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DETERMINATION OF LIMIT PORE SIZE DISTRIBUTIONS OF POROUS
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The application of the capillary and chain models of pore architecture are proposed in
the paper for determination of limit pore size distributions of porous materials based on the
mercury intrusion curves. They estimate the range of pore sizes in the investigated material. It
is proved that for a given pore size distribution, the capillary model of pore architecture, com-
monly used in the mercury porosimetry, and its chain model, are two limit cases of the network
model of pore architecture, considered in the paper as a proper model for most real porous ma-
terials. For both limit pore architectures, the expressions describing capillary potential curves
have been derived that are the basis for the procedure of determination of two limit pore size
distributions. This procedure has been illustrated by determining the limit distributions for
porous materials made of sintered glass beads.

1. INTRODUCTION

The distribution of pore diameters is the fundamental characteristics of the
microscopic pore space structure of porous materials. It determines the basic
macroscopic parameters of such materials (e.g. the volume porosity, permeability
or the specific internal surface) that play an important role in many physical
and chemical processes occurring in permeable porous materials, e.g. filtration,
transport of mass, transport of the momentum and energy, wave propagation or
chemical reactions [1, 2].

The common method of determination of pore diameters distribution is the
interpretation of capillary potential curves obtained from the measurement of
mercury intrusion into a porous sample [3-5] or from the measurement of the
volume of a wetting fluid (water or ethyl alcohol) removed from the sample (e.g.
by gas extrusion [6]) at progressively increasing pressure. Such an interpretation
is most often based on the assumption that at increasing pressure, the mercury
is intruded against the capillary forces into the pores of decreasing diameter. It
is equivalent to the assumption that the pore structure of real porous material
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can be modelled as a bundle of capillaries with random distribution of diameters.
In that case the Washburn formula can be directly applied to interpretation of
the experimental data. This formula relates fluid pressure with the diameter of
cylindrical capillary in which the meniscus of a fluid is in the equilibrium state.
As a result, the cumulative curves of volumetrical pore diameter distributions
are obtained for porous material. The data obtained from fluid extrusion may
be interpreted in the same way.

The capillary model does not account for situations that often occur in real
porous materials, when the large pores are joined with one another by narrow
necks making it impossible to fill with mercury at the pressure adequate to their
diameter. This is an obvious shortcoming of this model because the volume pore
size distribution determined by using it underestimate the volume of large pores
in a sample, ascribing it to the volume of small pores. As a consequence, the
obtained distributions are charged with a large error. The direct application of
the Washburn formula in the interpretation of the capillary potential curves was
also criticized in papers of other authors (e.g. [7, 8]).

Many attempts have been made to develop the network models of pore space
that would improve the representation of the structure of real porous material
(e.g. [9, 10] for 2D and [11-13] for 3D). They, however, have resulted in a very
complicated description that often needs many computational efforts for carrying
at a simulation of the mercury intrusion.

In the paper we propose to use the capillary and chain models of the pore
architecture for determining the limit pore size distributions in porous materials
on the basis of the capillary potential curves obtained by the mercury intrusion
method. It has been proved that these models of pore architecture are the limit
cases of its network model for a given pore size distribution. Therefore, the
distributions determined by the capillary and chain models define the range of
pore sizes in the investigated material. Such an approach is also justified by
the fact that the accuracy of the mercury porosimetry is additionally limited
by three other assumptions that are accounted for in the interpretation of the
measured data, [8]: 1) the pores are cylindrical, 2) the wetting angle is constant,
3) the pore space remains undamaged during penetration.

