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Expressions for derivatives of isotropic tensor functions with respect to the deformation
tensor F are derived. Each derivative has the first representation in terms of eigenvectors; then,
for computational conveniences, also a basis-free expression, in terms of eigenprojections, is
reported. Further, in the same fashion, also the time derivatives are provided. In the paper, a
short review of different approaches to the problem existing in literature is presented. In order
to make the exposition self-contained, some backgrounds of tensor analysis are also given.

1. INTRODUCTION

The measure of the variation of deformation is a fundamental issue of contin-
uum mechanics and is mainly related to finite deformations and to constitutive
and evolution problems. The first aspect is concerned with a suitable choice of
strain measures. The later two are more involved in the first variation of the
deformation in space or in time-like variables. Hence, effective expressions for
derivatives and rates of strain tensors with respect to deformation gradient F
are strongly needed.

In recent times several researchers have provided various expressions of deriv-
atives for different strain tensors. However, most of them are lengthy, especially
in the three-dimensional case, and do not preserve any physical meaning.

Basically we find in literature two different approaches the first one is based
on the invariants of the tensor argument, while the latter returns to its eigen-
projectors or eigen-diads.

In order to introduce the problem, let us consider, for example, the stretch
tensor U (F) = VFTF = /C.

By the chain rule we have the following derivative with respect to F:

U _ OVFTF 0 (FTF)

(L) OF  O(FTF) OF
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As it is well known, the treatment of the derivative of the square root func-
tion is a rather difficult task. In the literature, we basically find two different
approaches: the first one is based on invariants, while the other one is based on
eigenprojections. GUO [1, 2] and CARLSON and HOGER [3] reduce the problem
to the solution of a particular tensor equation AX + XA = H, where A is a
symmetric second-order tensor and X is the unknown second order tensor. This
equation can be easily solved recurring to the principal bases of A. This proce-
dure is called implicit because, in order to express the problem in the principal
directions of A, one has to find first both the eigenvectors and the eigenvalues
of A.

A direct or explicit solution is obtained by finding the X in terms of H and A
and returning to the principal invariants. This procedure avoids the evaluation
of the eigenvectors and the eigenvalues.

Several papers, completely devoted to this problem (see TING [4, 5] and
SCHEIDLER [6]) follow this basis-free procedure. For the latest results and a
comprehensive review see ROSATI in [7] and [8].

Other researchers, see WHEELER [9] and CHEN, WHEELER [10], developed
a completely different procedure based on the eigenprojectors. Following this
approach and exploiting the principal axis method of HILL [11-13], X140 [15],
presented explicit basis-free expressions of some strain derivatives. In [16] X1A0,
BRUHNS and MEYERS gave a new accurate evaluation of derivatives of some
isotropic functions of symmetric tensor. The basic idea in [16] was the introduc-
tion of a class of isotropic functions G (A) in order to derive a simple expression
for 8G, (C) /0C. In fact 8v/C /0C can be then obtained just by choosing A = C
and using as a Lagrangian isotropic function the square root function G, = Ve.

For the sake of completeness we have to report that a third mixed approach
has appeared very recently in literature [17, 18]. As it is well known in the case of
non-symmetric tensor arguments the construction of isotropic tensor functions
G (A) is not so straightforward. This depends on the lack of the spectral de-
composition for nonsymmetric tensors A. In this case, both Authors make use
of the Taylor power series expansion. In order to avoid infinite power series and
the related convergence problems, Itskov obtains the closed-form representation
combining the Cayley-Hamilton theorem with the so-called Dunford-Taylor in-
tegral. Anyway, some convergence problems still remains. On the other hand, Lu
introduces a generating function G(A) of the eigenvalues of A and then consid-
ers an invariant representation for G (A). This approach leads to a finite term
representation, even if it is not explicitly shown what happens when dealing with
complex eigenvalues and eigenvectors.

In this paper, following X1A0, BRUHNS and MEYERS [16], we get the deriv-
atives of general isotropic functions G (A) where A is a symmetric tensor.
The first formulation was given by HILL [11-13] but a simple and rigorous proof
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has been given by SCHEIDLER [14]. In our case, starting from the very definition
of the derivative we get this well-known formula by means of a suitable perturba-
tion of the eigenbases of A. This demonstration, is rather different from the one
in [16]. Moreover it is simple, accurate and still preserves a physical meaning.
Further, an explicit basis-free expression is also given.

The derivative of the product 8 (FTF) /OF in (1.1) can be obtained using
the chain rule and some useful fourth-order tensors of the kind A X B, AXB
where X and X denote some suitable product operators. This reasoning has been
extensively used both by ROSATI [8] and PADOVANI [19]. Thus the difference
between the two consists essentially in the treatment of the square derivative.
While Rosati returns to the tensor equation AX + XA = H, Padovani takes
directly the known results of the derivatives of symmetric tensor-valued ten-
sor function [20] and provides explicit and extended formulas for a wide set of
derivatives.

Further, in many cases, PADOVANI [19] is able to simplify the terms with the
X operator so that the correspondent formulas are the simplest in literature.

The main goal of the paper is to extend these formulas to isotropic tensor-
valued functions of F. Furthermore, we also provide time derivatives of isotropic
tensor functions.

In order to make the exposition self-contained, we first present a certain
background of the tensor analysis where a generalization of the spectral de-
composition is also included. This decomposition, known as the singular value
decomposition, is not very often used in continuum mechanics but, in our opin-
ion, is a very attractive tool in the changes from Lagrangian to Eulerian bases
and vice versa.

2. PRELIMINARIES

Let us first introduce some definitions used throughout the paper.

Even though for our purposes we could report us to a 3-dimensional space,
we consider a general n-dimensional inner product space V,,. Hence, we denote
by Lin the set of all linear mappings defined on V;,.

