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This paper investigates the effect of spin slip condition on the flow of a couple stress fluid
between two concentric spheres. The spherical particles rotate about the z-axis with different
angular velocities Ω1 and Ω2 under the assumption of low Reynolds numbers. To solve the
governing equations, we impose tangential slip and couple stress spin slip boundary conditions
at the surfaces of the particle and the cavity wall. The nondimensional torque is computed,
tabulated and graphically analyzed for various values of the separation parameter, couple stress
viscosity, angular velocity ratio, tangential slip, and couple stress spin slip parameters. Our
findings indicate that torque value increases with higher values of the couple stress viscosity
parameter, separation parameter, tangential slip parameter, and spin slip parameter. However,
the torque decreases as the angular velocity ratio increases. Furthermore, our results agree with
previously published findings for cases with vanishing tangential slip and spin slip at the particle
and cavity surfaces.
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Nomenclature

A, B, C, D – arbitrary constants,
a, b – radius of spheres (inner and outer),
dij – deformation rate,

er, eθ, eφ – unit vectors along r, θ, φ directions,
I1/2(·), K1/2(·) – modified Bessel functions of the first and second kind of order 1/2,
I3/2(·), K3/2(·) – modified Bessel functions of the first and second kind of order 3/2,

mrθ – couple stress,
p – pressure of fluid,

(r, θφ) – spherical coordinate system,

https://et.ippt.pan.pl/index.php/et
https://orcid.org/0009-0003-9865-7392
https://orcid.org/0000-0002-1819-3651
mailto:madaspra.maths@nitrr.ac.in
mailto:kpm973@gmail.com


2 S. Nishad, K.P. Madasu

Tc/T0 – normalized torque,
trφ – shear stress,
v – velocity vector.

Greek symbols
δij – Kronecker delta,
εijk – alternating tensor,
η, η′ – couple stress viscosity coefficients,

µ – dynamic viscosity coefficient,
ξ1, ξ3 – tangential slip parameters,
ξ2, ξ4 – couple stress spin slip parameters,

Ω – angular velocity ratio,
ω – vorticity vector,

Ω1, Ω2 – angular velocity of spheres (inner and outer).

1. Introduction

A non-Newtonian fluid differs from Newton’s law of viscosity. One example
of non-Newtonian fluid is the couple stress fluid, which illustrates the effects of
couple stresses and body couples in a fluid medium. Examples of couple stress
fluids include biological fluids, lubricants, liquid crystals, and fuels [1].
Numerous studies have explored fluid flow problems under no-slip condi-

tions; however, this condition is not always applicable. As a result, many re-
searchers have investigated conditions involving slip effects to analyze various
fluid flow problems. Navier [2] introduced a slip boundary condition that estab-
lishes a proportional relationship between the tangential velocity of the fluid and
the shear rate at the solid surface. Ellahi [3] studied fundamental flow prob-
lems involving Oldroyd eight-constant fluid. Ashmawy [4] examined micropolar
fluid flow between parallel plates, considering both slip and spin slip conditions.
Devakar et al. [5] investigated Couette-Poiseuille flow of couple stress fluids
between parallel plates under velocity slip conditions. Recently, Nishad and
Madasu [9] have explored the effect of the spin slip parameter on fundamental
flow problems of couple stress fluids between two parallel plates.
Rotational motion and torque are interrelated concepts that are crucial in

physics, engineering, and technology. They have broad applications and play
an important role in understanding the rotational movement of objects. Ro-
tational motion is essential in designing gears, turbines, engines, and other
rotating machinery. It also helps explain natural spinning phenomena, such as
spinning planets, turning wheels, and orbiting satellites. Chang and Keh [6]
examined the creeping rotational motion of spheroidal particles under tangen-
tial slip conditions in a viscous fluid. Ashmawy [7] explored the slow, steady
rotation of axisymmetric slip particle in an incompressible viscous fluid at low
Reynolds numbers. Prasad et al. [8] provided exact solutions for axisymmetric
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viscous fluid flow problems involving two concentric spheres rotating at differ-
ent angular velocities while considering slip conditions at both the particle and
container surfaces. Iyenger and Srinivasacharya [10] derived expressions for
velocity and microrotation vectors in their study of an approximately spherical
object’s rotational motion in a micropolar fluid. El-Sapa et al. [11] investi-
gated the quasi-steady motion of two spheres spinning along their common axis
of symmetry in a viscous fluid.
Ashmawy [12] discussed the rotational movement of two spheres of arbi-