The formulas describing the capillary potential curves of a layer of porous
media with the capillary and chain pore architecture have been derived for a two-
side intrusion of mercury. In these expressions the pore size distributions are
present as a functional parameter. Proper selection of this function (e.g. by the
optimization method) makes it possible to obtain the qualitative and quantita-
tive compatibility of the theoretical and experimental capillary potential curves.
This method was illustrated by determination of limit pore size distributions for
the sample of porous material made of sintered glass beads.
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2. MODELLING OF MERCURY INTRUSION INTO A LAYER
OF POROUS MATERIAL

We consider models of pore space of porous materials in which the individual
pores are cylindrical tubes (links) of equal length a and of random diameter D
described by probability distribution (D). Two independent factors determine
the pore space structure of such media: pore (link) diameter distribution (D)
and the way of their connection, the factor which we shall call the pore space
architecture. Consequently, even for the same pore diameter distribution, the
pore space structure may be different. Regarding the pore architecture we shall
distinguish three kinds of models of the pore space structure: the capillary, chain
and network models. In the capillary model the links of equal diameters are
joined in a series to form long capillaries of constant diameters crossing the
whole material. In the chain model the links are randomly joined in series to
form capillaries of step-wise changing cross-section. In the network model, the
randomly connected links form a spatial network.

In the paper we derive the capillary potential functions for a one-side and
two-side intrusion of mercury into a layer of model porous media with the cap-
illary and chain pore architecture. These functions are then applied in the pro-
posed procedure for determination of the limit pore size distributions in porous
materials based on the mercury intrusion curves.

2.1. The one-side intrusion model

To describe the static process of mercury intrusion into a layer of porous
medium we first consider a system in which the porous material with initially
empty pores occupies the halfspace z > 0 and is in touch with mercury occupying
the halfspace z < 0. We assume for the architecture of the skeleton pore space
a chain model. This limits the complexity of the mathematical description of
mercury intrusion into porous materials and simplifies the analysis of influence
of the pore structure on the capillary potential curves.

Provided that mercury does not wet the surface of most materials, under
pressure p the mercury will enter the capillaries of porous halfspace and its
menisci will stop on those links for which the mercury pressure is balanced by
the capillary pressure, i.e. on the links of diameter D that are smaller than
diameter D* definied by the Washburn expression

(2.1) D* =40 cosf/p

where o is the coefficient of mercury surface tension and € stands for the wetta-
bility angle of the skeleton material by mercury.
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Links of diameters satisfying condition (2.1), following paper [14], will be
called critical. They split all links into two classes. The first class is formed
by the supercritical links of diameters larger than the critical one. These links
may be filled with mercury at a given pressure. The other class is formed by
subcritical links with diameters smaller than the critical one, filling of which
with mercury at a given pressure is impossible. Using the proposed nomencla-
ture, we can say that during the intrusion process, mercury fills only the first
few supercritical links of capillaries until the first subcritical link occurs. Due
to the statistical character of the link diameters and the constant value of its
length, the depth of menisci placement in the capillaries will take random dis-
crete values equal to the multiple length of the link. Only in the capillaries in
which the first link is subcritical, the menisci occur on the surface of the porous
halfspace.

Let a function F(z) denote the probability of mercury occurrence at the
depth z of the porous halfspace. We can write

(2.2) F@:%ﬁ

where m,, is the mean number of capillaries in a unit area of the surface of porous
halfspace and m, stands for the number of capillaries in a unit area which are
filled with mercury at the depth z. For z = 0 we have

(23) F0)=1,

and for 0 < z < a function F(2) takes the form

(2.4) ) =7

where

(25) 1= [w(D)ap
o

define the probability of supercritical link occurrence among the first links of the
capillaries. It is equal to the probability of supercritical link occurrence in the
whole material.

Similarly to relation (2.2) we obtain expression for probability F(z — a) of
mercury occurrence at the depth z — a,

Mz—aq

(2.6) Flz~a) ===
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However, the probability of the event that capillaries filled at the depth z —a
are also filled at the depth z is equal to the probability of supercritical link
occurrence among the links joining levels z — a and z. We have

My
2.7 2
(2.7) ot

Taking into account relations (2.2) and (2.6) we obtain the functional equation
for probability F'(z),

(2.8) F(z)=nF(z—a).

