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ANALYSIS OF THE PLASTIC FLOW PROBLEM FOR
HARDENING MATERIALS UNDER PLANE STRAIN
CONDITIONS

M. PIWNIK (WARSZAWA)

Plastic yielding problem is considered in the case of material obeying the kinematic and
isotropic hardening rules, rotations of the principal stress directions (PSD) being taken into
account. The solution is obtained by means of the slip-line theory under plane strain conditions.
Plastic nonhomogeneity and anisotropy are described by the Huber-Mises condition and the
hardening rules. An example is given, concerning the problem of bending of a strip weakened
by two semi-circular notches; the result is compared with the case of rigid-perfectly plastic

material.

1. INTRODUCTION

The plastic flow problem for hardening materials is described by
a system of equations in which the stresses and kinematic fields are
coupled by the strain-hardening laws. The attempts to decouple the
system can be divided into two groups. In the first group one of the
fields, e.g. velocity, is determined by an experiment, and the other one
(stress field) can be found numerically [1,2,3,4].

In the second group the solutions are determined by means of nu-
merical methods [5,6,7,8,9,10,11,18] and, in particular, by the iterative
method [5,7,8,18]. The general idea of the method consists in replacing
the hardening problem by a sequence of nonhomogeneous or anisotropic,
perfectly plastic problems which may be solved by the method of char-
acteristics.

In this paper solutions concerning the hardening material are ob-
tained from the plane strain, slip-line theory by means of the numeri-
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cal method proposed in [7,8,18]. The monotonic and cyclic bending of
double-notched bar is presented as an example of the solutions proposed,
and compared with that concerning perfectly plastic material.

2. BASIC EQUATIONS

Basic equations describing the plastic flow problem for a hardening
material with a kinematic hypothesis under plane strain conditions are

£

do;;=au (6] -ocjy)

Fig. 1. The Ziegler law of strain-hardening.

Oz,z + Tzyy = Oa
Tayz + Oyy =0,

(2°1) = %{(‘72 —oy) —(ay - av)}2 + (Tzy — azv)2 = Kg =0,
V;,z 3 ‘/y,y T Ov
2(Tzy — Olzy) s Vey+ Vie

(0: —az) — (0y — o) Ve — Viy'
representing, respectively, the equations of equilibrium, the Huber-Mises
yield condition and the equations of flow (plastic incompressibility and
the flow rule associated with the Huber-Mises yield condition). Compo-
nents of the symmetric tensor « satisfy the set of equations describing
evolution of the yield condition.

(22) Qzt = l.‘(az e az) + 2azywzy _~ az,zV; e az,yV;n
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(2[;:201);'(] ayt = [0y — ) + 2054wy — 0y Ve — oy, Vy,
Qzyt = fi(Tay — Qzy) + (Qz — Qy)Wzy = Qzy Ve — QzyyVy,

where 1
(2.3) Wzy = E(Vv,z = Vz»ﬂ)

is the component of the rotation tensor of PSD, and

24 = 575 {(0% = o) = (05 = ) Vi + (V2 = Vie) iy = @}

where K,,c are material constants o},0,

210y, Ty and V', V! are the stress
and velocity components at point P (Fig.1). (o o
The set of equations (2.2) follows from the Jaumann derivative of
tensor a [13], ;
v g
(2.5) Qi = Qij — ClipWpj — Cjplpi,

where

1
W = §(Vl,k - Vi),

(2.6)
G&ij = iz + Vi,
and the Ziegler rule [12] (Fig.1),
v .
(2.7) aij = fu(0; — oj).

Equations (2.1) are most easily handled after reformulation bj? in-
troducing new stresses p and ¢ defined by

1
o = p+ Kycos2p + 5(03 [ a!l)v
I
(2.8) Oy = P Kycos2p — E(Gz = ay),
Tzy = Kysin2¢ + Olzy.

Expressions (2.8) satisfy the Huber - Mises yield condition. After
substituting (2.8) into (2.1) we have

P, —2Kysin(2¢) - ¢ + 2Kocos(2¢)py = —(Az + azyy),
- Py+2K, cos(2¢) - ¢z + 2Kysin(2¢) - oy = Ay — Qzy 2,
(29) V;:,z =+ V;,,y = 07
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V;y+vz
ReLl) SRR LT T ) ;

Vz,z"Vv,y ( <p)
where

1
A= E(a, - ay).

Assuming that a given instant of time distributions of components
Qz, 0y, zy are known (integration of (2.2) along the trajectory of a par-
ticle), Eqgs.(2.9) are transformed into characteristic coordinates in a sim-
ilar way as in the case of a perfectly plastic material [15]. The equations
of the characteristic are

= tan(yp — 45°), along B lines,

»z

(2.10)
y: = tan(p+45°), along 7 lines.

The stress equations along the characteristic directions are

s dp — 2Kodp = (Qzyz — Ay)dy — (A z + 0zyy)dz, along S,
2.11
dp+2Kydp = (A + Qzyy)de — (Ay + 0gyz)dy, along 7.