trary position in a couple stress fluids using the boundary collocation approach.
In Newtonian fluids, Chou and Keh [13] investigated the rotational motion of
spherical particle inside a spherical cavity with slip surfaces. Ashmawy [14]
discussed the unsteady flow of a couple stress fluid past a rotating sphere.
Al-Hanaya et al. [15] studied the steady motion of a couple stress fluid be-
tween two non-concentric rotating spherical surfaces with different angular ve-
locities around a common diameter. El-Sapa and Almoneef [16] used spin
slip and slip conditions to study the translational motion of a solid sphere in
a couple stress fluid. El-Sapa and Al-Hanaya [17] discussed the influence of
permeability and slippage on the torque of rotating concentric spheres filled
with Brinkman couple stress fluid. Al-Hanaya and El-Sapa [18] analyzed the
rotational motion of a couple stress fluid between two concentric spheres under
the effects of a magnetic field and slippage. Sarkar and Madasu [19] investi-
gated the effect of the tangential slip parameter on couple stress fluid flow past
a cylindrical particle embedded in a porous medium. Recently, Alotaibi and
El-Sapa [20] studied magnetohydrodynamic (MHD) couple stress fluid flow be-
tween two concentric spheres, calculating and analyzing the drag force on the
inner sphere under tangential slip [19, 20] and couple stress spin conditions [20].
To the best of our knowledge, no published results exist on the rotational mo-
tion of a couple stress fluid between two concentric spheres with tangential and
couple stress spin slip boundary conditions.
In this research, we investigate the flow of a couple stress fluid that moves

steadily and slowly between two concentric spherical boundaries. The spheri-
cal surfaces rotate about the z-axis at different angular velocities under veloc-
ity slip and spin slip conditions. This study extends the work of Al-Hanaya
et al. [15] to the concentric case, incorporating tangential and couple stress slip
at the boundaries of both the inner and outer spheres.

2. Mathematical model

Consider the rotational motion of a spherical solid particle in a concentric
spherical cavity. The fluid flow is assumed to be steady, incompressible, and ax-
isymmetric. Assume the inner and outer spheres have radii a and b, respectively,



4 S. Nishad, K.P. Madasu

with the gap is filled with a couple stress fluid. The inner and outer spheres ro-
tate about the z-axis with different angular velocities Ω1 and Ω2, respectively.

Fig. 1. Physical representation of the problem.

The governing equations of couple stress fluid flow with zero body couple
and body force are given as [1]:

∇ · v = 0,(2.1)

∇p+ µ∇2v + η∇4v = 0,(2.2)

where v, p, µ, and η denote the fluid velocity, fluid pressure, viscosity coefficient
of a classical fluid, and the first viscosity coefficient of a couple stress fluid,
respectively. When η = 0, Eq. (2.2) reduces to the Stokes equation.
The constitutive relationships for a couple stress fluid are given by [1]:

tij = −pδij + 2µdij −
1

2
εijkmsk,s,(2.3)

mij = mδij + 4η′ωj,i + 4ηωi,j ,(2.4)

where m, δij , dij , εijk represent the trace of the couple stress tensor, Kronecker
delta, deformation rate tensor, and alternating tensor, respectively. The param-
eter η denotes the second viscosity coefficient of the couple stress fluid. The
viscosity coefficients satisfy the following inequalities:

µ ≥ 0; η ≥ 0; η ≥ η′ ≥ −η.

