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In rock slopes or underground excavations, due to the structure of the cutting surface,
rock typically exhibits strong random properties, such as the structure of the surface geometry
and mechanical parameters showed strong randomness, resulting in a high degree of rock mass
uncertainty of the previous studies. In this paper, a new approach to estimating probability of
failure of a rock block is proposed. Based on the previous studies investigating the potential
failure of the block theory model, the block failure calculation took into account the geomet-
rically formed probability, failure mode, and mechanical failure probability. As an engineering
application of the presented model, the analysis of block failure, observed in a copper mine site
in Australia, was performed. The Monte-Carlo simulation method was used for the evaluation
where plane roughness, friction angle, and cohesion were considered as random variables. The
results of this example show that the model can be used as a basis for evaluating the reliability
of the block.
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1. Introduction

Rock mass is a complex geological body; its formation has undergone a long
geological age. In the whole geological history of the formation and existence
of rock mass, rock mass has undergone different loading and unloading stress
history which was accompanied by different stages of chemical and physical
weathering, which produces discontinuous planes such as joint, fold, fault, and
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foliation, due to the impact of different geological processes and tectonic forces.
Cut by these discontinuous planes, rock mass is divided into several structural
bodies at different sizes. In addition, the random distribution characteristics of
a geometric feature of a structural plane such as occurrence, interval, and trace
length, as well as the mechanical strength such as bonding force and friction
coefficient both have impact on the stability of the resulting rock block with the
random distribution feature.
On the basis of the geometric topology theory, the key block theory [4, 10]

judges the block cut by the structural and excavation planes by the way of the
“limited theorem” and “movable theorem”. These theories can determine the
block formed by cutting of the structural plane with different occurrences, also
the location and the form of characteristics of the instability mode of the block.
Furthermore, it can perform a mechanical stability analysis, calculate the safety
coefficient of block stability, and provide the probability of block instability.
Therefore, it can be applied extensively.
In the analysis of the reliability of rock mass excavation stability, if the

random distribution characteristics of the geometric features and mechanical
strength of the structural plane are concurrently taken into consideration, to-
gether with the failure mode of the block, then the stability of the block can
be presented more accurately, and the result from the probability of failure cal-
culation is more realistically significant. For this issue, a statistical method is
adopted for the analysis and calculation.

2. Model evaluating for probability of failure

of overall rock block

As for the research on the probability of failure of a rock block, there is
currently a rich literature; however, the definition for the probability of failure
is ambiguous and diverse. Quek and Leung [9] held that the probability of
failure is expressed as

(2.1) Pf =
NF

NT
.

In the formula, NF is the number of cycles of the block failure mentioned
in Monte Carlo method, namely, the number of Fs < 1, where Fs is the factor
of safety; NT is the number of total cycles used to analyse the block stability.
However, Feng and Lajtai [1] suppose that, NT can have two meanings, that
is, it can be the total number of cycles, or the total number of the geometrically
unstable blocks. According to the above definitions, the probability of failure of
a block will be varied. Lajtai and Carter [2] defined NT as the total number
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of geometrically unstable blocks. Feng and Lajtai [1] adopted the above two
definitions in their calculations, but did not draw a distinction between them.
Numerous researchers always suppose that, the total probability of failure

of a rock block is the product of the geometrically unstable probability and
mechanical unstable probability. The concept of the product stemmed from the
definition given to the system probability by Marek and Savely [5]. The con-
cept describes that the total probability of failure of a system is the product of
the probability of failure of all individuals in the system. Using this approach,
Glynn [3] also calculated the probability of failure, expressed as

(2.2) Pf =
∑

P [A]P [B].

In the formula, P [A] is the geometric probability of failure of the block, P [B]
is the mechanical probability of failure of the block, namely, the load exerted
on the block outweighs the resistance. Park [6, 7] also used this method in
analyzing the probability of stability of a slope. Meanwhile, Chinese scholars
[12, 13] also employed the same definition in calculating the total probability of
failure of the block.
However, in the calculation of the total probability of failure of the block in

all the literature, the change in the block failure mode is not considered. After
the block has been geometrically formed, because the dip angle is random in
mechanical calculation, a change in the dip angle may affect the failure mode
of the blocks, for example, with a change from a slide along a single plane to
a slide along a double plane, the formula calculating the reliability also needs
appropriate adjustment.
To give more exact results, the model calculating the probability of failure

of the block is presented here once again. The total probability of failure of
the block is the product of the geometrically formed probability, failure mode
probability, and mechanical probability of failure of the block. It is noted that
the total probability of failure of the block is a conditional probability, that
is, only if the prerequisite condition is satisfied the latter can occur. This is
expressed as

(2.3) Pt = Pa × Pm × Pf .