The velocity equations along the characteristics are

dV, + dV,tan(p — 45°) =0 along g,
(2.12)
dV, + dVytan(p + 45°) =0 along 7.

The velocity and characteristics equations for a perfectly plastic and
isotropic hardening material [8,15,18] are identical. Stress equations for
a perfectly plastic material along the characteristics are [15]

dp — 2Ksdp =0 along p,
(2.13)
dp+2Kodp =0 along 7

and for the isotropic hardening material [8,14]

dp — 2Kodp = K zdy — K ydz, along p,
(2.14)
dp + 2Kydp = K ydx — K ;dy, along 1.

Here K is a function of the Odqvist parameter ¢;

2%
(2.15) € = \J;/(de,-jde.-j)m
0
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in the form

(216) K =Ky+c:¢.

3. NUMERICAL METHOD

In the present paper the numerical procedure consists in decompo-
sing the deformation process of a hardening material into a number of
stages for each material particle. In each stage we calculate:

1. Stresses from Eqgs.(2.10),(2.11) - for a kinematic hypothesis of
strain-hardening and (2.10),(2.14)-for the isotropic hypothesis.

2. Flow velocities from Eq.(2.12) for each case.

3. Components of the strain rate tensor by means of numencal dxf-
ferentiation of the flow velocity components.

4. Displacement of an each particle from a plastic region assuming
that in sufficiently small time increments the flow velocities are constant.

5. Distribution of the yield point from Eq.(2.16) - for an isotropic
hypothesis of strain-hardening.

6. Components of tensor o from Egs.(2.2) by means of the iterative
method [18]. This method is based on the known distribution of com-
ponents a;; in previous stage of calculations (e.g. in the first stage on
distribution o;; for the perfectly-plastic material)

Generally, in this procedure the plastic flow problem for the harden
material is formulated as a succession of incremental problems for an
anisotropic or nonhomogeneous perfectly plastic material. In the first
stage of calculations stress and velocity fields are derived from Egs. (2.10),
(2.11), (2.12); they are the equations of a perfectly plastic material. Fur-
ther steps of calculation are based on the numerical procedure presented
above. 33

4. RESULTS OF NUMERICAL CALCULATIONS TS

Let us consider the results of calculations for the case of monotomc
and cyclic bending of a double-notched bar under plane stra,ln condx-
tions.
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Calculations have been performed for ¢ = 197MPa, K, = 115-5 MPa
and w, = 5- 1073571, The slip-line solution satisfying such conditions
was given by GREEN [16]. It is shown in Fig.2c for the case when the
radius of the notch is 0.85 times the width of the bar at its minimum
cross-section.
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Fig. 2 . The monotonic (a) and cyclic bending (b) of the notched bar (c).

The network of characteristics and the hodograph of velocity after
the first step of calculations are shown in Figs.3a,b in the part of plas-
tic region denoted AO,NBO; in Fig.2c. Solutions of Eq.(2.1) for the
harden material along the selected characteristic CD and the trajectory
of particle Q are presented in Fig.3a. The results are interesting both
from the engineering and physical points of view.

Distributions of the Odqvist parameter ¢; [15], mean stress p and
angle ¢ after the first and last stage of calculations are shown in Fig.4a-
c along the characteristic CD for the case of monotonic bending of a
double-notched bar. Values of the Odqvist parameter ¢; increase, while
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Fig. 4 . Distributions of the Odqvist parameter ¢;, the angle ¢ between 7, and z axis and
the mean stress p along the intersection CD. (O - the first stage, 1,2,3,4 - the last stage), O -
the unhardening material (the first stage), 1 - the unhardening material (the last stage), 2 -
the kinematic hypothesis neglecting the rotation of principal stress directions, 3 - the
kinematic hypothesis including one, 4 - the isotropic hypothesis of strain hardening.
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Fig. 5 . Trajectories of the particle Q and the distribution €;, p, ¢ along them. 1 - the
unhardening material, 2 - the kinematic hypothesis neglecting the rotation of principal stress
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Fig. 6 . Trajectories of the Huber-von Mises surface center. O’ - neglecting the rotation of
principal stress directions, O” - including one.
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Fig. 7 . Huber-von Mises surfaces and a final state of stress into the particle Q. - an
unhardening material, 2 - the kinematic hypothesis neglecting the rotation of principal stress
directions, & - the kinematic hypothesis including one, 4 - the isotropic hypothesis of strain

T
hardening; AQ = [w;, dt
0

p and ¢ decrease along CD. Distributions of the Odqvist parameter
in that case indicate the direction of plastic deformation in the plastic
zone.

Decrease of the mean stress and angle ¢ agrees with intuition, hence
the plastic deformation has the direction of decreasing value of p. Calcu-
lations made for the isotropic hypothesis of strain-hardening show that
values of p are greater by more than 20% than those corresponding to
the perfectly plastic material, and less by 5% than those corresponding
to the kinematic hypothesis including rotation of the PSD; variations
of the Odqvist parameter ¢; do not exceed 1% for each of the cases
considered.