The vorticity vector is defined as [1]:

(2.5) ω =
1

2
× v.
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The Kronecker delta, deformation rate tensor, and alternating tensor are
defined as [1]:

δij =

{
1, for i = j,
0, for i ̸= j,

dij =
1

2
(vi,j + vj,i),

εijk =


1, for ε123, ε231, ε312,

−1, for ε132, ε321, ε213,

0, otherwise.

Let (r, θ, φ) be the spherical coordinate system with the origin O as the
center of the particle. Hence, the velocity and vorticity vectors are given as:

(2.6) v = vφ(r, θ)eφ, ω = ωr(r, θ)er + ωθ(r, θ)eθ,

where er, eθ and eφ are unit vectors along r, θ, and φ-directions, respectively.

2.1. Boundary conditions

In order to obtain the solution to the problem, we apply the appropriate
boundary conditions, which are significant both physically and mathematically.
For the present problem, we consider two types of boundary conditions: (i) tan-
gential slip boundary conditions [2, 8, 9], which ensure a proportional rela-
tionship between shear stress and velocity, and (ii) mixed-type boundary con-
ditions [1, 9, 15], which define the relationship between vorticity components
and couple stress. In this study, we apply these boundary conditions, which are
practical and realistic for slip surfaces:

λ1(vφ − rΩ1 sin θ) = trφ, mrθ = λ2ωθ at r = a,(2.7)

−λ3(vφ − rΩ2 sin θ) = trφ, mrθ = −λ4ωθ at r = b.(2.8)

where λi are the tangential slip parameters, and λj are the spin slip parameters
at particle and cavity wall surfaces, respectively, where i = 1, 3 and j = 2, 4.
Introducing non-dimensional variables: r = ar̃, vφ = Ω1a ṽφ, ∇ = ∇̃/a in

Eq. (2.2) and the boundary conditions, Eqs. (2.7) and (2.8), and dropping the
tildes, we obtain:

(2.9) E2(E2 − l2) (r sin θ vφ) = 0,

ξ1(vφ − r sin θ) = trφ, mrθ = ξ2ωθ at r = 1,(2.10)

−ξ3(vφ − rΩsin θ) = trφ, mrθ = −ξ4ωθ at r = 1/λ,(2.11)
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where

E2 =
∂2

∂r2
− cotθ

r2
∂

∂θ
+

1

r2
∂2

∂θ2

is the Stokesian operator, and

l2 =
a2µ

η
, ξ1 =

λ1a

µ
, ξ2 =

λ2

µa
, ξ3 =

λ3a

µ
, ξ4 =

λ4

µa
,

Ω =
Ω2

Ω1
, λ =

a

b
.

The solution to Eq. (2.9) is given by:

(2.12) vφ(r, θ) =
(
Ar−2 +Br + Cr−1/2I3/2(lr) +Dr−1/2K3/2(lr)

)
sin θ,

where A, B, C, D are arbitrary constants, and I3/2(lr) and K3/2(lr) denote
the modified Bessel functions of the first and second kind of order 3/2, respec-
tively. Note that the detail solution of Eq. (2.9) is provided in the Appendix
section.
The vorticity components, couple stress and shear rate are given by:

(2.13) ωr =
(
Ar−3 +B + Cr−3/2I3/2(lr) +Dr−3/2K3/2(lr)

)
cos θ,

(2.14) ωθ =
1

2

[
Ar−3 − 2B + Cr−3/2

(
I3/2(lr)− lrI1/2(lr)

)
+ Dr−3/2

(
K3/2(lr) + lrK1/2(lr)

)]
sin θ,

(2.15) mrθ = −2

[
3(η + η′)Ar−4

+ Cr−5/2
((

l2r2η + 3(η + η′)
)
I3/2(lr)− lr(η + η′)I1/2(lr)

)
+ Dr−5/2

((
l2r2η + 3(η + η′)

)
K3/2(lr) + lr(η + η′)K1/2(lr)

)]
sin θ,

(2.16) trφ = −1

2

{
A
[
6µr−3 + 12(η + η′)r−5

]
+ C

[
I3/2(lr)

