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METHOD FOR THE CALCULATION OF DISPLACEMENTS AND INTERNAL
FORCES FOR A PLATE OF ARBITRARY SHAPE

A. BARYLA (WROCLAW)

A method for the calculation of displacements and internal forces for a plate of arbitrary shape
and under arbitrary support conditions, being under static loading, is presented. This problem
has been solved on the basis of the classical linear theory of ideally elastic thin plates. A set of
Fredholm’s integral equations, which expressed the support conditions, was used to solve this
problem.

The particular integral W*=r2In r2[16zD of the differential equation DAAW (r)=4 (0)/r, or
a combination of the corresponding differentials was assumed to be the kernels of the integral
equations. This particular integral expressing the deflection of an infinite plate under a simple
force loading will be termed later as the fundamental solution.

The formulation of integral equations is independent of the static scheme of the plate being
solved. Some examples of calculations using a computer program developed by the author are
also presented.

NOTATION

T the set of points of coordinates (xr, X7) for which the displacements
and internal forces are calculated,

S the set of points of coordinates (xs, ys) where the loading p (S) is
applied,

Q the set of points of coordinates (xq, yo) belonging to the plate bound-
aries, /(Q),

F the set of points of coordinates (xr, yr) lying along the elastic supports
I (F) inside the plate area £,

q(Q), 2(0) the set of forces and moments applied along the plate boundaries
1(Q), and f(F)—the set of forces applied along the support lines
I(F) inside the plate area, which both make possible the fulfillment
of the support conditions,

o, n,s indexes expressing the direction (« perpendicular, tangent) or the
derivatives of the fundamental function with respect to the first pair
of variables (xr, yr), :

B,n, s indexes expressing the derivatives of the fundamental functions with
respect to the second pair of variables (xs, ys),

W* (TS)  the fundamental solution of the particular integral of the differential
equation DAAW (r)=1/rd (0), expressing the deflection at the point
T caused by the action of the simple force at the point S,

9* M*, Q* V* fundamental functions expressing the angle of rotation of the deflec-
tion surface, the bending moment; the torsional moment, the shearing
force, and the generalized shearing force, respectively,

w,@,m,T,Q, V displacements and internal forces in the arbitrary plate-
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1. INTRODUCTION

PucHeR [1] has shown that the deflection surface of a plate loaded with a single
force may be described by the following equation:

(11) W(xT: Y15 Xss ys)= I‘2 hl’.-"I/Vl (xTa Vs Xs» ys);

where

87D

r=V (xr—x)* +(rr=)* -

The first term of the sum expresses a singular solution for an infinite plate loaded
with a single force. This particular integral does not fulfil, however, the boundary
conditions. The function W, (xr, yr, Xs, Js) is a general solution of the differential
equation for the plate expressed in the form of a series composed of the harmonic
functions; together with the particular integral it satisfies the boundary conditions.
In another work [2], PUCHER published a large number of the influence surface
for both rectangular and cirular plates, as determined by this method.

In a recent monograph [3], NowAcklI discusses a method for the determination
of displacements and internal forces for plates of various static schemes by reducing
the problem to a Fredholm integral equation of the 1st or 2nd kind. A number of
other authors [4-8] reported the results obtained by applying this method to some
particular static schemes. To arrive at the solution of this problem for different
plates, the author had to know various influence functions for plates of the same
shaps as those under study, but characterized by simplified support conditions.
These functions, so-called fundamental functions, were the kernels of the integral
equations and they made it possible to impose appropriate boundary conditions
for each of the plates studied. The fundamental function was usually expressed
as a trigonometric series, but the analytical solution of the entire problem was found
only for few particular cases. Most often the integral equation was solved by
approximate methods.

In this work a universal fundamental function independent of the static scheme
of the plate has been assumed. A simple, closed form of the fundamental solution
is an advantage of considerable consequences, for it makes numerical calculations
of the problem much easier.-In this case it is unnecessary to define the convergence,
which is so cumbersome an operation for fundamental solutions in the form of
a series. This paper presents a method to determine displacements and internal
forces for plates of arbitrary static schemes; it uses a fundamental solution in the
form W*=r?1Inr2/16xD as well as combinations of its corresponding derivatives.

