS
(1.1) 3;=(a1 tr D+, tr DS +a3tr DS? +a5 tr DS?) I+

+(oty tr D+ o5 tr DS +a6 tr DS?) S+
+(otq tr D +ag tr DS +0tg tr DS?) S2 030 D+
+ogq (DS +SD)+“1_2 (])S2 +S2 D),

where S, D, I and ¢ are the dimensionless Cauchy stress tensor.(*) the stretching
tensor (i.e. the symmetric part of the velocity gradient), the unit tensor and time,
respectively.

DS df e

(1.2 E=s—-ws +SW

is the constitutive derivative(?) of the tensor S (cf. [7]) and a,, a5, ..., %1, are poly-
nomials of the three invariants

(1.3) tr S, tr 8%, tr S8
(*) The Cauchy stress tensor is 2 u#S. zand A are the Lamé coefficients of classical elasticity.

() () denotes the material differentiation. W is the spin tensor-skew-symmetric part of the
velocity gradient. :
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of the tensor S. When the right-hand side of Eq. (1.1) does not involve S, we then
have a hypo-elastic body of grade zero:
DS A

(1.4) E-——(Z—ﬂ'tr]))[—*}-]).

For the grade-one body, the right-hand side is linearly dependent on S:

(1.5) %§= [(Bi+p,tr S)trD+p5tr DS]I+(B, tr D) S+
+(Bs+Ps tr S) D+, (DS +SD),

where B, f,, ..., f; are constants.

The dynamical solutions of hypo-elasticity are very few in number, among
them some can be mentioned as below: [8] treats the simple extemsion and [9, 10]
make a study of radial motion of an incompressible sphere and cylinder. TRUESDELL
[2] has discussed the accelerationless motion of the homogeneous stress state of
a hypo-elastic body. In the present paper, neglecting the influence of inertia, the
quasi-static motion of a compressible hypo-elastic body will be studied, namely,
the motion of a sphere and cylinder of material of grade zero and grade 1, under
the restriction

(1.6 3 +20,=0.

The constitutive equation (1.4) or (1.5), equation of continuity and equation
of momentum (in the absence of volume force)

(1.7 p+pdivv=0,

(1.8) div S=0

constitute the closed system of equations for the quasi-static motion of a compres-
sible hypo-elastic body where the mass density p, velocity v and stress S are unknown.
The initial boundary problem can be investigated with the following initial conditions:
(1.9) Pli=o=po,  Vli=0=Vo, Sl;=0=S,.

In accordance with the geometrical shape of the considered body, two orthogonal
curvilinear coordinate systems will be used: the spherical system {r, 9, ¢} and the
cylindrical system {r, 3, z}. In these coordinate systems, the physical components
of velocity v and stress S are denoted by

Uy Ser Sra Sor
(1.10) v=lgl, " 8= S5 5

%o T
and

2, s |
(1.11) Y=logll - - S=le e

Uz > * Sz

respectively.
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2. RADIAL MOTION OF A SPHERE

Let the origin of the spherical system {r, 3, ¢} coincide with the centre of the
sphere. In the case of radial motion, among the unknows there remain only 4 non-zero

physical components:
: pr,)=p, (@, )=y,
Sr (1, 1)=8r, 890 (1, 1) =S54 (r, 1)=s5,;

2.1

the continuity equation (1.7) and momentum equation (1.8) reduce to

8p aop ( v 27;)
e T aﬁ TR
% 0
2.3) o —5)=0.

The constitutive equations (1.4yand (1.5) take the form

s, .} ds, 4 (c’)'v 27)) v
i 3r or T or’
2.4)
0s, o8, O (av 4 27)) v
% o A
0s, (3'v+2v) Bv+2 v)+
o = [B1 +8: (5, +25,)] T +/)’3(Sr—a'r~ S
ov 2 v
+ﬂ4 S\ 5 3r +[/’)5 4ﬁ6 (Sr +2St)] +2ﬁ7 Se o a s
@2.5)
as, as, v 2o v v
ot +v_—[ﬁl+/32 (sr+2s‘t)] +_~* +ﬂ3 Y e ar +2St7 =

v 2o v v
+Bas: W"“T +[Bs +Bs (s, +2s,)] 7+2ﬁ7 S

In the radial motion, the distance R of a typical particle at =0 from the centre
of the sphere is taken for the Lagrangean variable. Afterwards, according to the
need in integration, we shall use the Lagrangean variable (R, 7) or the Eulerian
variable (r, t). In the formulae (2.2)—(2.5) 8/dt is the time differentiation under the
Eulerian variable, sometimes denoted more explicitly by (9/dt),, while the differen-
tiation under the Lagrangean variable is denoted by d/dt or (3/3t)R

At t=0 the sphere with the radius A is assumed to be at rest and stress-free:

T e S T AT AT, W

(2.6) Pli=o=po, vl;=0=0, 5li—o=5-= o—Q

Under the exterior action the sphere is forced into motion:

29 r=i(R-t)— | for —10:

i S .

