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The vibrations of a string-mass system are considered. A heavy mass is suspended from
a string, and the system is subjected to axial rotation. The partial differential equation model-
ing the system’s dynamics is first derived. For uniform axial rotation, exact analytical solutions
are given. For harmonically fluctuating rotation speeds, an approximate solution is found using
the method of multiple scales to analyze the system’s principal parametric resonances. The
stability of the system is examined both analytically and numerically. The analytically de-
rived stability boundaries qualitatively match the behavior observed in numerical simulations.
With some transformations, the system can also be reduced to a standard Mathieu equation.
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1. Introduction

The vibrations of hanging strings have attracted the attention of many re-
searchers. Chains, strips, ropes and strings with negligible bending stiffness all
belong to the same class. The lower end of the string may be free or constrained
by an end condition or a tip mass, while the upper end may be fixed or sub-
jected to vibrations in lateral or vertical directions. If the lower end of the string
is free, the system’s dynamics can become extremely complex. A fundamental
study based on the dynamic equilibrium of an eccentrically rotating hanging
rope was conducted, in which the shape functions of the rope were analytically
calculated [1]. In that study, the rope was confined to a two-dimensional rotat-
ing space. It is noted that linear oscillations of freely hanging ropes introduce
a paradox if the lower end is not free, and this paradox can be resolved by in-
troducing slight bending stiffness [2]. Three-dimensional analysis of strings can
display more complex whirling-type motions. Both theoretical and experimental
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studies were reported on such behavior in [3]. Whirling modes of idealized inex-
tensible strings were also discussed in [4]. Additionally, vertical shaking applied
to a hanging chain has shown to induce complex dynamics leading to chaotic
motion [5]. Bifurcation diagrams and equilibrium shapes of strings were also
depicted [6].
Adding a heavy tip mass enhances the stability of the system. In a simplified

crane model, the vibrations of tethered mass-spring systems were considered [7].
A generalized approach was proposed, including the rotational moment of in-
ertia of the tip mass while neglecting the axial rotation of the cord [8]. The
critical rotation speeds of a hanging chain-mass system, which result in non-
trivial solutions were determined [9]. Additionally, the vibrations of a heavy
string-mass system were investigated when the top end was subjected to lateral
excitations [10]. Rather than employing a continuum model based on differen-
tial equations, a discrete analysis using difference equations was performed to
describe the dynamics of axially rotating chain-mass systems [11]. Furthermore,
for a system with both ends pinned and undergoing uniform axial rotation, the
resonances of heavy elastic cables were investigated [12].
In all the previous studies cited, the string is either stationary or undergoing

uniform axial rotation. In this study, in addition to analyzing the uniform axial
rotation of a string-mass system, variable rotation case is also considered. Specif-
ically, a harmonically varying angular speed about a mean speed is assumed
in the analysis. After deriving the mathematical model, exact analytical solu-
tions are given for uniform rotation speeds. For variable speeds, an approximate
analytical solution is obtained using the method of multiple scales to analyze
principal parametric resonances. For applications of this method to a wide range
of mathematical physics problems, see [13] and [14]. The stability boundaries
separating stable and unstable regions are calculated analytically. Numerical
simulations confirm the qualitative behavior of the approximate analytical so-
lutions. It is shown that the system can be reduced to a standard Mathieu
equation via a special time transformation, allowing the use of standard sta-
bility charts for the Mathieu equation. Since the axial rotations are centric,
the problem reduces to an eigenvalue-eigenfunction problem, where eigenvalues
represent natural frequencies and eigenfunctions correspond to vibration mode
shapes. However, if rotation is eccentric, the problem is no longer an eigenvalue-
eigenfunction problem, as this structure breakdown, allowing nontrivial solutions
at all rotation speeds. For a similar analysis of rotational motion in beams and
relevant discussions, see [15]. In a closely related study of hanging beams, vibra-
tions under variable rotation speeds were also analyzed, see [16]. Additionally,
drilling machines with a heavy tip mass and negligible flexural rigidity due to
high slenderness ratios may exhibit similar behavior, although a precise analysis
for such systems must account for flexural rigidity.
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2. Mathematical model

A string of length l and mass/length ρ is suspended from the top, with
a heavy tip mass M attached at the lower end, rotating at an angular speed Ω,
as shown in Fig. 1.

Fig. 1. Sketch of the problem.