Other particular subsets of Lin are:

Lint: {A€ Lin:det A >0},

Sym : {Ae€eLin: Az -y = Ay-z, Vz,y},
Skw : {AeLin: Az -y = -Ay -z, Vz,y},
PSym: {AeSym:Az-z>0, Vz},

Orth : {AELin:ATA=AAT=I},
Ortht = {A € Orth ~ Lin*}.
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Obviously we have the following projections of X:

(2.1) X=-X+XT)+:(X-XT)=X+X,

l\DIr—‘
l\')ln--—dA

where X € Sym and X € Skw, VX¢€ Lin.
Furthermore we define these sets of fourth-order tensors:

(2.2) Lin : X: Lin — Lin, Sym : {X : Sym — Sym}.

2.1. Some Tensor products

Given A, B € Lin, the dyadic product A ® B is the fourth-order tensor
defined as follows:

(2.3) A®B:X = (A®B)X=(B-X)A VXEe€ Lin,
where

(B-X) = tr (B"X) ZBUXU,
(2.4)

(A®B)X)y, = Y BijXijAnk.
i,

By the above definition we have

(A®B)CD =(AD®B)C,

) D(A®B)C =(DA®B)C.

In (2.5) the brackets are used merely to define the fourth-order tensors involved
and, consequently, the successions of the operations.
In indicial notation (2.5) becomes

((A®B)CD), =) (Bi;Cij) (AnkDr) =Z (AnkDri) (BijCij)

1,5,k 1,5,k

(D(A®B)C);;, = ZDU (BriCi) Ajn, = EDijAjh (BriChi)
ikl Y

=((DA®B)C),,,

VC,D € Lin.
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Note that the following relations hold:
e (A®B)(CTD) =(A®CB)D =(A®DB)C,
+# (A®B)(CDT) = (A®BC)D = (A®BD)C.
Let a", a® be the vectors of an orthonormal base on V,,, then we have
(2.8) (a"®a’+a’®a’)@(a"®@a’*+a’®a")|X
=2[@"®a")X(a’°®a’)+ (a°®a’) X (a" ®a"))

VX € Sym.
Moreover, we define these two square products
(2.9) ARB:X = (ARB)X=AXB?, WX
and
(2.10) ARTB . X == (ARTBIX = AXTBT . WX

By means of the above tensors we can immediately derive the following for-
mula:

(211)  ABB:X = [(ABB)+ (B A)] X

R % [AXBT + BXTAT] X.

The notations in (2.9) were introduced by Del PIERO [1, 21]. The one in (2.11)
has the hat on the top of the square to remember that it is a symmetric tensor-

valued function.
The Cartesian components of A X B and A XT B are

[A&B] =A‘hB'k)

(2.12) o S0

[AIXI B]ijhk = AirBijn.

Sometimes, for the sake of simplicity, we denote
A=AKA.

The tensor

(2.13) RaB = R4 K Rp,
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with R4, Rp € ortht, is a rotation on Lin
(2.14) RABRKB = RF‘XBRAB =

where
T
[RAB]jnk = RABlhki; -

Let ap be the vectors of an orthonormal base zj on V;, then
(2.15) a;®a;

has the meaning of a projection in the z; direction, while
(2.16) (a;®a; +a;®a;) 1§

has the meaning of a projection on the ¢ — j plane plus a reflection with respect
to the axis of equation z; = ;.
Thus, if we apply (2.16) twice, we recover the projection on the ¢ — j plane:

(2.17) (ai®aj+aj ®ai)2 = (a,-®ai+aj ®aj).
The set of the fourth-order tensors
IBijh,k:ia’i®aj®ah®aka iajyh,ke {132a3}

defines a base on Lin.
It is easy to verify that

(2.18) BijncBlne = Pik, B niBijnk = Pj,
where
(2.19) Pi; =a; ® a; Ma; ® aj,

are projections:

(2.20) P;; = Pj;

2 _ ..
ij) P = Py.

2.2. Derivatives

We focus our attention on the derivatives of both scalar and tensor-valued
tensor functions. A very detailed treatment of the derivatives of tensor functions
can be found in ITSKOV (2, 22].
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Scalar-valued tensor functions. Let o (A) be a real-valued tensor function,
then the derivative of (A) at a point A is the linear function da (A) /0A :
Lin — R such that
3a(A) da(A)
OA ) -

The value of the derivative with respect to the tensor A in the X direction
can be obtained as

(2.21) [X] = X=a(A+X)-a(A)+0o(X).

0o (A) a(A+eX) —a(A) :

22 =
(2:22) =t X] = lim :
Showing explicitly the Cartesian bases, we have in components
Oa (A) Oa
2.28 X ——————— Xk br®by,
(2.23) (X] = Z 3 (Ansba®br) hkDR®DE

0o (A)
ZaAh ko= A

Thus we conclude that the derivative is the second order tensor

(2.24) {o (A Z

b
aAh h®bk1

where by, are the Cartesian orthonormal vectors. The scalar value of the deriv-
ative in the X direction is also known as the « differential with respect to the
tensor A for the increment X and, in this case, it is equal to the scalar product
between the second-order tensor representing the derivative da (A) /OA and the
tensor increment X

Oa (A) da (A) X da (A)

(2.25) da (A, X) = I Ty

- X,

[X] =

)

Tensor valued tensor functions. Let G (A) be a tensor-valued tensor func-
tion, then the derivative of G at a point A is the linear function da (A) / O0A :
Lin — R such that

8G (A)
9A

A) /0A [X] is the value of the derivative 9G (A) /OA at A on the increment
X which can be obtained by means of the following limit:
A G X) — A
0G(A) 1 _ i, CATX) ~G(A) _ | AG(A)y
0A e—*O € e—0 €

(2.26) X]=[CA+X)=G(A)]+o(X).

(2.27)



98 A. ERCOLANO

where AG (A).x = [G(A+€X) — G (A)] is the finite difference of G for the
increment eX.