Rozprawy Inzynierskie — 7
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Only the motion satisfying the continuity axiom will be considered, i.e. the function
(2.7) assumed to be continuously differentiable and single-valued, possesses an
inverse

(2.8) R=R(r, 1)
with the same property. Thus
Or -k 5
i PrIREC T R
ar

Evidently, the following relations must be satisfied:

(2.10) r(iR.0O)=R ' r(0 =0,
5 or _OR £
@4 ﬁ-mo—ar r=o—‘.

The in time varying forcing factor can be either the displacement boundary con-
dition

2.12) r(4,0=f()

or the stress boundary condition

2.13) ‘ 5, (4, =g (),
f(2) and g (¢) being given functions satisfying

(2.14) fO)=4, [ (0)=0;
(2.15) 2(0)=0, ¢/ (=0,

Passing from the Eulerian variable to the Lagrangean one, we have

= d v oR 1 3(3r)_ 1 [3(3r)]_d(1 ar)

O ik i o Rl o Ik “or MR
oR R

ey

o] dt\ "R/

Inserting Eq. (2.16) into Eq. (2.2) and taking into account

o d(a)_(a)+(ar)a_a+ 0

@17 dr\ot)x \otl, \otleor ot ' or’

we obtain

dp d r%or
(2.18) — ln(——— =0.
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Under the Lagrangean variable we integrate the above equation from 0 to ¢ along
the trajectory R=const. Taking into account the initial condition (2.1); and (2.10)
and (2.11), we obtain

Pr 2770 (s
pPo R? R
This is, in fact, the continuity equation of the Lagrangean type, Now we consider
. in sequence the hypo-elastic material of grade zero and grade one.

(2.19)

2.1. Hypo-elastic body of grade zero

Inserting Eqgs. (2.16) and (2.17) into the constitutive equation (2.4), integrating
it from O to ¢ along the trajectory R=const and taking into account Eq. (2.6),
and the conditions (2.10)—(2.11), we obtain

—('1+1)1 2

S, oy naR ﬂn
(2.20)

/11 3r+(l+) r

S _‘—naR o lln‘i.

Since dt=0 is the characteristics of the momentum equation (2.3) substitution of
Egs. (2.9) and (2.20) into it leads to the characteristic relations on the line t=const:

2,21 d(l dR)+Kl. dR+2 d(] R) KInR—
@21 dr . dr Tn dr (_K)E 11—r— r 7_0
with the notation
: 2
(2.22) s +'
2u :

It is easy to verify that
(2.23) R(r,t)=rF(t)
is the solution of Eq. (2.21), F (¢) being the arbitrary function of ¢. Making use of

the boundary condition (2.12) to determine F(f), we obtain the corresponding
form of Eq. (2.7)

R
(2.29) rRO=—1@).
Further, from Eqs. (2.24), (2.19) and (2.20) we have
g pagdlos
P=Po f3 (t) s
7 R dln f (t)
(2.25) (5;—) P Omr =
3
s,=s,=2(—x—— 1) In ff:) 5
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The satisfaction of the initial condition (2.6), is guaranteed by the condition (2.14),.
The expressions{2.25) are the solution of the problem with the displacement forcing
factor.

If the forcing factor is the boundary force (2.13), then the solution of the prob-
lem can be obtained from Eq. (2.25).

3kg®
P=Po €XP [——2 (K_3)],

(2.26) A0
e v

s,=5,=g (t).

2.2. Hypo-elastic body of grade one

Subtracting Eq. (2.5), from Eq. (2.5); and taking into account Eq. (1.6), we
obtain

a(sr—sf)+ a(Sr—‘st)__
bt <R

[ (3‘1}_{_2‘0) ( ov 11)] (d‘v v)
=(s,—5,) | Bs g~ fiy Bs 25; +Bs\ - 5 3
The substitution of Egs. (2.16) and (2.17) into Eq. (2.27) leads to

(r)

(2.27)

(2.28)

=(s,—5:) 7~ [(ﬂnt 2136) ln + (28.—PB6) In _j

N d [ (l or l r )]
S e T Wi 5
Integrating from 0 to ¢ along R=const and taking into account Eq. (2.6);, we obtain