To derive the equation of motion, the following assumptions are made: (1) The
vibrations are confined to a two-dimensional space rotating with the same an-
gular speed as the system. (2) The total mass of the string is small compared to
the tip mass, i.e., ρℓ ≪ M . (3) The tip mass is heavy and perfectly symmetric,
remaining on the rotation axis without any lateral displacement. The free-body
diagram of a small portion of the string with mass dm = ρdx∗ is given in Fig. 2.

Fig. 2. Free-body diagram of a differential element.

In accordance with the second assumption, the tension force can be assumed
constant and approximately equal to the weight of the tip mass. The equation
of motion in the lateral direction is:

(2.1) −T sin (θ(x∗)) + T sin (θ(x∗ + dx∗)) + dmΩ2y∗ = dm
∂2y∗

∂t∗2
,

where dm = ρdx∗. Expanding the sine function in a Taylor series:

(2.2) sin (θ(x∗ + dx∗)) ∼= sin (θ(x∗)) + cos (θ(x∗))
∂θ

∂x∗
dx∗.
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Substituting this into Eq. (2.1) and assuming cos (θ(x∗)) ∼= 1 for small angles,
we obtain, after simplification:

(2.3) T
∂θ

∂x∗
+ ρΩ2y∗ = ρ

∂2y∗

∂t∗2
.

Since tan θ ∼= θ = ∂y∗

∂x∗ and for T = Mg, the equation of motion simplifies to:

(2.4) Mg
∂2y∗

∂x∗2
+ ρΩ2y∗ = ρ

∂2y∗

∂t∗2
.

One set of initial and boundary conditions for the problem may be defined as
follows:

(2.5) y∗(0, t∗) = 0, y∗(ℓ, t∗) = 0, y∗(x∗, 0) = f(x∗),
∂y∗

∂t∗
(x∗, 0) = 0,

where the function f(x∗) satisfies the condition f(0) = f(ℓ) = 0. Equation (2.4)
has the same structure as a mathematical model describing the transverse vi-
brations of a string exhibiting negative stiffness. If, instead of the weight Mg,
the tension T is used, and instead of the term ρΩ2, the stiffness k is intro-
duced the equation takes the form of a system with negative stiffness. Negative
stiffness will definitely destabilize the motion, a phenomenon that also occurs
in our system, as will be demonstrated in the subsequent analysis.
It is better to express the equations in a non-dimensional form for com-

pactness and reduction of the physical parameters involved in the model. The
dimensionless spatial coordinates and time are defined to be

(2.6) x =
x∗

ℓ
, y =

y∗

ℓ
, t =

t∗

T
.

Inserting them into Eqs. (2.4) and (2.5), choosing

(2.7) T =

√
ρ

Mg
ℓ

the dimensionless system is

∂2y

∂x2
+ a2y =

∂2y

∂t2
,(2.8)

y(0, t) = 0, y(1, t) = 0, y(x, 0) = f(x),
∂y

∂t
(x, 0) = 0,(2.9)

where

(2.10) a2 =
ρΩ2ℓ2

Mg

is the ratio of the centripetal force exerted to the string to the gravity force of
the tip mass.
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3. Constant rotation speed

An exact analytical solution is available for the case of constant rotation
speed. Assume a solution of the form:

(3.1) y(x, t) =

∞∑
n=1

un(t) sin (nπx) .

Alternatively, the complex exponential method outlined in [17] can also be used.
The solution satisfies the first two boundary conditions. Substituting Eq. (3.1)
into Eq. (2.8), the equation for the generalized coordinates is obtained as:

(3.2) ün + (n2π2 − a2)un = 0.

Defining the natural frequencies as:

(3.3) ω2
n = n2π2 − a2,

the solution to the problem

(3.4) ün + ω2
nun = 0

is given by:

(3.5) un = c1n cos (ωnt) + c2n sin (ωnt) .

The last condition in Eq. (2.9) requires u̇n(0) = 0 or c2n = 0. The remaining
non-homogenous condition requires:

(3.6) f(x) =
∞∑
n=1

c1n sin (nπx),

and the Fourier coefficients for the problem are solved from above as:

(3.7) c1n = 2

1�

0

f(x) sin (nπx) dx.

The general solution is then:

(3.8) y(x, t) =

∞∑
n=1

2

 1�

0

f(x) sin (nπx) dx

cos
(√

n2π2 − a2t
)
sin (nπx) .

As the rotation speed increases, the natural frequencies decrease due to an in-
crease in the dimensionless parameter a. The first three natural frequencies are
shown in Fig. 3.
When the rotation speed reaches a critical value, the natural frequency for

a particular mode of vibration becomes zero, leading to a phenomenon known
as divergence instability.
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Fig. 3. Natural frequencies of the system.