2. THE FUNDAMENTAL FUNCTION AND ITS DERIVATIVES

The fundamental function has the following form in Cartesian coordinates:

1
iy 2
167T.D [xT xs) +

+(@r—ys)* In [(xr—x5)* +(r—ys)’]-

(2‘1) W* (sz Y1 Xs, yS)=W* (TS)=
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In further considerations knowledge of the fundamental function derivatives and
their combinations representing the internal forces will be necessary. Differentiating
the fundamental function '(2.1) and using the transfcrming formulae describing the
derivatives in the arbitrary direction o:

* * * .
W =W cosa+W  sina,
e * 2 * . 3 * . 2
W =W xxcos’a+W ,, sin2a+W",, sin?a,
* * 1 * % s
W ,,=W,xycos2oc+—2—(W’yy——W,x,,)sm 2,
2.2) sant—
. * .
W saa=W " €08 S0+ W sin 20 cos a+ W, sin « cos o« +
+ Wy cos asin o+ W, sin 20 sin o+ W, sind «,

* —T* 3D * : * 3
w o e =W xxx SIN° @ COS 00— W ., sin 20 cos a+ W ,,, cos® a.+
e

* 3.3 %* . . o 2 .
W ey sin®a+ W, sin2asina+ W', cos? asin «,

as well as the relations linking the internal forces with displacement:

(P:=W:’
M:=—D(W*aa +v W* n n )’
7 ,¢+7a+—2—
(2.3) T,=-D(-vyW* _,
.¢1+—5—
Q:=—‘D (W*aaa'*'W* n 1:)’
: ,aa»+—2-a+7
V:=—-D [Wfaua'l'(z—v) 3 n n ] ’
,au+-5--z+—2—

the displacements and the internal forces for an infinite plate loaded with a single
force may be described by the following formulae:

1
(24) W* (xT, yT9 Xs» }'s)= W* (TS)=W*=—1—E;[_I—)_Zln zz,

1
(2.5) ¢:=W(l+ln z) (x cos . +y sin &),

1 2
26 M;= —g{(l +v) (1 +1In z)+—z~[(x cos o+ sin o) +

+v (x sin a— y cos @)?]},

1—v
(2.7) T,=— o [2xy cos 2a +(p2 —x?) sin 2a],

1

@28 o= =5 (kcosatysing),




620

(2.9)

where

(2.10)

A. BARYLA

1 2xA 2x? 2y?
¥i= = 3= ) xdi+\1= yA;, +|1— xA3+

4nz o oz

A, =cos? o.+(2—v) sin? x cos o,
1

A2=75in 2a cos o +(2—v) (sin? a—2cos? &) sin a,

A3=—é—sin 2 sin o +(2—v) (cos? a—2sin® &) cos &,

A, =sin® ¢ +(2—v) cos? asin a,

X=Xp—Xs, Y=YVr—Ys, 2=X*+y?, z#0.

After appropriate differentiation of the formulae (2.4)-(2.10) with respect to varia-
bles xs, ys, the displacements and internal forces for the infinite nlate at the point
T (xr, yr) caused by a simple moment acting at the point S (xs, ys) in the direction g
were obtained. They are given below:

@2.11)

(2.12)

(2.13)

(2.14)

(2.15)

1
W yr Xs y)=W. 5 (T)=W =~ 7D (141n z) (x cos B+
+y sin f),

{ ) ;
R s [1 +In 2) (cos « cos B+sin asin f)+
2 . .
+7(x cos o+ sin &) (x cos f+y sin B)],

1 2
M:'(‘”=T7z—z_ {(1 +v) (x cos B+y sin ﬁ)——z— [(x cos & +y sin a)* +

+v (y cos o.—x sin «)?] (x cos f+y sin f)+2 (x+cos o +y sin a)x
x(cos o cos f+sin o sin f)+2v (x sin a—y cos a)x

x(sin o cos f—cos a sin )},

1—-v |1
T:,(n)= e {-Z~ (x cos B+y sin B) [2xy cos 20 +(p? — x?) sin 2a] +
+(x sin 20.—y cos 2a) cos f— (x cos 2e +y sin 2e) sin ﬂ} ;
* e 1 . a 2 .
Q0= —— (cos o cos f+sin a sin f) +? (x cos &+y sin o) x

x(x cos f+y sin /3)],
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1 [ e B 1R gy
@16) Vi< (

e e S —3),41 cos,b’+(~——z——— > —3)A4sinﬁ+ :