(
6µr2 + 12(η + η′)− 2l2r2η

)
− lrI1/2(lr)

(
2µr2 − 2l2r2η + 4(η + η′)

)]
r−7/2

+ D
[
K3/2(lr)

(
6µr2 + 12(η + η′)− 2l2r2η

)
+ lrK1/2(lr)

(
2µr2 − 2l2r2η + 4(η + η′)

)]
r−7/2

}
sin θ.
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Using Eqs. (2.12)–(2.16), the boundary conditions (2.10) and (2.11) reduce to:

(2.17) A
[
ξ1 + 3a−2 + 6(χ1 + χ2)

]
+ ξ1B

+ C

{
I3/2(l)

[
ξ1 + 3a−2 + 6(χ1 + χ2)− 1

]
− lI1/2(l)

[
a−2 + 2(χ1 + χ2)− 1

]}
+D

{
K3/2(l)

[
ξ1 + 3a−2 + 6(χ1 + χ2)− 1

]
+ lK1/2(l)

[
a−2 + 2(χ1 + χ2)− 1

]}
− ξ1 = 0,

(2.18) A
[
3a−2λ3 + 6(χ1 + χ2)λ

5 − ξ3λ
2
]
− ξ3Bλ−1

+ Cλ7/2
{
I3/2(lλ

−1)
[
3a−2λ−2 + 6(χ1 + χ2)− λ−2 − ξ3λ

−3
]

− lλ−1I1/2(lλ
−1)

[
a−2λ−2 − λ−2 + 2(χ1 + χ2)

]}
+ Dλ7/2

{
K3/2(lλ

−1)
[
3a−2λ−2 + 6(χ1 + χ2)−λ−2 − ξ3λ

−3
]

+ lλ−1K1/2(lλ
−1)

[
a−2λ−2 − λ−2 + 2(χ1 + χ2)

]}
+ ξ3Ωλ

−1 = 0,

(2.19) A
[
ξ2 + 12(χ1 + χ2)

]
− 2Bξ2

+ C

{
I3/2(l)

[
ξ2 + 4 + 12(χ1 + χ2)

]
− I1/2(l)l

[
ξ2 + 4(χ1 + χ2)

]}
+ D

{
K3/2(l)

[
ξ2 + 4 + 12(χ1 + χ2)

]
+K1/2(l)l

[
ξ2 + 4(χ1 + χ2)

]}
= 0,

(2.20) A
[
12(χ1 + χ2)λ

4 − ξ4λ
3
]
+ 2Bξ4

+ Cλ5/2

{
I3/2(lλ

−1)
[
4λ−2 + 12(χ1 + χ2)− ξ4λ

−1
]

− I1/2(lλ
−1)l

[
4(χ1 + χ2)λ

−1 − ξ4λ
−2

]}
+ Dλ5/2

{
K3/2(lλ

−1)
[
4λ−2 + 12(χ1 + χ2)− ξ4λ

−1
]

+ K1/2(lλ
−1)l

[
4(χ1 + χ2)λ

−1 − ξ4λ
−2

]}
= 0,

where χ1 = η
µa2
, χ2 = η′

µa2
, l = 1√

χ
1
. Expressions for A, B, C, and D are long,

and, therefore, we have not included them in the paper.
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The corresponding torque on the axisymmetric object is calculated as fol-
lows [14]:

(2.21) Tc = 2π µa3
π�

0

trφ|r=1 dθ.

The resultant torque is given as:

(2.22) Tc = −4

3
π µa3

{
A
[
6 + 12(χ1 + χ2)

]
+ C

[
I3/2(l) (4 + 12(χ1 + χ2))− 4lI1/2(l)(χ1 + χ2)

]
+ D

[
K3/2(l) (4 + 12(χ1 + χ2)) + 4lK1/2(l)(χ1 + χ2)

]}
.

When a spherical particle with radius a rotates in an incompressible viscous fluid
in an unbounded region with an angular velocity Ω1, the torque experienced is:

(2.23) T0 = −8π µa3Ω1.