(229)  s,—s,=exp [(ﬂ4 2Pe) In—= g g T (@B~ Fe)In *—]

d 7
x f fexo [(2/36 b g+ (o280 |8+ 10 -

—Jng%”szhz@(Rﬁy

Applying Eq. (2.29) to eliminate s, from Eq. (2.5); and substituting Egs. (2.16) and
(2.17) into it, we obtain

ds, d ar £ d ar
i - (1n——+1n ) [(ﬁ1+/35) 2(B:+50) @] = (lnﬁ)+

d r
+[B:—=(2B.+3) O] —d7<ln 7{7)
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with the notation
(2.31) E=38,+Ps+Pha.

Integrating Eq. (2.30) from O to ¢ along R=const and taking into account Eq. (2. 6)3,
we obtain

__(r2 6r)
{232 5= R R

or d 2
| [(Bi+Bs)—2(B2+B6) O1—; it (ln *—“) +[B1— (28, +p5) O] —; 7 (ln -;?)
X f 3 : dT.
- ('__3'_) ‘
R® 2R ol

Substitution of Egs. (2.29) and (2.32) to Eq. (2.3) gives the characteristic relation
of the momentum equation at lines #=const. This relation has a somewhat com-
plicated form. Similarly to the body of grade zero, it is easily verified that

£2.33) R (r,t)=rF ().

satisfies the mentioned characteristic relation. Hence

R e % dInf ()
(2.34) r(R, t)=7f(t)7 P=Po ?3_(7)—3 v=7fl O=r T

Substituting Eq. (2.34) into Egs. (2.29) and (2.32), we obtain

3 1 3¢
(2.35) —E%ﬁ—’ {[%t)] o 1} s &#0,
G £
(2.36) (381 +5) In—~, £=0.

The expressions (2.34)-(2.36) are the solution of the problem with the displacement
forcing factor (2.12). It should be noted that for the physical reason 38, +f5 can
not equal zero.

If the forcing factor is the boundary force (2.13), then the solution of the problem

is as follows:
[ 3Eg (1) ]
34 +ﬁs

lRexp[ &€=0,
iy Buhd
[ [ 3B, +Bs ]“‘ .
P L ooy R
—3g (1)
lPo CXP[ 3ﬂ1g+ﬂ5 ] B §=0’
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20
3B +Ps +35g ()’
$=5=8 (t) .

If we put B,=42u, fs=1, B,=Ps=P.=Ps=0 in the solution for the body of
grade one, then as a special case we obtain the solution for the body of grade zero.

3. PLANE-RADIAL MOTION OF A CIRCULAR CYLINDER

Let the z-axis of the cylindrical system {r, 9, z} coincide with the axis of the
cylinder, of which the quasi-static motion is to be studied. For the plane-radial
motion, only 5 physical components are not identically equal to zero:

p(r,t)=p, v (r,t)=v,
Ser (I', t)ES,., Sas (I‘, t)ESs, Szz (rs I)Ez-

Now the continuity equation (1.7) and momentum equation (1.8) reduce to

3.1

(3.2) L (-533’-+ ) =0

5 oL, .3 9r @k ;
as- i il

(3.3) ot — (5, —59)=0.

_ The constitutive equations for bodies of grade zero and grade one, are, respectively,
3s,. 3s,. A ( v = 'v) v

“or 2ul\er or’
05 as Afov v v
G4 5}5*”—7“3,7(7”")*7’
CRR TN T 9L}
ot g 200 vk
(3.5 3s,+v asr—[ﬂ +B, (5, +s5+s, )](a” 1)+ﬁ (s fz+s 1J-)+
ot 1TP2 8 TSz * SiG " s
v 9 v v
+PBs s,(7+ -) +[Bs +Be(s,+ +sa+5)] 5 +2B1 55
—a—{{+v&—[ﬂ + B, (s, +5, +s)](av 1")+ﬁ (s -ai+s 1)+
at 1 2 \¥r 3 2, 319 ar L) r
v v ] v
+B4 s (E,‘ +'7) +[Bs +Bs (s:+5s +Sz)]'r' +28, 5 s
s, 0, :

oo -v) ’
= Too-= 1B+, (S,-+s,g+s,)]( =)o

v w\) (3v+v)
+ﬂ3 sr—a—;-*-‘y&? +ﬂ4sz or rl
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Take the distance R of the typical particle at 7=0 from the axis of the cylinder
as the Lagrangean coordinate of that particle, then the meaning of (9/dt), and
(9/01)g remains the same as in the case of the sphere. We consider the motion

(3.6) r=r(R,t), >0

of the cylinder with a radius A4 for the initial conditions

(3.7 Plico=Po, ?l=0=0, Sli=o=Sslr=0=5l¢=0=0
and the forcing factor

(38) r,0)=f@) or s(4n=g®),

satisfying Eq. (2.4) or Eq. (2.5) respectively. Because of the validity of Egs. (2.16)
and (2.17), it is just as easy as in the case of the sphere to translate the Eulerian
continuity equation (3.2) into the Lagrangean form:

pr or

3.9 ok "a—i'=1.