In the formula, Pa is the formed block; Pm is failure mode/formed block; Pf

is block mechanical failure/failure mode.
Described by the mathematical language, the following expression is ob-

tained:

(2.4) Pt =
3∑

m=1

Pa × Pm|a × Pf |m.
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In the formula, Pt is the total probability of failure of the block, Pa is the
geometrically formed probability, Pm|a is the probability of failure in a certain
mode after the block has been formed. As mentioned in the above block theory,
there are three block failure modes, namely, direct drop, slide along single plane,
and slide along double plane. Pf |m is the mechanical probability of failure of the
block after its failure mode has been finalised. The previous expression can be
rewritten as

(2.5) Pt = Pa × P1|a × Pf |1 + Pa × P2|a × Pf |2 + Pa × P3|a × Pf |3.

In the formula, the subscripts 1, 2, and 3 are different failure modes of the
block, namely, direct drop, slide along single plane, and slide along double plane.

3. Probabilistic method to determine the overall rock block

failure based on statistical theory

In this paper, Monte Carlo is used mainly for calculation of the total prob-
ability of failure. The calculation process consists of three parts. The first two
steps can be proceeded simultaneously. The first part is to calculate the proba-
bility of block formation in the geometric space. The second part is to calculate
the probability of mass failure in a certain mode after the block has been formed.
The third part is to calculate the mechanical probability of failure after the block
has been formed and the failure mode has been finalised.
Detailed calculations are as follows:
1) The first step of simulation is to select the block. For this issue, FracSim3D

software developed for three-dimensional fracture network simulation by Prof.
Xu [11], Adelaide University, Australia is applied. Fisher distribution is adopted
in the software for the orientation (including inclination and dip angle) of the
structural plane. Owing to fewer parameters and better simulation results, the
distribution is applied extensively [8]. The probability density function of Fisher
distribution is

(3.1) f(θ) =
K sin θeK cos θ

eK − e−K
.

In the formula, θ is the true mean value of the dip angle of the structural
plane, and 0 < θ < π/2. K is Fisher constant, reflecting the concentration of
the data, refer to the literature [8]. To facilitate the calculation, Eq. (3.1) is
simplified, and the following approximate cumulative probability distribution
function is attained:

(3.2) P (θ) ≈ 1− eK(cos θ−1).
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In order to simulate Fisher distribution, parameter RU − U(0, 1) is intro-
duced. The random number is generated by the linear congruent method. More-
over, parameter θ is replaced by RF [6]. Hence, by solving the inverse function of
Eq. (3.2), the following random number generation formula that complies with
Fisher distribution is obtained:

(3.3) RF = arccos(
ln(1−RU )

K
+ 1).

Through the sampling method and from the above formula, numerous ran-
dom numbers that comply with Fisher distribution are generated. Then, by con-
version, the expected data of inclination and dip angle of the structural plane
can be attained.
2) In the second step, for a given limited tetrahedron, the changes in the

inclination and dip angle of its three groups of the structural plane significantly
affect its volume and the area of slide planes. We select certain sample data of
inclination and dip angle obeying Fisher distribution, and substituted them into
the calculation program of the block theory. Using the vector method, the values
of volume and slide plane area responsive to the inclination and dip angle can
be worked out. Also, from this calculation, the number of the samples among
the total samples that form the block can be obtained, namely, the number of
directly dropping blocks, blocks sliding along the single structural plane, and
blocks sliding along the double structural plane. Therefore, the resulting block
formation probability is

(3.4) PfG =
NG

NTG
.

In the formula, NG is the number of cycles of block formation; NTG is the
total number of cycles, namely, the number of samples generating the inclination
and dip angle. Only when the block is geometrically unstable, calculation for
the mechanical probability of failure of the block should be made, which can be
considered as calculation of the conditional probability.
3) In the third step, as mentioned previously, the inclination and dip angle

obey Fisher distribution. The random number of the block volume and slide
plane area in this distribution can be derived through calculation. These sample
data are depicted in a frequency distribution histogram. When data-fitting is
done, the approximate distribution obeyed by the block volume and slide plane
area can be obtained, and then its probability density function and character-
istic parameters such as mean value and variance can also be attained. In this
process, fitting the test of distribution is required so that the coincidence of the
established probability model with the given sample data as well as whether the
sample data comply with the established model is verified and the most suitable
probability density function is chosen.
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4) The fourth step is to generate the random number of the distribution
function of the volume and the area. Same as for the random number generating
Fisher distribution, the linear congruent method is employed to generate the
random number for other types of distribution. Namely, a uniform distribution
obeying [0, 1] is generated, then through resolving the inverse function, the
random number obeying the expected distribution is generated.
5) In the fifth step, after the limit state equation has been established, we

substituted the mechanical parameters of the structural plane into it (internal
friction angle ϕ and cohesion force c), solving the mechanical probability of fail-
ure and reliability indicator. Thus, the mechanical probability of failure of the
block can be obtained, namely

(3.5) PfM =
NM

NTM
.