Also in this case we call the G differential the value of the derivative for the
increment X

(2.28) 4G (A,X) = 95 A

X
A X
Showing explicitly the Cartesian bases, Eq. (2.28) is written as
BG 0 (G,]b ®b;)
(2.29) 2;2 BlAsbr by pas Uil )y dmer T

= 3% Sa L Xubieb;

4, hk

Because of the linearity, from the values of the derivatives along all the Carte-
sian bases bi®bj we can recover the general expression of G (A) /9A that is

0 (Gijbi®b;) Gi
(2.30) ZZ = Ah’;b;@bk ZZ ’b¢®b.

In fact, the expression in (2.30) is the only one that satisfies (2.29)

3G (A e
(2.31) 31(X )[X] =P [ A, —Lb,®b; ®bh®bk} [Xnebr®by]
1,3,h,k
9G;
= Z aj’thb@b,
1,7,h,k hk

Using the short-hand notation

(2.32) B;; = bi®bj with B;= By;
(2.30) can be rewritten in more compact form as
0G (A) 0G;;
= B;;®B
(2.33) oA ’],tha/l i ® B

where the set of the B;; ® By, is a base on Lin.

In other words, the derivative of G (A) is represented by a fourth-order tensor
and the differential dG (A, X) is the second-order tensor obtained as the value
of the derivative in X.

Obviously, the bases involved are

(2.34) Bij on Lin Bij®Bhk on [Lin.
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Note:

If the tensor A is symmetric and G (A) /A : Sym — Sym, we can use
instead of (2.34) the following reduced bases:

(2.35) Eij on Sym B,-j ®Bpe on Sym
where the n(n + 1)/2 elements
1

are normalized

&t 5 P (0indjk + ik djn)
2. Bi (B~-B St k)
( 37) i hk r ij hk) 1+5ij5hk

It is interesting to note that, from the kinematical point of view, B; and
(Bij + Bji) with j # 4, represent respectively an axial and a shear deformation
tensor.

Moreover, the n?(n+1)2/4 elements of the base in (2.35) can represent every
fourth-order tensor with first and second minor-diagonal symmetries.

In this case, the first variation given by the derivative has the form

G (A) 3G : G;
(2.38) 3A X] = ]Z [BA 4 B;® Bhk] [thBhk] Zh:k et Xh.kBlJ

Other important derivatives. The time derivative of a second-order tensor G
is still a second-order tensor G defined as

3G (f) _ <0Gibigb; : :
v Z—Ja—g-—l = ZGijbi®bj =G.

1,] 1,

(2.39)

The G differential with respect to time ¢ or the first time-variation of G is
given by
oG (t)
ot
The product T (A) of two differentiable tensor-valued tensor functions F (A)
and G (A)

dG (t) = dt = Gdt.

is given by

4G (A)
oA

OT (A) OF (A
oA 5

(2.40) [B] = ) [B]G(A) + F(a)

[B].
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Let the tensor-valued tensor function G (A) be differentiable at A and let
the tensor-valued function J be differentiable in G (A).
Then the derivative of the composition

M(A) =J(G(A))
at A on the increment B, is given by the chain rule

oM (A)
9A

Moreover, if A = A (t) we have

83 (G (A)) 0G (A)

(2.41) prel 3A

[B] = B].

OM (A (1) _ 03 (G(A)) 9G(A);

(242) MA@ = =% = A ().

3. KINEMATICS

Let us now consider a body B C V3 and associate each particle to its position
vector x in the reference configuration B, € V3. A motion of B is represented by
a one-parameter mapping y; : B, — By
where

B: =y (B,) ={y(xt) e V3:x € B,}.

The actual position y (x,t) of the material point at time ¢, can be decomposed
into the previous position x = y (x,t,) and a displacement u

(3.1) y (xt) =x+u(xt).

The deformation gradient of y

(3:2) F=vey =2

represents the tangent mapping between the two tangent spaces of the body B,
respectively in B, and B;:

(3.3) F:T,(B,) — T, (By) .
Its determinant can be shown to be always positive; i.e.: F is an element

of Lin™.
The inverse of F is obviously

(3.4) ¥l = Vexeeiis
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In finite strain, the deformation gradient F is usually decomposed, according
to the polar decomposition theorem, [23-27] into

(3.5) F=RU = VR,

where U and V are the right and left stretch tensors and R is the rotation
tensor.
U and V are uniquely obtained by the following relations:

(3.6) C=FT'F=U?, B=FF =V?

where C and B are positive definite symmetric tensors and they are called re-
spectively the right and left Cauchy—Green tensors. The rotation tensor R is
determined by (3.5).

Since both U and V are defined in (3.6) as square roots of positive definite
symmetric tensors, they are positive definite tensors too and coaxial to C and
B, respectively, i.e. they have the same eigenvectors of C and B, respectively.

Thus, the following spectral decompositions can be considered:

C=R; ARt B =Rz A’RZ,

(3.7)
U=R;VARYZ, V=RpVA'RE,

where U, V,A%, VA% € PSym and R, Rp € ortht.
Hence the diagonal tensors A% and VAZ collect the eigenvalues 7\,2 and their

square roots \/7\? respectively. The orthonormalized eigenvectors of FTF and

FFT are the columns of Ry, and R g respectively.
Moreover, the time continuity of relation

(3.8) detF (t) > 0

makes it possible to choose positively orientated eigenvectors so that the tensors
R and Rg can be proper orthogonal i.e.:ﬁ?\,2 =N
The last two relations in (3.7) can be written

(3.9) U =Ry A, V =RggA,
where
(3.10) Rr, =R ®Rp, Rge =RgXRg.

Very often if the left and right rotations coincide, we drop an index. For
example we write Ry, for Ry;. We remind that the rotations Ry and Rg are
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called Lagrangian and Eulerian respectively because they collect the bases of
the fundamental tensors C = FTF and B~! = [FFT]_1 which describe the
deformation in the two approaches.