Now we consider in sequence the hypo-elastic material of grade zero and grade one.

3.1. Hypo-elastic body of grade zero

Substituting Eqgs. (2.16) and (2.17) into Eq. (3.4), integrating it and making use
of the initial conditions (3.1) we obtain

) orinkos r
s=\5o+ | ngpt sy

2u oK 2 n
= A - ar +( A - 1)1 r
(310) Sa 2/[ n R 2” n R’
A or A r
§j= se-jamad- da-chyans,

i ot 2 R

By inserting Eq. (3.10) into the momentum equation (3.3), we have at the charac-
teristic lines dt=0 i v

1 d(l dR)+"1dR+1 d(l 'R')—"l —
@1 dr ndr r : dr Kina) dr n r n—r-:_ &
with the notation
. = 1
(3.12) = )“‘_,_1'
2t

It is easily verified that the solution of Eq. (3.11) has also the form (2.23): v
(3.13) . R O=rF(y. " ' \
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Maklng use of the boundary condition (3.8), to determine F (r), we finally obtain
the solution of the problem with the displacement forcing factor:

R R dl t
r-‘-‘;f(t), ‘U=If' (t)=’$,

Az
3.14 =pom o>
( ) p psz (l)
‘ A S @) Ao f@)
=g =|—F+ ————e =e—ln —
Sp=Sg (,u l)ln i S, ﬂn %
For the boundary stress forcing factor, the solution is
o g () _r'
r expl 0|, v p :
—+1 =]
K H
—2g (1)
(3.15) p=poexp| ———|,
—+1
u
g @)

S=5=g1), 5=

3.2. Hypo-elastic body of grade one

It can be proved that the relation

R A
(3.16) r—:l—f(t)

holds true also in this case. Because of complexity, the explicit form of further
formulae will not be given here.

4. CONCLUSION

The above studies lead to a common conclusion: In all cases treated here the
mass density and stress state remain at any moment homogeneous, while the veloc-
ity of the particle is in proportion to its distance from the centre of the sphere or
from the axis of the cylinder, respectively.
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STRESZCZENIE

QUASI-STATYCZNY RUCH SCISLIWYCH, HYPO-SPREZYSTYCH KUL I CYLINDROW

Praca zajmuje si¢ quasi-statycznym ruchem $ci§liwych cial hypo-sprezystych stopnia zerowego
i pierwszego. Zostalo szczegdlowo zbadane zagadnienie poczatkowo-brzegowe ruchu radialnego
kuli i ruchu plaskiego radialnego walca. Otrzymano doktadne rozwiazania. Wykazano, ze dla do-
wolnej ustalonej chwili ggsto$¢ masy i pole naprezen ciala sa jednorodne, predko$é czastki zas jest
proporcjonalna do odleglto$ci od $rodka kuli lub od osi walca.

Pe3zwome

KBA3UCTATUYECKOE ABWXXEHUE CXUWUMAEMBIX I'MIIOVIIPYI X
IMAPOB 1 IMWJIVNHIPOB

Pa6ota 3aHMMaeTCs KBA3HCTATHYECKHM JIBIDKEHHEM CKMMAEMEBIX, THIOYIDPYTHX, HYJIEBOM
M nepBoii cTenenu, Ten. IToApoGHO MCCIE0BAHbI HAYAILHO-KPA€BhIE 3a7a9M DAJHATLHOTO JIBH-
JKeHWsl MIapa M NJI0CKOTO PaaualbHOTO ABMKEHHS NAamHApa. TlomydeHs! Tounsle pemenns. TToka-
3aHO, YTO JUIA NPOU3BOJBHOTO, YC1aHOBIIEHHOTO MOMEHTa BPEMEHHM IUIOTHOCTH MAacCChI H IIOJE Ha-
OPSKEHMH Tela OHOPOAHBI, CKOPOCTh YACTHIIBI XK€ NPONOPLHOHANLHA PACCTOSHHIO OT IEHTpa
Imapa WM OT OCH LMJIMHIpA.
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