6) In the last step, the total probability of failure was calculated, expressed as

(3.6) Pf = PfG × PfM =
NG

NTG
×

NM

NTM
.

4. Engineering example

Kanmantoo Copper Mine is located 100 km east to Adelaide, Australia.
In the range of the mine area, uniaxial compressive strength is 12.4 MPa to
115.9 MPa, the size of which is related mainly to the direction of schistosity.
Two major shear structures are identified in the pit currently excavated. One
structure is situated on the south slope, with the dip angle of 80◦ and azimuth
of 100◦; the other is situated on the west slope, with the dip angle of 30◦ and
azimuth of 40◦. From the results of the structural plane group analysis, it is
deemed that the mine area has three determined joint sets. The average volume
weight of rock is 2.91 t/m3. The geometric and mechanical properties of each
set are shown in Table 1.
The statistical data in Table 1 into FracSim3D software are then substituted,

and excavation is begun. A block located on the roadway roof is chosen for
analysing. The block analysis program shows that the block tends to slide singly
along the structural plane set 2.
From the random number generation method of Fisher distribution, 10,000

groups of data of the dip angle and inclination of three sets of the structural
plane as listed in Table 1 are generated separately. From the data of these 10,000
groups, 1100 groups are drawn at random separately to serve as sample data.
Then, these sample data are substituted in the finalised block analysis program.
After 1100 cycles, the probability of a generated block (including a total block,



PROBABILISTIC METHOD TO DETERMINE. . . 111

Table 1. Statistics of geometric and mechanical properties of the structural plane.

Structural
plane set
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1 13.12 49.3 93.3

2 23.35 84.4 95.2 29.4 3.6 Normal 15 2 Normal

3 24.19 67.4 19.1

directly dropping block, block sliding along single plane, and block sliding along
double plane) has reached a balance, with fluctuations in a small range only.
It is supposed that this method can effectively evaluate the block formation
probability, as shown in Fig. 1. Therefore, statistics are made with respect to the
formed block (the number of samples is 1000). 302 blocks have been generated,

Fig. 1. Test of the sample number.
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in which 110 blocks slide along the single plane. The statistical results are shown
in Table 2.

Table 2. Statistics of block formation.

Block failure type Number of blocks formed Probability of blocks formed

Direct drop 24 0.024

Slide along single plane 110 0.11

Slide along double plane 168 0.168

Total blocks 302 0.302

Through the statistical analysis, the volume distribution scheme and slide
plane area distribution scheme of the blocks sliding along the single plane have
been chosen, namely, both the volume and slide plane area obey the normal
distribution. As for mechanical parameters fi and Ci, the normal distribution is
taken as their distribution scheme. In addition, the reliability analysis model has
been previously established for the blocks sliding along the single plane, namely,
the relationship between the random variables W (V ), Ai, fi, Ci and the limit
state function. From the calculations it is found that the mechanical probability
of failure of blocks is 0.35. It can be seen from Table 2 that the probability of
blocks formed sliding along the single plane is PfM = 0.11. Hence, according to
Eq. (3.6), the total probability of failure of a block sliding along single plane is
Pf = 0.0385.

5. Conclusion

The model evaluating the probability of failure of a block is redefined, and
the formula calculating the total probability of failure of a block is presented.
The total probability of failure is the product of the probability of a block formed
geometrically, the probability of a formed block based on a given failure mode
and the mechanical probability of failure of the block.
The dip angle, inclination, cohesion force, and friction coefficient of the struc-

tural plane are taken as random variables to solve the distribution of block vol-
ume, the slide plane area, and the random changing variables of the edge dip
angle. A more precise and reliable value of the probability of failure of a block
is obtained.
The case study results indicate that the probability of occurrence of a block

sliding along a single plane is 11.12%, and the total probability of failure is
3.85%, which surpasses the risk level (1%) allowed for general rock engineering.
The findings can be taken as the grounds for evaluating the reliability of blocks
of such type.
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