2 4x? . 8x? y?
+—Z-xy 3 % Ay cos B+A; sin ] +|{1— T X

2

. ) (A.,, cos f+A3 sin /3)],

z

2
(A3 cos f+A, sin ﬁ)+—z— xy(3 o

where A4,, A,, As, A, are expressed by the formulae (2.10), z#0. The formulae
(2.4)~(2.9) and (2.11)~(2.16) hold for the entire surface of the plate except for the
attachement point of the acting force. At this point, if z=0, undefined values would
be obtained since the z value is in the denominator. The limits of these relations may
be calculated for z—0. The fundamental function and its first-order derivatives will
assume then finite values. The internal forces expressed by higher order derivatives
of the fundamental function will approach infinity. In further considerations the
fundamental function and its derivatives will appear in the kernels of the integral
equations. Instead of determining the displacement and internal force values at the
point of attachment of the concentrated loading, the generalized simple force
was substituted by the equivalent, uniformly distributed loading along a sector
of length 4. The values of displacements and internal forces caused by this loading
<

/\

0001220481210 -

T/
7
s 7

Y
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were calculated at the mid-point of this sector. In most cases the obtained values
of displacements and internal forces at the point of attachment of the concentrated
loading do not depend on the position of this point. In order to simplify the calcula-
tions, it was assumed that the generalized concentrated force is attached at the origin
of the coordinates. This force was replaced by the equivalent loading uniformly
distributed along the sector |4B|=4 having coordinates of the ends: 4 (—4/2, 0),
B (42, 0), as was shown in Fig. 1. With a loading so attached, the values of displace-
ments and internal forces were determined at the origin of the coordinates.
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In the case of the plate loaded with a force, the deflection may be determined
form the following relationship:

4

2
(2.17) w* (0,0,0, 0);% lim f W* (0, s, ys, 0) dxs.
YOt 5y
2
To determine the rotation angle of the deflection surface as well as the internal
forces, the function W should be appropriately substituted by one of the following
functions: ¢,, ¢, M,, M, T,, Q,, Qs V. V, After integration one obtains

2.1 *(0,0,0, 0)=W*= : A2(11A2 1)
@8} A0 0e D f6xD 6.4 4% 3
(2.19) 9,=0,
(2.20) 0:=0,
2.21 M= : [1 1+v)1 Az]
221 My —v—(+v)n4,
2.22 M= : [1 1+v)1 Az]
(2.22) . &5 —-v+(+v)n4,
(2.23) T:=0,
2.24 il
(2.24) Q.= ¥,
(2.25) =0,
(2.26) Vi=7F .
bs n +‘2A:
(2.27) Vi=0.

In the case when instead of W, the functions W, ), @usmys Psscnyr Musnys Mssnys Tscmys
Qusinys Qssqmys Varinys Visr(my are used respectively, one may determine the displacements
and internal forces at the origin of the coordinates, which were caused by the moment
uniformly distributed along the sector |4B|=4. They may be expressed by the
following equations:

(2.28) W'w=0,
(2.29) * o= : (1 d 1)
' BR8P R 1o
(2.30) q):’ e 0,
. 1
(2.31) Mn’-(")= i—,
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% g v
(2.32) Merii =it
(2.33) Trw=0;

S e
(2.34) Qw= "
(2.35) Q! =0,

e 1
(2.36) v g
(2.37) Vi w=0.

In Eqgs. (2.24), (2.26), (2,31) and (2.32) the left- and right-hand limits differ by their
signs. The upper sign applies to the right-hand limit. In further considerations
only the right-hand one will be used since during subsequent integration the normal
axis will be towards the interior of the plate.

3. DESCRIPTION OF THE METHOD

In Fig. 2 the static scheme of a plate of arbitrary shape with the boundary / (Q)
is shown. The elastic supports can be distributed in the inner region of the plate
along the lines /(F). It was assumed that the arbitrary homogeneous boundary
conditions and arbitrary loading of the plate, p (S), would be used. The differential
equation of the problem is as follows:

3.1 DAAW (x, y)=p (x ).

To determine displacements and internal forces for the plate shown in Fig. 2, the
following reasoning has been carried out: from an infinite plate, sych as that shown
also in Fig. 2, the region Q enclosed by lines / (Q) was mentally singled out. Along