4. Variable rotation speed

In this section, a harmonically varying rotation speed about a mean speed
is considered:

(4.1) Ω2 = Ω2
0 + εΩ2

1 sin (w
∗t∗) ,

where Ω0 is the mean speed of rotation, ε ≪ 1 is inserted to ensure that the speed
fluctuation amplitudes εΩ1 are small, and w∗ is the dimensional fluctuation
frequencies. The parameter a given in Eq. (2.10) is no longer constant, but
varies as follows:

(4.2) a2 = a20 + εa21 sin (wt) ,

where

(4.3) a20 =
ρΩ2

0ℓ
2

Mg
, a21 =

ρΩ2
1ℓ

2

Mg
.

The dimensionless fluctuation frequency is related to the dimensional frequency
by:

(4.4) w = w∗
√

ρ

Mg
ℓ.

Substituting Eq. (4.2) into Eq. (2.8), the dynamics of motion are governed by:

(4.5)
∂2y

∂x2
+
(
a20 + εa21 sin (wt)

)
y =

∂2y

∂t2
.
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Assuming the solution form from Eq. (3.1) again, substituting this solution into
Eq. (4.5), the equations for the generalized coordinates are:

(4.6) ün + ω2
nun = εa21 sin (wt)un,

where

(4.7) ωn =
√

n2π2 − a2

are the natural frequencies from Eq. (3.3). The initial conditions for the problem
reduce to:

(4.8) un(0) = 2

1�

0

f(x) sin (nπx)dx, u̇n(0) = 0.

4.1. Analytical solutions

Principal parametric resonances are the strongest resonance type in such
parametrically excited systems. The fluctuation frequency is close to twice the
natural frequency of the system, i.e.,

(4.9) w = 2ωn + εσ,

where σ is the detuning parameter adjusting the proximity of the fluctuation fre-
quency to twice the natural frequency. A perturbative solution using the method
of multiple scales [13, 14] will be used to search for approximate analytical so-
lutions. A single perturbation parameter is used in the analysis. For the advan-
tages of using a single parameter instead of multiple parameters, see the detailed
calculations given in [18].
An approximate solution of Eq. (4.6) subject to Eq. (4.9) is sought in the

form:

(4.10) un(t; ε) = un0(T0, T1) + εun1(T0, T1) + ...,

where T0 = t and T1 = εt are the fast and slow time scales. The time derivatives
are:

(4.11)
∂

∂t
= D0 + εD1 + ...,

∂2

∂t2
= D2

0 + 2εD0D1 + ...,

where D0 =
∂

∂T0
and D1 =

∂
∂T1
. The equations are separated at each order:

D2
0un0 + ω2

nun0 = 0,(4.12)

D2
0un1 + ω2

nun1 = −2D0D1un0 + a21 sin (wT0)un0.(4.13)
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Solving Eq. (4.12):

(4.14) un0 = Bn(T1)e
iωnT0 + cc = bn(T1) cos (ωnT0 + βn(T1)),

where cc stands for the complex conjugates, Bn represents the complex ampli-
tudes, and bn and βn are the real amplitudes and phases, which are related to
each other via the polar form:

(4.15) Bn(T1) =
1

2
bn(T1)e

iβn(T1).

Inserting Eqs. (4.14) and (4.9) into Eq. (4.13) and eliminating the secularities
yields:

(4.16) −2iωnD1Bn +
a21
2i

Bne
iσT1 = 0.

Substituting the polar form into this equation, and separating the real and
imaginary parts, we obtain:

ωnD1bn +
a21
4
bn cos (γn) = 0,(4.17)

(
ωn(D1γn − σ)− a21

2
sin (γn)

)
bn = 0,(4.18)

where

(4.19) γn = σT1 − 2βn.

The above equations admit the trivial solution bn = 0. For nontrivial solutions,
the amplitude and phase variations are governed by:

D1bn = − a21
4ωn

bn cos (γn),(4.20)

D1γn = σ +
a21
2ωn

sin (γn).(4.21)

The approximate analytical solution is written using Eqs. (3.1), (4.9), (4.10),
(4.14), (4.15), and (4.19) as:

(4.22) y(x, t) =
∞∑
n=1

bn cos

(
wt− γn

2

)
sin (nπx),

where bn and γn are determined by Eqs. (4.20) and (4.21) for the transient
solutions.
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For non-trivial (bn ̸= 0) steady-state solutions, D1bn = 0 and D1γn = 0,
which yields either γn = π

2 or γn = 3π
2 from Eq. (4.20). Then, from Eq. (4.21), we

obtain: σ = ∓ a21
2ωn
. The fluctuation frequency-amplitude is given from Eq. (4.9) as:

(4.23) w = 2ωn ∓ ε
a21
2ωn

.