3. Results and discussion

In this work, we have obtained the normalized torque T (= Tc/T0) exerted
by a couple stress fluid on the rotational motion of two spherical particles, using
tangential and spin slip boundary conditions at the particle and cavity surfaces.
We present numerical results in Tables 1–5 and graphical results in Figs. 2–12.
The normalized torque T versus the separation parameter λ for different values
of the ratio of angular velocities Ω, the couple stress viscosity parameters χ1 and
χ2, velocity slip parameters ξ1 and ξ3, and spin slip parameters ξ2 and ξ4 are
shown.
Tables 1–5 display the values of the normalized torque acting on the inner

sphere for various values of the parameters λ, Ω, ξ1, ξ2, ξ3, ξ4, χ1, and χ2 = 0.
The findings show that the torque increases monotonically with an increase in
the radius ratio. The fact that a rise in χ1 also results in an increase in the torque
value is significant. When τ = −1, i.e., η′ = −η, the normalized torque exerted
by a consistent couple stress fluid [21] on the inner sphere is shown in Tables 4
and 5. Table 4 shows that as the separation parameter λ and tangential slip
parameters δ increase, T also increases. Table 5 presents the fact that T declines
with a decrease in the separation parameter λ and increases with an increase
in the angular velocity ratio Ω. If the couple stress coefficient χ1 is assumed
to be very small, our results are in good agreement with the case of vanishing
tangential slip and couple stress spin slip at the boundaries of the particle and
cavity.
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Table 1. The normalized torque on the inner sphere for different values of ξ1 = ξ3 = δ and λ
with Ω = 0, χ1 = 0.01, χ2 = 0.0, ξ2 = ξ4 = γ → 0.

λ
T

δ = 5 δ = 7 δ = 20 δ → ∞
0.1 0.63601 0.71385 0.89106 1.02824

0.3 0.64467 0.72550 0.91114 1.05640

0.5 0.67262 0.76653 0.99148 1.17711

0.7 0.72484 0.85688 1.21719 1.57252

0.8 0.75924 0.92983 1.46460 2.11970

0.9 0.79682 1.02978 1.96179 3.81943

0.99 0.82992 1.15099 3.09935 34.31210

0.999 0.83300 1.16509 3.30828 288.442

Table 2. The normalized torque on inner sphere for different values of γ and λ
with χ1 = 0.01, χ2 = 0.0, Ω = 0, δ → ∞.

λ
T

γ = 0
(vanishing couple stress)

γ = 0.1 γ = 0.2 γ → ∞

0.1 1.02855 1.03247 1.03523 1.05127

0.3 1.05673 1.06207 1.06584 1.08794

0.5 1.17755 1.19281 1.20385 1.27278

0.7 1.57343 1.65318 1.71551 2.22713

0.8 2.12156 2.36582 2.57095 4.94521

0.9 3.82648 5.12022 6.30573 33.5891

0.99 34.9953 197.439 358.214 31448.0

0.999 346.281 15404.7 27953.1 1.6595 · 105

Table 3. The normalized torque for various values of χ1 and λ when tangential
slip and couple stress spin slip vanishes at the particle and cavity surfaces, i.e.,

δ → ∞ and γ → 0, and Ω = 0.

λ
T

χ1 = 0.001 χ1 = 0.01 χ1 = 0.1 χ1 = 0.5

0.1 1.00392 1.02855 1.24342 2.06483

0.3 1.03081 1.05673 1.28367 2.16675

0.5 1.14653 1.17755 1.45006 2.56781

0.7 1.52762 1.57344 1.98572 3.78302

0.8 2.05718 2.12158 2.72680 5.40453

0.9 3.70500 3.82662 5.02800 10.3659

0.99 33.8121 35.0117 47.0060 100.294

0.999 335.986 347.937 467.352 996.021
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Table 4. Torque exerted by the consistent couple stress fluid (τ = −1)
for various values of λ and δ with Ω = −1.