FiG. 2.
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these lines a force ¢ (Q) and a moment g (Q) acting perpendicularly to these lines
were distributed. Inside the region Q, along the lines / (F) the force f(F) was also
distributed. An arbitrary loading p (S) onto this infinite plate was also applied. By
applying the principle of superposition, a deflection of the plate under the given
loading may be described as follows:

(3.2 W(T)=w°(T)+ fq(Q) W*(T, Q) dl (Q) +
1(Q

+ [8(Q) Wy (T.Q) dI @)+ [ f(F) W* (T, F)dl (F),
1@ 1(F)
where
WO (T)= f p(S) W* (T, S)dQ (S).
Q(s)

One may choose a system of generalized forces ¢ (Q), g (Q), f (F), such that together
with p (S) it would satisfy arbitrary, already assumed support conditions along the
lines /(Q), I (F). Furthermore, depending on the support conditions at the points
Q or F, the following relationships, shown in Table 1, should be satisfied:

Table 1
a
A | Wigi: 0, MQI=0
30_* wQl= o , %10 =0
QQG__ ¥(@I=0, Q@ =0
g M, Q)0 , V.IQI= 0
E A :
—ﬁ(-—“-' W (F) =-KIF} » fIF)

These conditions may be expressed by the following integral equations:

33) W @= [q@)W*@Q.0)d©Q)+ [ g@) W (@ 0)d@)+

1@ 1@")
+ [ f(F) W*(Q, F)dl (F)=0,
1(F)
G4 R @+ [a@) QOVdE@)+ [ £(2) 0w (@ 0)dQ)+
1@) 1@

+ [ f(F) gy (Q, F)dl (F)=0,

1 (F)

G5 M@+ [q@)M©Q.0)dQ)+ [g@)M) (@ 0)dQ)+

1) 1(@Q")

+ [ f(F) M; (@, F) dl (F)=0,

1(F)
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36 V° (Q)+l( J 4@ Vi (©0.0) dl(Q')+l( J)g(Q’) Vi (@, 0)dl(Q)+
o ({)f(F) vy (Q, F)dl (F)=0,
G0 .0 (Q)'+l( Qf )q(Q’) 0; (00" dl @+ ({ )g(Q’) 0} (0. 0)dl @)+
ki ({)f(F) 0, (0,0 dl(@)=0,
g To ({ K ©W* (5.0 d@+ ([) )g Q) W' (FQ) dI (Q) +

+ [ f@E) W*(F, F)dl(F)y=—~k(F)+f(F).
1(E")

By using Egs. (3.3)~(3.8) one can formulate a set of Fredholm’s integral equations
of the first and second kind which express the cupport conditions for an arbitrary
plate, e.g. such as that shown in Fig. 2. After the functions ¢ (@), g (@), f(F) have
been found, the deflection of the plate may be determined from Eq. (3.2). This
formula gives the deflection of an infinite plate loaded with forces p (S), ¢ (Q),
2(0), f(F). Within the area Q, the solution for an infinite plate is exactly the same
as for the plate shown in Fig. 2. The solution for a region other than Q will not
be considered here. The internal forces may be determined by appropriate differen-
tiation of the deflection function, see Eq. (3.2), and by using a suitable combination
of its derivatives.

Table 2
A x X. .= B
if 1512, .., NB 1212, NB L NS o
Q, wiaQ)al@;) W 1Q,Q,1alQ) WQ,F JallF ) - we (@
= J J = = J 4
A M;(Q,Q)altQ) Mnye (@,Q;)8L@) | MG F 1 aLIF) ol M: 1@
“lq(oJ)
df w'Q,q;1al@Q;)) W), 108)aLIQ) | WG FIaLlF) W' Q)
= ¥.ag) aliq) o 00)al1Q) | ¥ 10 FlaliF) v @
|f » ™ - s
o - ¥, 10,Q)allq)) friny lQQ18LQ) | P 1QFaLIF) %J v,
d; @0l @) O% . 10,004lG) | G} @ F1aLIF) = gl Q:1Q
if RE[eh]
i 5 s
- A M} (@, 0)al"Q) My, @,Q)el) | M (Q,F) aL(F) M 1@
Vi@ Q)al @) Vi (Q.0)alig)} v 1Q FlalL(F) v Q)
lf |:J = k.‘ oW(Fl,Fj)Aqu
FLsl WHRQ alia) | W IRQAli) | ) W E
Ki ‘ “ iz WIEF)aLIf)

X =

8 <5
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Unfortunately, it is not possible to find the analytical solution for this set of
integral equations—it may be found using approximate methods only, e.g. by
the colocation method. The problem can be reduced, therefore, to solving a set
of inhomogeneous linear algebraic equations. The procedure for calculating these
coefficients is shown in Table 2.