A sample plot of Eq. (4.23) is presented in Fig. 4.

Fig. 4. Fluctuation frequency versus fluctuation amplitudes (n = 1, ω1 = 2.4227, ε = 0.2).

The steady-state bounded solutions occur precisely along the curves. Be-
tween the curves, the system is unstable, with solutions growing over time. In
the remaining regions of the space, the system is stable.

4.2. Numerical solutions

Equation (4.6) is numerically solved subject to the conditions (4.8). The
initial deflection function is chosen as f(x) = 0.2x(1− x). Three different cases,
which are indicated as points A, B, and C in Fig. 4 are treated. Point A is in the
unstable region, point B is on the stability border, and point C is in the stable
region. Plots of the generalized coordinates are given in Figs. 5–7 for the first
mode of vibration.
As predicted by the theoretical results, numerical results show that point A

is unstable while points B and C are stable.
To numerically construct a stability chart similar to the one shown in Fig. 4,

extensive computations are required for each point in the (w − a1) space. This
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Fig. 5. Time history of point A (ω1 = 2.4227, ε = 0.2, w = 4.8454, a1 = 2).

Fig. 6. Time history of point B (ω1 = 2.4227, ε = 0.2, w = 5.0105, a1 = 2).

Fig. 7. Time history of point C (ω1 = 2.4227, ε = 0.2, w = 5.1105, a1 = 2).
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requires integrating the differential equation for one period, calculating the mon-
odromy matrix, and then determining its eigenvalues, which govern the stability.
High resolution is needed for this task to determine the exact locations of the
stability boundaries. Perturbation methods have proven effective in determin-
ing such stability boundaries with acceptable agreement with the numerical
solutions. For small torsional vibrations of rotating blades, the match is almost
perfect [19]. The advantage of the theoretical analysis is that the stability bound-
aries can be calculated analytically. However, this approach has the disadvantage
of small discrepancies at lower fluctuation amplitudes, with these discrepancies
growing for higher amplitudes. In contrast, while the precise locations of the
stability boundaries can be computed numerically, this task requires extensive
computation resources.

4.3. Stability analysis via the Mathieu equation

Equation (4.5) can be modified such that the harmonic variations are ex-
pressed in terms of a cosine function:

(4.24)
∂2y

∂x2
+
(
a20 + εa21 cos (wt)

)
y =

∂2y

∂t2
.

Assuming the same solution form as given in Eq. (3.1), the generalized coordi-
nates are expressed as:

(4.25) ün +
(
ω2
n − εa21 cos (wt)

)
un = 0.

Next, we perform the time transformation:

(4.26) τ =
w

2
t,

which yields:

(4.27)
w2

4
u′′n +

(
ω2
n − εa21 cos (2τ)

)
un = 0,

where the prime denotes differentiation with respect to the new time variable.
Reorganizing Eq. (4.27), we obtain:

(4.28) u′′n + (δ + 2ϵ cos (2τ))un = 0,

which is the standard Mathieu equation with the new parameters defined as:

(4.29) δ =
4ω2

n

w2
, ϵ = −ε

2a21
w2

.

Stability diagrams in δ − ϵ space can then be used from the literature. See [13]
for a sample stability diagram.
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5. Concluding remarks

The problem of a rotating string-mass hanged from top was investigated.
Both constant rotation speeds and variable rotations about a mean speed were
considered. For the constant rotation case, exact analytical solution was given.
For the variable rotation case, principle parametric resonances were analyzed.
Using the method of multiple scales, the boundaries separating stable and un-
stable regions were calculated analytically. Numerical integrations of the differ-
ential equation confirmed the qualitative behavior predicted by the theoretical
analysis.
Developing nonlinear mathematical models for the problem is a potential

area for further research. When the total mass of the string is the same or-
der as the attached mass, the tension force becomes variable, leading to an
improved mathematical model. More precise stability charts can be developed
by considering higher-order perturbations, or by conducting extensive numeri-
cal calculations. Additionally, other resonance types may be considered in the
context of nonlinear models.
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