δ
T

λ = 0.1 λ = 0.3 λ = 0.6 λ = 0.9

0.01 0.00664 0.00658 0.00587 0.00401

0.1 0.06451 0.06406 0.05767 0.04002

1 0.50009 0.50034 0.47929 0.38172

3 1.00047 1.00956 1.04518 1.03786

5 1.25075 1.26757 1.36826 1.58155

10 1.53964 1.56814 1.78121 2.60507

20 1.74065 1.77906 2.09778 3.85185

105 2.00144 2.05491 2.55070 7.36959

Table 5. Torque exerted by the consistent couple stress fluid (τ = −1)
for various values of Ω and λ with δ → ∞, γ = 0.001.

Ω
T

λ = 0.1 λ = 0.3 λ = 0.6 λ = 0.9

−3 4.00379 4.11114 5.10364 14.7966

−2 3.00279 3.08327 3.82756 11.0967

−1 2.00179 2.05540 2.55148 7.39674

0 1.00078 1.02753 1.27539 3.69679

0.1 0.90068 0.92474 1.14779 3.32679

0.3 0.70048 0.71917 0.89257 2.58680

0.5 0.50028 0.51360 0.63735 1.84681

1 −2.1713 · 10−4 −3.3457 · 10−4 −6.8669 · 10−4 −0.0031 · 10−4

3.1. Special cases
Case I: For the case where the tangential slip and couple stress spin slip

parameters vanish at the particle and cavity surfaces:
The behavior of normalized torque, as shown in Table 3, matches the results

of Al-Hanaya et al. [15].
Case II: We have obtained the consistent couple stress fluid case, where

the ratio of the first and second couple stress viscosity coefficients is −1, i.e.,
τ = −1, by solving the following system of linear Eqs. (3.1)–(3.4):

(3.1) A
[
ξ1 + 3a−2 + 6(1 + τ)

]
+ ξ1B

+ C

{
I3/2(l)

[
ξ1 + 3a−2 + 6(1 + τ)− 1

]
− lI1/2(l)

[
a−2 + 2(1 + τ)− 1

]}
+ D

{
K3/2(l)

[
ξ1 + 3a−2 + 6(1 + τ)− 1

]
+ lK1/2(l)

[
a−2 + 2(1 + τ)− 1

]}
− ξ1 = 0,
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(3.2) A
[
3a−2λ3 + 6(1 + τ)λ5 − ξ3λ

2
]
− ξ3Bλ−1

+ Cλ7/2

{
I3/2(lλ

−1)
[
3a−2λ−2 + 6(1 + τ)− λ−2 − ξ3λ

−3
]

− lλ−1I1/2(lλ
−1)

[
a−2λ−2 − λ−2 + 2(1 + τ)

]}
+ Dλ7/2

{
K3/2(lλ

−1)
[
3a−2λ−2 + 6(1 + τ)−λ−2 − ξ3λ

−3
]

+ lλ−1K1/2(lλ
−1)

[
a−2λ−2 − λ−2 + 2(1 + τ)

]}
+ ξ3Ωλ

−1 = 0,

(3.3) A [ξ2 + 12(1 + τ)]− 2Bξ2

+ C

{
I3/2(l)

[
ξ2 + 4 + 12(1 + τ)

]
− I1/2(l)l

[
ξ2 + 4(1 + τ)

]}
+ D

{
K3/2(l)

[
ξ2 + 4 + 12(1 + τ)

]
+K1/2(l)l

[
ξ2 + 4(1 + τ)

]}
= 0,

(3.4) A
[
12(1 + τ)λ4 − ξ4λ

3
]
+ 2Bξ4

+ Cλ5/2

{
I3/2(lλ

−1)
[
4λ−2 + 12(1 + τ)− ξ4λ

−1
]

− I1/2(lλ
−1)l

[
4(1 + τ)λ−1 − ξ4λ

−2
]}

+ Dλ5/2

{
K3/2(lλ

−1)
[
4λ−2 + 12(1 + τ)− ξ4λ

−1
]

+ K1/2(lλ
−1)l

[
4(1 + τ)λ−1 − ξ4λ

−2
]}

= 0.