The vector [Xq (Q)), g (Q)), f(F)]*, where i=1, 2, ..., NB, and j=1, 2, ..., NS,
is the sought solution of the algebraic equations. This expresses the discrete ful-
fillment of the support conditions. The displacements and the internal forces for
the plate shown in Fig. 2 may be as follows:

B9 WwWD=w° (T)+§q(Qi) W*(T,0) 41(Q) +

+§g Q) Wi (T. Q) AI(Qi)+i§ fE) W (T, F) Al (F),
(3.10) . (D)=¢3(T) +§¢I(Q.-) 9z (T, Q) 41(Q) +

+§jg Q) oy (T, Q) 41 (QaHéjf(Fl) M; (T, F) 41 (F),

G1)  M(T)=M; (T)+Z q(Q) M (T, Q) A1(Q) +

i=1

NB NS
+ X' g(Q) M3y, (T.Q) 41(Q)+ D) f(F) M (T, F) 41 (F),

(.12) T, (N)=T,; (T)+Z q(Q) T, (T, Q) 41(Q) +

+ ) 8(0) Thyy (T,Q) 41(@)+ D) f(F) T (T, Fy) 41 (F),

NB

(.13)  Q.(N)=02(N)+ D) 4(Q) Q; (T, Q) 41 (@) +
+ X' 2(0) Oy (T, Q) 41(Q)+ D f(F) Q5 (T, F) 41 (Fy,

G149 V. (D=7, (T)+2 q(Q) V; (T, Q) 41(Q) +

NB NS
+ 37 8(Q) Vi (T, ) 4@+ D) f(F) VI (T, F) AI(F),
i=1 i=1
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where, for example,
NP
M3 (T)= D) p(S) M; (T, S) 42(S)).
i=1
In some simpler examples of the loading scheme, the displacements and the inter-
nal forces caused by the loading p (S) may be replaced by the particular integral of
the differential equation for the plate: DAAW (x, y)=p (x, y). If the plate is uni-
formly loaded over its entire surface, the displacements and internal forces will
be as follows:

P
315) W)= WO (xryn) =g (7 +r1)’,s

V4 }
(3.16) @2 (D)= 16D (x% +y%) (xg cos a+yrsina),

317 MX(1)=- —]% [(3xZ +y2) (cos? a+v sin? o) +

+2 (1-v) Xp yr sin 20 +(x7 +3y7) (sin® a+v cos? a)],

1=v) {1
P(8 : [E (2 —x2) sin 2a + Xy yr cOS 2a],

(3.18) T°(T)= -

319 Q°(1N)= —% (x cos a+ yr sin‘a),

p(5-v)

320 V(D)= - [xT cos® o+ ypsind® o+ -;— (xrsin o + yz cos &) sin 2«] -
In the case when the number of terms of the particular sums in Egs. (3.9)-(3.14)
approaches infinity, the solution becomes the exact one. It has already been mention-
ed that the accurate analytical solution of this problem is not possible so far, thus
one has to assume the finite number of points satisfying the support conditions.
Hence one obtains a finite number of terms for the particular sums in Egs. (3.9)-
(3.14). However, the greater the number of points satisfying the support conditions,
the more accurate the solution of the problem.

The approximate solution of the set of integral equations leads to a replacement
of generalized forces ¢ (Q), g (Q), f(F) distributed along lines /(Q) and /(F) by
the equivalent forces g (Q,), g (Q)), f (F;), where i=1, 2, ..., NB, and j=1, 2, ..., NB,
which are uniformly distributed along the sectors /(Q,) and I(F;). According to
the Saint-Vennant principle, such a weakenig of support conditions will cause the
most pronounced inaccuracies to appear along the support lines /(Q) and [ (F).
These inaccuracies will rapidly disappear at a distance greater than max [47(Q)),
1 (F;)] from the support lines / (Q) and I (F).
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4. EXAMPLES

The computer program in the Algol 1900 programming language that can be
run on the computers of an Odra 1300 series has been developed. This program
allows for the calculation of the displacements and internal forces in a plate of
arbitrary shape and support conditions under the arbitrary static loading. The
program was tested for a great number of exemplary plates. The results obtained
subsequently compared with solution$ from the literature that were arrived at with
different methods. Very good agreement of our results with those known from the
literature was obtained —the relative errors were in the range from 0 to 19, and
for more complicated static schemes less than 4 9.