Generally, the tensors used to measure the deformation are strictly deter-
mined by the previous ones. In other words, they exploit the same set of eigen-
vectors while each eigenvalue is an appropriate invertible function of the corre-
sponding eigenvalue.

Following this reasoning, according to Hill [11-13], WANG and TRUESDELL

[26], OGDEN [28] two general classes of deformation tensors known as Hill’strains
can be defined

(3.11) G(U) =) fi (ekwel,  G(V)= Y fi)el ®ef.

The tensors in (3.11) are symmetric and respectively coaxial with U =VFTF
and V~! = VF-TF-1 with eigenvalues f; subject to the normalized conditions
(3.12) fay=o, UR@y=1, Yfsa

Isotropic functions. A tensor-valued tensor function G (B) is said to be
isotropic if

(3.13) Q[G(B)Q"=[G(QBQ")], VvQeorth*
that is
(3.14) Q[G (B)] = [G(QB)].

If B € Sym, G (B) has the general representation
(3.15) G (B) = Zgini ®n;
i

where
gi = gi (A1, A2, A3) .

The Hill strains in (3.11) can be recognized as a particular subclass of the
isotropic functions defined by (3.13).
The following are the particular Hill strains [29, 30]

1 1
DY = o [Um—I] m#0 DZ’ — e [Vm—I] m#0

(3.16)
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These strain tensor classes are broad enough to include almost every La-
grangian and Eulerian strain measures used in the literature.

For m > 0, the first class describes the deformation in the Lagrangian ap-
proach; for m < 0, the second class describes the deformation in the Eulerian
approach.

For example, the following formulae

1

o \h
(3.17) Dﬁ:E[FTF—I], D;2=:

2

are respectively the Green-Lagrange tensor and the Almansi tensor.

[I _p=E F—I]

3.1. Singular value decomposition of F (SVD)

Because we are concerned with finite strain measures, which can have either
a Lagrangan or an Eulerian base, we briefly review the operators that make
it possible “to switch” from one kind of strain measure to another. The key
role in this change of bases is undoubtedly played by tensor F. In literature
we generally find the polar decomposition for F and the spectral decomposition
for the strain measures. In what follows we shall introduce for F a particular
multiplicative decomposition, the singular value decomposition (SVD) which
generalizes the spectral decomposition. Further it will be shown that, even for
the desired switching operators between the Lagrangian frame and the Eulerian
frame, a generalization of the singular value decomposition still holds.

Now, going back to (3.9) we observe that U and V can be obtained through
the same diagonal tensor A but using two different frame rotations.

Unfortunately, for F the decomposition in (3.9) doesn’t hold. This physically
means that a real frame rotation leading to principal axis for F does not exist.

Anyway, another similar decomposition is still available.

Let’s consider the spectral decompositions of FTF and FFT

(3.18) R, =\ RIFFTRp = A?
We can rewrite (3.18); in the form:
(3.19) [FRL ;7\|‘1]T [FRL |7\|‘1] =1
while from (3.18)2 we obtain
(3.20) FR; [A|"' =Rg.
From Eq. (3.20) for

=1
(3.21) [Re W7 =N RE



104 A. ERCOLANO

we finally get
(3.22) F =Rp |A| RL.

Furthermore, the time continuity of (3.8), together with the initial conditions
at t = tp:

(3.23) RE (to) =R (to) =1, Aij (to) = 0y,

ensure the positiveness of each Aj; i.e.: Ay = Al
The decomposition in (3.22) then becomes

(3.24) F =RpAR?
or
(3.25) F =Rgp A,

where Ry, is defined as
(3.26) , Rer, =R XR,.

It is easy to verify that the SVD in (3.24) is a generalization of the spectral
decomposition and implicitly contains the polar decomposition too.

In fact, if we apply the SVD to a symmetric tensor, say U, then we have
a real frame rotation given by Ry, thus recovering the spectral decomposition
in (37)2

Further, the two polar decompositions come directly from the definition in

(3.24)

F= [Rg[RTR.]|ART] = RU,
(3.27) [ E[ E L] L]

F= [RgA [RIRg|RT] = VR

From (3.27) we also get the multiplicative decomposition of the Cauchy ro-
tation tensor

(3.28) R = RgRY
that leads to the corresponding decomposition on Lin
(3.29) R = (RgRT)® (RgR]) = RgRY.

The singular value decomposition (SVD) or, in other words, the factorization
of a matrix A into the product

A =QAQ%=[QLRQg] A
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of unitary matrices Qz, and Qg and a non negative diagonal matrix A, has a long
and well-established history, see for example the paper of STEWART [31]. The
existence theorem for the SVD can be found in standard texts on linear al-
gebra such as [32-34]. Although it was introduced in the 1870’s by BELTRAMI
and JORDAN, SVD has become more popular in applied mathematics [32] and
mathematical modelling than in continuum mechanics. Singular value analysis
are widely performed in least square fitting of data [35] or in data mining appli-
cations [38]. Nowadays SVD is also currently used by some automated search
engines in the Web, e.g., Alta Vista.

To the Author’s knowledge, in solid mechanics, the explicit application of the
SVD is very rare 36, 37].

If we look at the three factorizations

(3.30) V =RgARL, F=RgAR], U=RiAR]

we recognize that all of them describe the same deformation A seen through the
following operators

(3.31) Re Rgr Rg

From the above we recognize F as the link between the Lagrangian and
Eulerian approaches.

Sometimes, for this reason, U and V are called one-point tensors while F is
called a two-point tensor in order to underline the role played in the deformation
[39]. In our opinion, looking at the relations in (3.30) more appropriate names
would be respectively one-base and two-base tensors.