Figures 2 and 3 show the variation of normalized torque versus the separa-
tion parameter λ for different values of first and second couple stress viscosity
(χ1, χ2). It is observed that the normalized torque increases gradually as the
separation parameter increases. It is also observed that the effect is more pro-
nounced for higher couple stress viscosity parameter.

Fig. 2. Variation of torque versus λ with χ2 = 0, Ω = 0, δ = 7, γ = 0.01.
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Fig. 3. Variation of torque versus λ with χ1 = 0.5, Ω = 0, δ = 20, and γ = 0.01.

In Fig. 4, it is observed that as the boundaries of both spheres come closer
to each other, the torque also increases. This effect is most significant for a low
angular velocity ratio. Figure 5 shows that the normalized torque is an increasing
function of both the separation parameter λ and the couple stress viscosity
parameter χ1.

Fig. 4. Variation of torque versus λ with χ2 = 0.1, χ1 = 0.5, δ = 20, and γ = 0.1.

Fig. 5. Variation of torque versus χ1 with χ2 = 0, Ω = 0, δ = 7, and γ = 0.1.
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Figures 6–8 depict the variation of torque versus the separation parame-
ter λ for different values of tangential slip parameters. it is observed that the
normalized torque increases with an increase in the value of the tangential slip
parameter. It is observed that normalized torque increases as the tangential

Fig. 6. Variation of torque versus λ with τ = −1, ξ3 = 7, χ1 = 0.1, Ω = −1, and δ = 0.1.

Fig. 7. Variation of torque versus λ with τ = −1, ξ1 = 7, Ω = −1, and γ = 0.1.

Fig. 8. Variation of torque versus λ with χ2 = 0.001, τ = −1, Ω = −1, and γ = 0.1.
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slip parameter rises, and the variation normalized torque is more significant
when the slip parameter is high.
In Figs. 9–11, it is observed that the value of the normalized torque increases

as the separation parameter rises. Furthermore, the torque shows high variation

Fig. 9. Variation of torque versus λ with τ = −1, ξ2 = 0.2, δ → ∞, and Ω = −1.

Fig. 10. Variation of torque versus λ with τ = −1, ξ4 = 0.2, δ → ∞, and Ω = −1.

Fig. 11. Variation of torque versus λ with τ = −1, δ → ∞, and Ω = −1.



Impact of spin slip conditions on the axisymmetric rotation. . . 15

for higher values of spin slip parameter, similar to the behavior observed in the
case of tangential slip parameter. Figure 12 shows that the normalized torque
increases with the separation parameter λ, and is higher when the inner and
outer spheres rotate in opposite directions (i.e., more negative Ω).

Fig. 12. Variation of torque versus λ with τ = −1, δ = 20 and γ = 0.1.

Similar trends for the properties of couple stress viscosity properties are
observed in the study of Al-Hanaya et al. [15].

4. Conclusions

The axisymmetric steady rotational motion of a couple stress fluid between
concentric spheres with slip boundary conditions has been examined. An ana-
lytical expression for the torque on the inner sphere has been derived. Based on
the data presented in the tables and graphs, the following observations can be
made from this study:
1) The effect of the couple stress viscosity parameters increases the normal-
ized torque acting on the inner sphere.

2) Both tangential slip and couple stress spin slip parameters lead to an
increase in the torque value.

3) It is found that the higher values of the angular velocity ratio Ω lead to
a decline in the normalized torque.
The limiting cases where δ → ∞ and γ → 0 have been derived for the present

problem. Notably, the limiting solutions show significant agreement with the
previous results of Al-Hanaya et al. [15] for no slip and no spin slip boundary
conditions. Future work could consider various problems, such as non-Newtonian
fluid flow between two approximate spheres and cylinder with slippage and spin
conditions.
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Appendix. Solution for the differential equation

The fourth order linear homogeneous partial differential equation is:

(A.1) E2(E2 − l2)(r sin θ vφ) = 0,

where

E2 =
∂2

∂r2
− cot θ

r2
∂

∂θ
+

1

r2
∂2

∂θ2

is the Stokesian operator.