Of course, the accuracy of the solution depends on the number of points assumed
for which the support conditions should be fulfilled. At the most, 60 support points
were assumed in the examples. Using the standard operational memory of an Odra

£

: Data:
EEE;:IID oo E=2x10""N/m?
o h=002m
. (o B 25 2
h l : v=02
%%m‘ 5(04,0) X Ist scheme  p=10000N/m?
e IInd scheme ~ P=10000N
-1 0 04 1 Xx[m]
w ﬁ 1 I k y:O
N B
s 10 & I

x[m]
y0

' M, [kNm/m]

Fig. 3.
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1325 computer with a capacity of 64 K bytes, it is possible to satisfy the support
conditions at ca. 240 points. It would enhance the accuracy of the solution, but
would inconveniently extend the calculating time.

Some examples of calculations for plates with various static schemes are pre-
sented below.

4.1. Analysis of solution accuracy and computing time depending on the number
of points satisfying the boundary conditions

Figure 3 shows the plots of the deflection and the bending moment for a circular
plate rigidly supported at its boundary and loaded with a concentrated force and

(7ot
20 ;
10 !
|
L I
L ”
L g I\
I
-1 1
15l
B | l‘
Lok { | €=e(NB) My(1,0)
i PRLE 4 84 )
-4
-3
-z
|
-1 I
faasl
9 ! L)l 1. L f { 1 L ! 1 L X oo |
2 46,4870 122~ 18 20 22 24 26 28 30 32 NB
L1 './;,4‘ S
Wi [ N\ e=(NB) My(-1,0)
.__3 /
40~-4
-5
60+ -6
-7 |
1\ \e=€(NB) W(04,0)
80 + -8 |
e
I \g=g(NB) W(0,0)
100 +-10 } o
—~20 ;
120 +--30:... -
S
wo+-s50 |
1

tlsec] ¥

FiG. 4.
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uniformly distributed loading. The plate satisfies the boundary conditions at 24
points, and the presented accuracy of the solution is bettere than 0,01%,. Figure 4
shows tha relationship between the relative errors for the deflection and moment
values at selected points as well as the computing time, and the number of points
satisfying the boundary conditions, for a circular plate loaded with a concentrated
force (Fig. 3). It can be seen that the solution rapidly approaches the accurate one,
but the computing time increases considerably with an increasing number of points
satifsying the boundary conditions.

4.2. Analysis of solution accuracy depending on the position of analytical point
on the plate

1 s e s g e
,*.; -
= h 3 )’
. | :
4o ]
! a x[m]
P e ~
Data: 5 § = §
axaxh=1mx1mx0.01m o £ &
£=21x10"N/m?. v=03 oy he g e ;
s - °$r« S 'SR &F =
' 15 H // =
: 0 P !
No. of points | Denotations \ My 30 X My v F
satisfying b e 7l
fhe boundary T ‘45 oy /
conditions S M[N /] /
8 | e ay[N/m] s g B’ %1
B P ¥ XY
16 ———— 300 - et %
SRS sl Tee //‘V\" ; — 03
32 200 (-~ g 1 E
S - wid ; 2 9
= | fr
|

Fic. 5.

Figure 5 shows the results of calculations for a square plate freely supported at
its boundary and uniformly loaded. Plots of the deflection, the bending moments,
and the shearing force for the plates satisfying the boundary conditions at 8, 16, 32,
and 60 points are shown. The solution satisfying the boundary conditions at 60
points was found to agree very well with the accurate solution. It can be seen that
the errors of the solution obtained decrease rapidly as the analytical points are

being chosen farther in from the plate boundary, which is in agreement with the
Saint-Vennant principle.
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4.3. Plate with discontinuous boundary conditions

Figure 6 shows the bending moments in a rectangular plate with discontinuous
boundary conditions under two different loadings. The solid lines illustrate the
bending moments determined only at the points exactly satisfying the boundary
conditions, and the deshed line is drawn also by points where the largest errors
appear, i.e. at mid-points betweea the points satisfying the boundary conditions.
The obtained solutions (solid lines in Fig. 6) were compared with those reported
by Nowacki [3, 9]. The differences between these two solutions were found to be
less than 49,. This may confirm the usefulness of the presented method for solv-
ing plates with discontinuous boundary conditions.
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4.4. Bridge plate

In Fig. 7 plots of the deflection and the moments for a dead-loaded bridge plate,
additionally loaded with a standard K-80 crawler [10], are shown.
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5. CONCLUSIONS

1. The method presented for the calculation of arbitrary plates has been verified
for a great number of examples. This method allows one to obtain the correct results
for plates with various static schemes.