As it is well known, the fourth-order tensor

(3.32) F=FRF =Rg \?RY

is the operator commonly used to switch from an Eulerian-based deformation
tensor to a Lagrangean-based deformation tensor and vice-versa. It’s worthwhile
to note that (3.32) can be viewed as a singular value decomposition on Lin where
the dilatation A2 = AR A is responsible for the change of the measures from
2 oA

For example we can write

F-TC, = VB, F'vB-1, = C,
where
o {]FT =FTRFT = R ARL,
F-¥ =1 mp = RE2RE,
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Relations in (3.33) can be easily generalized:

339) F'DF =D, Ff,D;™ = DY,
j F;Tum™ =v-m, FLv-m=um,
where
(3.36) { F, =F;RF] =R/ \™RE,
Fo.r.= F BF_} =Rpd7TR],
and
F;=Rg PRI, Fi=Rg)R]
with p+ ¢ =m.

Relations (3.35) ensure the change of deformation strains from D™ to 5
and vice-versa. On the other hand, if we want to switch from U™ to V™, we
need just the rotation R because in this case, no change in the measures occurs

337 RU™ = [RgRT] [RLA™] = RgA™ = V™,
L

Note that even for the operators in (3.36) we have a singular value decom-
position on LLin.

3.1.1. The eigenbases of FTF and FFT. Let us introduce a slightly different
representation of the deformation tensors

C =S N2EF, B =Y \2EP,
1 %
o U =Y \EF, Yo uEP,
% )
where
(3.39) Elf =ef ®ef, Ef =ef ®ef,

are respectively the Lagrangian and the Eulerian eigenbases.
The eigenbases are orthonormal

I & EE'f’ I = EEE’
(3.40) R ey

Note that F can be recovered as

(3.41) F=> Mef®el =Y \EFL,
1 )



EXACT REPRESENTATION OF THE DERIVATIVES OF ISOTROPIC ...

where
(3.42) EPl = ef @ef

are the mixed Lagrangan-FEulerian eigenbases.
Hence the following representations

(3.43) Re B
h

(3.44) V= Eh:/\th, B ;)\hEEL, U= Xh:)\hEﬁ

are the projection’s counterpart of (3.28) and (3.30) respectively.
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3.1.2. The eigenvalues of a symmetric tensor. Let us introduce the modulus

and the versor of a symmetric tensor A

(3.45) |A| = VA tr (ATA) Au=i—'A.

Let us denote by
1
(3.46) AP= A—ztr(A)T

the deviatoric component of A.
Now the deviatoric component of the versor of A, defined as

4 Al = —AD
(3.47) AD]

has its characteristic polynomial with the following reduced form:

(3.48) el +1pp i = I1Izp = 0.

Hence, from (3.48), see [40], we get the following closed-form solutions for

the eigenvalues ¢;

2

2
51=EOCOS< —?>, €2 = €0COSY, 1 €3=€0COS<(,0+—37r->,

where

€0 = cos3g0:3\/5IIIA5.
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The eigenvalues a; of A are then obtained by the formula
1
= |AP|ei + 3tr (A).

Once the eigenvalues are known, the eigenbases can be obtained either by
the principal invariants methods or by projections methods.
Following the second approach we can use Sylvester’s formula

(3.49) =[] —= A-al Dl_ ] A-a1),

iiti (aj—a) D vy

where Dj = [] (a; — ai).
1,i7#]

4. DERIVATIVES OF SOME ISOTROPIC FUNCTIONS

The aim of the work is to evaluate, as simple as we can, the derivatives
of some isotropic functions with respect to the deformation gradient F. First,
a simple but effective demonstration of the well-known formula for the derivative
of isotropic function is given.

Starting from C and B we can consider some Lagrangian and Eulerian
isotropic functions of the kind

(4.1) G (C)= Gy (FTF), Gg (B)= Gg (FFT),
whose derivatives with respect to F' can be obtained through the chain rule as
(42) 0G,  0Gp O(FTF) 0Gg _ 0Gp O(FFT)

' oF  O(FTEy. 4K OF = 9(FFT) OF

Hence, the first step to undertake is the evaluation of either G /0 (FTF)
or 9Gg /0 (FFT).

In what follows, because there is no need to reduce the reasoning to V3, we
shall consider again a general n-dimensional inner product space V,.

Let us consider the following isotropic function of A :

(4.3) G(A)=) g(a)ai®a;, AecSym(Vy),

where a; and a; ® a; are respectively the eigenvalues and the eigenprojections of
A and g(a;) is a single-scale function satisfying (3.12).

Because the derivative of the function in (4.3) is an element of Sym, we can
use the eigenvectors a; to define, as in (2.35), the new reduced bases

(4.4) Aij on Sym Aij®f&hk on Sym.
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4.1. Derivative along an eigenbase direction

The value of the derivative along an eigenbase direction A=A, = a; ®a;
of A is simple to calculate, see [16]:

G (A+e(a;®a;)) — G(A)

(4.5) dG (A),, = lin(‘)l *
>.G(aj)aj®a; + G (ai +€)a®a; —G (a;) ai®a;—y G (aj)a; ® a;
= limj# J#
e—0 €
— limG(ai O RS C Q)i = @ (ai)a; @ a;= G’(ai) a; ® a;.

e—0 € Oa;

In other words, the variation €A; along a single eigenbase A; produces only
a variation € = da; to the a; eigenvalue. In turn da; causes a variation of G equal
oG /
to i (a;)da; = G (a;) €.

(]
We must remark here that the variation €eA; does not involve any change in
the eigenvectorbase.

4.2. Derivative along a shear base direction

The following procedure is different and, in our opinion, simpler than the
one given in [16]. Recurring to a linear pertubation of both eigenvalues and
eigenvectors we arrive to the well-known formula within few passages and, maybe

not less important, in the way that still preserves a physical meaning.