Detailed analysis of the problem was made along a trajectory of
particle @, under monotonic bendig of a double-notched bar. Trajectory
of particle Q and distributions of the Odqvist parameter €, [15], mean
stress p and angle ¢ along the trajectory are shown in Figs.5a-d. Particle
Q is assumed to lie in the part of the yield zone where the gradient of
the Odqvist parameter is the largest (cf. Fig.4a).

Values of ¢;,p and ¢ increase along the trajectory of particle Q; it
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follows from the calculations made for the case of kinematic hardening
with rotations (PSD) that values of the mean stress p in the particle are
greater by ca. 13% than those in the case of purely kinematic hardening
(without rotation PSD), while the differences in the Odqvist parameter
do not exceed 0.5%. Fig.6 shows the trajectories of the center of the
Huber-Mises yield surface in the (0},03) - stress space along the tra-
jectory of particle @, according to the hardening rule (2.2), with and
without taking into account the rotation of PSD. Range of that center
at the final position of @ in the latter case (w,, # 0) exceeds by 7%
that corresponding to the former one (w,, = 0). Values of principal
stresses 01,09 in the particle rotations angle of PSD, A#, at the final
position of the particle are shown in Fig.7. Values of 01, 09 due to kine-
matic hardening and PSD rotations are greater by at least 10% than
those resulting from purely kinematic hardening (without rotations of
the PSD). Hence, the effect of the history of rotation of PSD upon the
stress state in the material cannot be disregarded.

The numerical method presented here may also be applied to the
analysis of plastic anisotropy and nonhomogeneity in the case of cyclic
bending of notched bars. In Figs.8a-c are shown the distributions of
residual nonhomogeneities AK and microstresses Aay, Aag [17] (re-
ferred to the material constant K,) in each bending cycle, when angle o
of bending of the specimen changes its sign, Fig.8a. The corresponding
values decrease with increasing numbers of bending cycles, what may
suggest a process of gradual stabilization of the plastic anisotropy and
nonhomogeneity as a result of cyclic bending. It follows from Fig.8 that
the influence of rotation of PSD on the microstresses is small.

5. CONCLUSIONS

1. Problem of plastic yielding of materials with hardening may be
replaced by a sequence of plastic flows of nonhomogeneous or anisotropic
rigid - perfectly plastic materials.

2. Rotation of PSD exerts significant effects on the stress field, kine-
matics of the plastic yielding process remaining practically unaffected.

3. For the assumed model of material (linear relationship between
the effective stresses and strains), the effects of the strain-hardening rule
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are significant in the case of the stress fields, and negligible as far as the
kinematical fields are concerned.
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STRESZCZENIE

ANALIZA PLASTYCZNEGO PLYNIECIA MATERIALU ZE WZMOCNIENIEM W
WARUNKACH PLASKIEGO STANU ODKSZTALCENIA

W pracy przedstawiono rozwiazanie zagadnienia plastycznego plyniecia materialu ze wzmo-
cnieniem dla kinematycznej i izotropowej hipotezy wzmocnienia z uwzglednieniem obrotu kie-
runkéw gléwnych tensora naprezenia (PSD). Rozwiazanie uzyskano na gruncie teorii linii posli-
zgu w plaskim stanie odksztalcenia. Plastyczna niejednorodnoéé i anizotropia opisane zostaly
przez warunek Hubera-Misesa i prawa wzmocnienia. Jako przyklad przedstawiono rozwiazanie
dla zginanego pasma oslabionego dwoma pétkolistymi karbami w plaskim stanie odksztalcenia,
ktére poréwnano z rozwiazaniem dla materialu sztywno-idealnie plastycznego.

PesomMe

AHAJIN3 INIACTUYECKOI'O TEYEHUSI MATEPHAJIA C YIIPOYHEHUEM B
YCJIOBUSAX IJIOCKOT'O AE®OPMALIMOHHOI'O COCTOSHUSA

B pa6oTe npe/icTaBleHO PellleHHe 3aaYH NJIACTHYECKOro TeYeHHs MaTepHaa c ynpoy-
HeHeM [ KHHeMAaTHYeCKOM H H30TPONOBOH FHNOTE3bl YNPOYHEHHH C YYeTOM BpalmleHHS
r/IaBHEIX HalpaBleHEY TeH30pa HanpskeHuil. Pemenue monyyeHo Ha rpyHTe TEOPHH JH-
HHEH CKOJNbXEHHS B IJIOCKOM fedopManmoRHOM cocTosHHE. IlnacTmyeckas HEOIXHOPOCTH
¥ aHH30TPONHSA ONHCaHKl ycaoBHeM I'yGepa-Museca B 3aKOHaAMH YNPOYHEHHS. Kak npm-
Mep NOKa3aHO pelleHHe [/s H3rEGaeMoll MONOCH, ocnaGneHHON NBYMS NONYKPYTOBHIME
HaJIpe3aMH, B INIOCKOM JeOpPMallHOHHOM COCTOSHHH, KOTOpPOe CPABHEHO C PeleHHEM /A
’KeCTKOro-H/eaJbHO MIACTHYECKOI'0 MaTEepHaJa.
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