2. The application of the particular integral W=r?Inr?/16zD of the differen-
tial equation DAAW=4 (0)/r as the kernel of the set of Fredholm’s integral equations
is a new element of the method presented here. It makes it possible to eliminate
the influence of the plate’s shape, boundary conditions, and loading on the method
of formulation of the set of integral equations of this problem. Hence it is possible
to formulate the algorithm of the solution for an arbitrary plate.
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3. The analytical solution for an arbitrary plate cannot be found. In order to
find the approximate solution for the set of integral equations, e.g. by the colocation
method, one has to discretize only the plate boundary, and not the entire region
of the plate as is usually done in the method of finite elements, or finite differences.
The presented solution satisfies the differential equation of the problem inside the
inner region of the plate which is difficult to attain by other approximate methods.
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STRESZCZENIE

METODA OBLICZANIA PRZEMIESZCZEN I SI. WEWNETRZNYCH W PLYTACH
DOWOLNEGO KSZTALTU

Przedstawiono metodg obliczania przemieszczen i sit wewnetrznych w plytach dowolnego
ksztattu, o dowolnych warunkach podparcia, dowolnie obcigzonych. Problem rozwiazano na
podstawie zatozeni klasycznej, liniowe;j teorii plyt idealnie sprezystych, wyrazajac warunki podpar-
cia przez uktad réwnan catkowych Fredholma I i II rodzaju. Jako jadra réwnan catkowych przy-
jeto catke szczegélng W=r? Inr?/16xD roéwnania rozniczkowego plyty DAAW (r)=46 (0)/r, zwana
dalej funkcja podstawowa. Takie przyjecie rozwiazania podstawowego eliminuje wplyw ksztattu
plyty, warunkéw brzegowych i obciazenia na sposéb formutowania réownan catkowych problemu.
Przedstawiono kilka przyktadow obliczers wykonanych wedhug opracowanego programu na komputer.

PeszmomMme

METO/l PACYETA TIEPEMEIEHU W BHYTPEHHUX CUJI
B TNIUTAX TIPOM3BOJIBHOW ®OPMBI

Tlpescrapiies MeToZ pacyeTa NEPEMENIEHHI i BHYTPEHHIX CHJI B IUTHTAX IPOA3BONBHOM (Bop-
Mbl, C IIPOU3BOJIGHBIMH YCIIOBUSIMHM ONMPAHUS U IPOU3BONILHO HArpyxeHHbiX. IIpobiiema pemeHa
Ha OCHOBE IPEIIIOIOKEHUN KIACCHYESCKOM, JIMHSHHON TeOpHH HOCaIbHO YIPYTHX IUTAT, BhIpaXkas
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YCIOBHS ONMPAHAS Yepe3 CHCTEMY MHTETPajibHbIX YpaBHEHUH ®pearonema I u I pomos. Kax
SO MHTETPaJIbHBIX YPABHEHWH NPHHAT YaCTHbIA MHTErpas W#*=r2Inr?/16nD nudbeperumais-
moro ypasHemms mwutel DAAW (r)=0 (0)/r, Ha3piBaeMblii najnee (yHIAMEHTATbHOH (yHKIHEH.
Taxoe npuHATHE (GYHIAMEHTAILHOTO pPeIleHHs MCKIIOYAeT BIASHUE (GOPMBI IUIMTHI, IPAHATHBIX
YCIIOBHIL M HATPY3KH Ha crIoco6 (hOPMyIMPOBKY HHTErPaIbHbIX ypaBHeHuii npobnemsr. Tpezcrasie-
HO HECKOJIbKO IIPHMEpPOB DPacCueTOB NPOBEJEHHBIX COIJIACHO pa3paboTaHHOli mporpamme LIS
OBLIM.
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