. L Seded o 1
Let’s now consider a derivative along a shear base direction A;j = —

V2

(ai®aj+aj®ai) :
. G(A+e(a;®aj+a;®a;)) -G (A)
B STl :
g AGeﬁAiJ‘
= lim———,
e—0 €

Due to the variation of A equal to ev/2A;; = € (a; ® a; +a; ®a;) we have
h#i#j
(4.7 AGe\/iAijz G < Z apap® ap + a;a; ® a;+a;a; @ aj+€(a; ®a;+a; @ a,-))

h
-G <Zahah®ah) ;

h
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that is
h#ij
(4.8) AG, 54, =+ ) G(an)an®ay
h

+ G [a;a; ® aj+aja; @ aj+e(a; @ a;j + a; @ a;)]
—ZG (ap) ap® ap,
h
Eq. (4.8) can be simplified to
(4.9) AG 53, = + G [miai ® ai +a;2; ® a; +€(ai®a; +a;®a)]
- G (a;a; @ aj+aja; ®a;).

If we denote by V;; the plane spanned by the couple (aj,a;), we recognize
that

(4.10) a;a; ® a;+a;a; @ aj+e(a; ®a; + a; @ a;)

is a vector-valued function on V;; and it can be expressed in its principal base,
say (a;,a;), through a rotation of the couple (ai, aj) in V;; and the resulting
changes in the eigenvalues a; and a;:

(4.11) a;a; ® 8;+0;a; ® ;= a;a; ®a;+aja;®a;+ e(a;®a; +a;Qa;).
Because of (4.11), Eq. (4.9) becomes

(4.12) AG,z4,=G (a;) a; ® a;+G (a;) a; ®a;—G (a;) a; ® a;—G (a;) ;@ a;.

With the result of (4.12) in mind, Eq. (4.6) assumes the more convenient form

(413)  dG(A),yza,

g limG (a;) a; ® a;+G (dj) a;®a;—-G (ai) a; @ a;—G (aj) a;®a;

e—0 €

Note that dG (A),34,, € Vij- Now we just have to find the new expressions
of both eigenvectors and eigenbases. In order to do that we have to separate the
case of two equal eigenvalues.

CASE 1. a; # aj. We introduce the projection on the plane Vjj; i.e.: [']Vij
only to reduce to 2 the number of dimensions of the matrices representing the
tensors involved and to avoid the use of all the zeroes needed in the directions
normal to Vj;.
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By definition, the tensor in (4.10) has in V;; the following representation:

(4.14) [ ‘i’ ;j ] :
The eigenvectors and eigenvalues of (4.10) are the following:
1
[y, = e 5i=%(az'+aj+Q),
(4.15) :
185y, = ge (% =05 il ﬁj=%(ai+aa‘—q),

where ¢ = \/ (ai2 + ajz- — 2aa; + 462) and [ailv,-,»’ [ﬁj]vij represent the projections

on V;; of the new eigenvectors a;, a; of the tensor [A+€(a; ® a; + a; @ a;)].
If we suppose that a; # a;, ¢ can be expressed in the form

(4.16) q=(ai— aj)\/l g [ai 2_€aj]2 =(a;=aj)\/1+ [2a]2,

where o = €/ (a; — a;). Using in (4.16) the first two terms of the following

expansion:
g Lopug - Lo 1 6 6
1+ [20)° =1+ = [2a]° — = [20]* + — [20]° + O (a°)
2 8 16
we have
(4.17) q = [(ai — aj) + 2a€] + 0 (€?).

Using this value of g, the relations in (4.15) become

@iy, = l R e lo (€2)], @ = a; + ae + o (€?) ,
(4.18)
3y, = ‘ —1a + lo(e?)], a; = a; — ae+o (?).

From (4.18) we understand that the new eigenvectors are obtained from the old
ones by means of a rotation equal to o = €/ (a; — a;) in the plane Vj;.
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From (4.18) we immediately obtain the new eigenbases

L ]+ b,

Il

3 ®ai]y,,
(4.19)
(8 @4y, = [_Oa —la] +[o(¢%)] .-
Using (4.19) we get the new expressions
(G (ai) 8; ® 8 +G (a;) 8; ® 35y,

& [ G(ai) a(G(a;) — G(ay))

a(G(a:) — G(aj)) G(ay)
(4.20)
[G(ai)a«i®ai+G(aj)aj®aj]Vij = [Ggai) Gé)aj) ] :

Thus, because of (4.13) and (4.20) the projection of the first variation is

(421)  [dG(A)y5a,] g

2,

e—0€

5 ]'ml I: G(ai + ae) — G(a,;) [G’(ai + ae) - G(aj - ae)]a }
[G (ai + ae) — G (aj — ae)la G (aj — ac) — G (aj)
what gives

.,  G@)-G)
3 - (ai — a;)
(422)  [dG(A) ﬁAw}w,. O
(ai — ay)
So we can state that the value of the derivative along the shear base direction
G (a:) — G ()

(a;®a; +a;®a;) is still of a shear deformation type of value Poges s
AR

Hence we can write

(423) dG (A)(\/EA,J) = g‘%%‘}%gj—) (ai ®aj + a; ®az~) d
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CASE 2. a; = a; for i # j. Let us consider now the case a; = a;.
We can use as new eigenvalues and eigenvectors the following set

s b

Bv=| YA mea
+__
V2

(4.24)

) 1

g 2 =

(&jly,, = \{_ » Gj=aite
_|.___
V2

Consequently the eigenbases are

e 1} 4o =3
[ai®aly, = ;

Do |
|
—
—

(4.25)

st & t froteg
[aj@ajlvij= = .