(A.2) E2(E2 − l2)W = 0, where W = r sin θ vφ.

Let the solutions of E2W = 0, (E2 − l2)W = 0 be W1 and W2, respectively.
Thus, W = W1 + W2 is the solution of corresponding homogeneous equation
E2(E2 − l2)W = 0. Now, we discuss the solution of E2W1 = 0 as follows:

(A.3)
∂2W1

∂r2
− cot θ

r2
∂W1

∂θ
+

1

r2
∂2W1

∂θ2
= 0.

Assume the solution is of the form W1 = F (r)sin2θ. Then Eq. (A.3) redu-
ces to:

(A.4)
(

∂2

∂r2
− 2

r2

)
F (r) sin2 θ = 0,

(A.5) =⇒ r2F ′′(r)− 2F (r) = 0,

which is a second-order Cauchy–Euler differential equation, whose general solu-
tion is [22]:

F (r) =
A

r
+Br2,

⇒ W1 =

(
A

r
+Br2

)
sin2 θ.

Here, we discuss the solution of (E2 − l2)W2 = 0 as follows:

(A.6)
∂2W2

∂r2
− cot θ

r2
∂W2

∂θ
+

1

r2
∂2W2

∂θ2
− l2W2 = 0.

Assume the solution is of the form W2 = F (r) sin2 θ. Then, Eq. (A.6) redu-
ces to:

(A.7) r2
d2F
dr2

− (l2r2 + 2)F = 0.
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Let lr = t ⇒ r = t
l . Then:

F ′(r) = l
dF
dt

,

F ′′(r) = l2
d2F
dt2

.

Substituting F ′(r) and F ′′(r) into Eq. (A.7),we get:

(A.8) t2
d2F
dt2

− (t2 + 2)F = 0.

Let F =
√
tZ. Then:

dF
dt

=
1

2
t−1/2Z + t1/2

dZ
dt

,

d2F
dt2

= −1

4
t−3/2Z + t−1/2 dZ

dt
+ t1/2

d2Z
dt2

.

Substituting F and d
2F
dt2 into Eq. (A.8), we get:

t5/2
d2Z
dt2

+ t3/2
dZ
dt

−
(
t5/2 +

9

4
t1/2

)
Z = 0.

Dividing both sides by t1/2:

(A.9) ⇒ t2
d2Z
dt2

+ t
dZ
dt

−
(
t2 +

9

4

)
Z = 0.

Equation (A.9) represents the modified Bessel’s equation, so the solution is
of the form [10, 23–26]:

Z = C∗I3/2(t) +D∗K3/2(t),

F = C∗√tI3/2(t) +D∗√tK3/2(t).

Therefore,
F (r) = C

√
rI3/2(lr) +D

√
rK3/2(lr),

where C = C∗√l, D = D∗√l. Thus,W2 =
(
C
√
rI3/2(lr) +D

√
rK3/2(lr)

)
sin2 θ,

and by the principle of superposition,

W = W1 +W2 =

(
A

r
+Br2 + C

√
rI3/2(lr) +D

√
rK3/2(lr)

)
sin2 θ

is the solution of Eq. (A.2).

⇒ vφ(r, θ) =
(
Ar−2 +Br + Cr−1/2I3/2(lr) +Dr−1/2K3/2(lr)

)
sin θ

is the solution of the Eq. (A.1).



18 S. Nishad, K.P. Madasu

Acknowledgments

The first author, S. Nishad, is deeply thankful for the institute research
fellowship from the National Institute of Technology, Raipur.

Conflict of interest

The authors have no conflicts to disclose.

References

1. Stokes V.K., Theories of Fluids with Microstructure: An Introduction, Springer Science
& Business Media, 2012.

2. Navier C.L.M.H., Note on the laws of fluid motion [in French: Mémoire sur les lois du
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