N}
—
—

We can now obtain the new expressions
[ +G (a; —€) —G (a; —¢)
i —G(ai = G) +G(a,- = 6)

il
G(a)aioaly, =3

(4.26) :
ei% enTRe 1 [ +G(ai+€) +G(ai+e)]

[G (aj)aj®aj]vi_ = 5 :

J L+G(a,,~+e) +G (a; + €)

From (4.13) and (4.26) we obtain

1 [ G(a; + €) + G(a; — €) — 2G(a;)

@ (4G (A)z, ], = lim G(ai +¢€) — G(ai —€)

11 Vi; e—02¢

G(a; +€) — G(a; —€)
G(a; +€) + G(a; — €) — 2G(a;) j
Relation (4.27) leads to

(4.28) [dG (A)\/ifxij]v 3 [G'(()ai) 5 (()ai)]'

[
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Introducing explicitly the shear base (a; ® a; +a; ®a;), we get from (4.28)

(4.29) dG (A)\/ﬁA,-,- =G (ai) (a;®a; +ajRa;).

4.8. Derivative of G (A) as a fourth-order tensor

Making the following assumptions:

' = if =
6ai T
8G o |
(4.30) Gy =4 5 if i#j and q;=a;j,
G(?;?:i)(“f) if i#j and a; #aj,
\ 1 ]

from the results given in (4.5), (4.23) and (4.29), see for example [16], we can

state that the linear transformation 6(;1(&A) : Sym(V,) — Sym(V,) has the

eigenvalues G;; with the relative eigenvectors (a; ® aj+a;Qa;).
We are now ready to write the derivative of G (A) in its spectral form

L o

(431) DG (A)= 5~

(A)
1
=1 Y Gij(ai®a;+a;®2)® (;®a; +a; ®a;).
1,j=1

i}
Note that in (4.31,) the factor 5 appears twice. The first one is due to the

orthonormal base involved, see (4.4), the second one depends on the symmetry
of the indices (4,7) and (j,) in (4.31).

Reminding (2.38), derivative in (4.31) can also be written in a more compact
form

1 A -
(4.32) DG (A) = 3 Z Giinj@)Aij.

i,5=1

Moreover note that the fourth-order tensor DG (A)ijh,c presents the major
symmetry

DG (A)ijhk =D (A')hkij i
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In a 3-dimensional space and in the case of distinct eigenvalues, from (4.32)
we get

(433) DG (A)
5 GI(“I)AI®A1 + G’(ag)A2®A2 ER (a3) As®Aj

G (az) — G (a3) 2 G (a3) — G (a1)

o A®A A;3®A
= 3 (ar— ) 23QA93 + IAE 13®A13
G(a1) — G (a %3 i
+ —(1)—(—2)G12A12®A12
{ 2 (a1 — ag)

If we want a matrix representation between the differential and the derivative,
we can write

(4.34) [dG (A) [X]lg, = [DG (A)]g 6 [X]g1

where, for example, by [DG (A)]s ¢ we have denoted the matrix representation
of the derivative in the Voigt notation. In extended form we have

dG11 [ Guinn Gu2 Guss Gres Gusi Gz | | Xn
dGa2 G2211 G2222 G2233 G2223 G231 Gao12 Xoo
(4.35) dG33 _ | Gssu Gaszz Gsssz Gsses Gaszi Gasiz X33
dGa3 Ga311 G2322 G233z G232z Ga3z1 G231z 2Xo3
dG3 G311 G122 G3133 G323 Gz131 G3iie 2X3
dGiz |4 %) LGian Gizze Giass Gizes Guasi Gize | 4| 2X12

Thus the matrix representation of the derivative in (4.33) can be written as

(4.36) [DG(A)lge

I o 0 0 0
%1 oo
) bl 0 0 0
%2 q
o8 o 0 0 0
= 8a3
0 Odega Sie-Gles) 0 0
2 (a2 o a3)
2 (a3 i al) G G
0 0. (70 0 0 (1) — G (ay)
3 2 (a1 — ag)
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For example, if G (A) = v/A, the non-zero terms of the derivative are

1
=2\/_’
¢ _G@)-Gly) va-yG _ 1
W T ema) T mmey) C Vatym

Note that even if a; = a;, the formula in (4.37); is still well defined and gives
the same result of (4.37); and (4.28).

Moreover, we have seen that the eigenprojectors (a; ® a;) can be obtained by
the Sylvester formula in (3.49) without calculating the eigenvectors a;. Unfor-
tunately there exists no equivalent formula for the shear base directions
(a;®a; +a; ®a;). For this reason, according to some authors, see [41], an ex-
plicit basis-free formulation can be computationally convenient.

Then, by virtue of (2.8) and (4.31), see X1A0 [16], we can write

Giii = D (a;)/?

(4.37)

1
(4.38) DG (A) [X] = 1 Z Gij(ai®aj +a;®a;)®(a;®a; +a;®a;) X
ij=1

1
=52 Gy | (2 @2:) X(a; ® a) + (2 @ 2;)X(a; @ ay)]
=T
=) Gij(ai®a)X (a;®a)) = Y Gi; (A;KA;)X
i,j=1 1,j=1
X € Sym.

It is important to note that through the X operator and using the same coef-
ficients Gj;, we have obtained in (4.38) a basis-free expression for the derivative.

4-4. Derivative of Isotropic Lagrangean Tensors with respect to F

Choosing A = FTF we have

ag = X2, a; = ef
and (4.32) becomes
T G L
(4.39) DGy, (FTF) = 5OFTE) ZGUE ®EU,
where
A 1
AR  PP1§ R L
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From (2.40) we have

o (FTF )
(4.41) _(ai‘—) [H] = (FTH + H'F) = 2FTH.
3 L
Now ——= [H] can be obtained just by applying the chain rule in (4.2),
aGL )4 ‘g %
(4.42) X [H] = QZG”E ®E,; (H'F + FTH) .

Note that in (4.42) we have found the value of the derivative for the increment
H, but this value is not given as a product of a fourth-order tensor and H.
But, reminding relation (2.7);, Eq. (4.42) can be also written as

(4.43) aGL g LS [ZaijﬁfjchEfj} H].

Thus we finally get the simplified expression

8GL

(4.44) ZGUEL QFE;,

Moreover, from the expression of F in (3.41) we have

Ai

2+

~ L 1
Klel ®@ef =

h

®e

so that (4.44) can be also written as

(4.46) aGL ZG,,A BL ®E } :
where
(4.47) 1 T e

8 2+26ij ¥ W

Using relations (4.38) and (4.41) in (4.2); we derive the following basis-free
expression:

(4.48) DGy (F)[H] = ) G,EfRE} (HTF + FTH)
7.7
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Using for the obvious relation
(4.49) Gi;El H'FE} = G;;E} FTHE}
we can also write (4.48) in the equivalent forms '

2 G,E/FTRE],

4.50 DG (F)H]= { ¥
e L (F) [H) 2) GyEF RTELFT.
i,J

Reminding (3.41) we have the simplified expressions

2 z; Gi; NEFPREY,
(4.51) DG (F)[H] = i
2 Y Gy \Ef RTELE.
i,j=1

4.5. Deriwative of Isotropic Eulerian Tensors with respect to F

From (4.32) we get

(4.52) ?;fT) [H] = QZG”EE@)EU,

where

(4.53) BE = \/—Q—_i—-z_gj (eF@el +efweF).

From (2.40) we obtain

(4.54) %::T) [H] = HFT + FHT = oFHT.
Then the value of the derivative in (4.2)5 is given by

(4.55) 6GE [H] = ZG,JE%E FH?.

Reminding (2.7)2, Eq. (4.55) can also be written:

OGE

(4.56) H] =

ZG”EE@E F} H.



EXACT REPRESENTATION OF THE DERIVATIVES OF ISOTROPIC ... 119

Hence the derivative is

(4.57) ZGUEE@)E F.
Moreover, because of (4.47) and (3.41) we have

(4.58) Z)\heh ®ef

Bhr=3 A, e B e 8

so that (4.57) becomes

8GE

(4.59) —Z[H] = ZG,JA EE®E

In order to obtain a basis-free expression of the derivative, we can substitute
relations (4.38) and (4.54), in (4.2),

P
(4.60) DGg (F)[H] = 3 G,EF REF (HFT +FH ) ;
i,
Derivative in (4.60) has the two equivalent formulations:
(4.61) DGg (F) [H] = 2) G,;EFREFF =2) G,EF FRTE?.
1, 1,J
The above derivative can also be written as
(462) DG (F)[H] = 2Y Gy \,EFREPL =23 G, \EFL RTEE
i,j 1,J
The basis-free expressions in (4.61) and (4.62) are the Eulerian counterparts of
the ones in (4.50) and (4.51).
4.6. Derivative of R with respect to F

For the sake of completeness we consider the variation of R with respect
to F.

Following for example of PADOVANI [19], from the right polar decomposition
in (3.5) we get

(4.63) 5 [Hl=HU"
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By variation of the identity UU™! = I we also have

1 U
(4.64) 6U [H) = —U“1 4 & (H] Pl
U—l
Substituting the above expression of 55 ° (4.63) we get
(4.65) %% [H] = HU 1 - FU‘laU H UL

If in (4.44) we choose A = FTF and G1= U = VFTF, then 4.65) becomes

(4.66) %—?—[H]zHU‘l RZUUELU“1®FE H

which finally leads to the formula

OR. 5
(4.67) B LF b ZU,]RE i i ®FE

If we remind (3.41) we get

OR

e -1 _
3F =1XU

—1a ~ FEL
(4.68) ZUij)\,;)\j lEg-L@Eij ] :

Using the basis-free expression of g—g— in (4.50)1, Eq. (4.65) becomes

(4.69) %% [H] =HU™' - |2R) U,E{F” IZIEJLU_I} H.

1,

The expression of the derivative is therefore

OR =
(4.70) &5 o~ 18U

2R U,ELFT &E}U‘l} :
1,j

Using again (3.41) we can have a simplified expression of the derivative

OR _ =
(4.71) S5 = 18U -

—1pEgmlL
2) "UiNi);'EFRE] | .
i7j

In the Eulerian frame, following the same reasoning, we could easily get the
above derivatives as functions of V.
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4.7. Time derivatives of Isotropic Tensors

At this point it is quite obvious that we can evaluate the time derivatives
just using the following formulae
G 0 (FTF). ; G 0 (FFT) P

For example, reminding (4.44) and (4.46) from (4.72);, we get the material
time derivative

- (4.73) ZG”EL®FE F ZGU)\ EL®E F.

Moreover, from (4.50) and (4.51) we obtain the basis-free expressions

2y G,EfFTFE] = QEG”)\ EFTEPL,
474) GL(F{)=Gr={
i 25°Gi;ELFTFE; —QZGU)\ ELEFE;.
i,J

In the Eulerian frame we have
(4.75) ZG,,E%E F|F

and the basis-free expressions

23" GiEFF FTE,, = QZGUA EFFTEPL
4.76 Gg = nJ
e 23 "Gi,;EF FF EE = 2ZG,JA ELEFE
i,J

Time derivatives of R follow respectively from (4.67) and (4.68)

4177 R=FU!-

ZU@EZU*@FE&} P

.-:FU_1 — ZUiinA;1E5L®E5L F
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Finally, basis-free expressions are obtained by (4.70) and (4.71)

R =FU™' -2 |R) U,E'FTREIU | F
1,J

= FU™' - |2) U 'EPFEL
1,J
5. CONCLUSIONS

We have introduced a class of isotropic tensor-valued tensor functions which

includes, as particular cases, all the most commonly used Lagrangian and Eulerian

str

ain measures. In the framework of the eigenprojection approach, we provided

a new and simple demonstration of the well-known formula for the derivatives

of

these tensor functions.
Further we have presented formulas for the derivatives with respect to F of

these generalized strain measures in both Lagrangian and Eulerian frames. For
each derivative we gave two different expressions. The first in terms of eigen-
vectors, the second one in terms of eigenbases. Finally, in the same fashion, the
equivalent formulas for the time derivatives are presented.

N =
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