Function F(z) has to fulfill conditions (2.3) and (2.4). Therefore, the solution of
Eq. (2.8) takes the form

(z/al+1 7 Ja ¢ N
n or z/a
(2.9) Plef= (2/a]
n for z/a€N

where [z/a) denotes the integer part of the number z/a . It can be approximated
by the upper limit function

(2.10) Fy(2) = n°/*
or by the lower limit function of the form
(2.11) Fi(2) = n?/o*1.

Function F(z) characterizes the mercury distribution in the porous halfspace
during the intrusion process.

2.2. The two-side intrusion model

We apply function F(z) describing mercury distribution in the halfspace of
porous media (2.9) (or its approximations (2.10) and (2.11)), to derive a mercury
distribution function for the two-side mercury intrusion into a layer of thickness
L (Fig. 1). In that case, the mercury intrusion may be considered as a two-
step process: the left-hand side intrusion followed by the right-hand side one
or vice versa. While the supercritical capillaries (composed of the supercritical
links) are filled with mercury completely, the subcritical ones (containing also
the subcritical links) remain partially empty. We shall consider the left- and
right-hand side intrusions into the subcritical capillaries as separate processes,
to determine determine function G(z) of mercury distribution in the layer that
defines the probability of mercury occurrence at the depth z from the surface of
the layer.
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F1G. 1. The two-side intrusion of mercury into a layer of porous material with the chain
architecture of the pore space.

Quantity
(2.12) F(L) =q"

defines the probability of mercury occurrence at the depth L = Na in a ran-
domly chosen capillary (see (2.9)). Therefore, the number m;, of capillaries in
a unit surface area of the layer, completely filled by mercury (the supercritical
capillaries) during the left-hand side intrusion, is given by the formula

(2.13) mp, = moF(L) = mon™.

This means that the number m% of capillaries partially filled with mercury (the
subcritical capillaries) is equal to the difference of m, and mj. We obtain

(2.14) m® = me(1 —gV).

Similarly, the number m? of subcritical capillaries filled with mercury at the
depth z during the left-hand side intrusion process is equal to the difference be-
tween the number m,, of all capillaries filled at the depth z in that process, given
by expression (2.2), and the number my, of supercritical capillaries. Therefore

(2.15) ms = mo(F(z) — F(L)) .

Since the left-hand side and right-hand side intrusions of mercury into subcritical
capillaries of the layer are independent of each other, we can formulate-a.similar
expression to (2.15) for the right-hand side intrusion of mercury. In that case the
number m? of subcritical capillaries filled with mercury at the depth s = L — 2,
taken from the right boundary surface of the layer, is given by expression

(2.16) m3_, = mo(F(L —z) — F(L)) .
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The number m? of all capillaries filled with mercury at the depth z induced by a
two-side intrusion into the layer is equal to the sum of the number of supercritical
capillaries and the number of all subcritical capillaries filled at this depth,

(2.17) ml =mp4+md +mf_, .

Taking intlimitso account that the probability G(z) of mercury occurrence in
the layer at the depth z can be defined as

i
(2.18) G(z) = :’;— ,
from relation (2.17) and (2.13), (2.15), (2.16) we have
(2.19) G(z)=F(2)+ F(L-2)—-F(L) .
For the approximation defined by the lower limit function (2.11) we obtain
(2.20) G(Z) = n(n™? + V=2 — )
where Z = z/L.

Mercury distributions in the layer of porous material for different values of
pressures are shown in Fig. 2.
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F1G. 2. Mercury distributions in the layer of porous material induced by a two-side intrusion
at different pressures.

3. THE CAPILLARY POTENTIAL OF POROUS LAYER

“ We apply function G(z) of mercury distribution in the layer of porous medium
to determine the relation between volume V7 (p) of the mercury intruded into
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the layer of surface area S and mercury pressure p. Such relation is directly
connected with the architecture of pores and their size distribution, and is called
the capillary potential of porous material.

We denote by < z > the infinitesimal layer of porous material of thickness
dz placed in the porous layer at the depth z. Then, the mean volume dv of
supercritical links in the layer < z > is given by the expression

dv="7 D dz
where
o
(3.1) PP % / D*y(D)dD
A

is the average value of the squared diameter of supercritical links.
Quantity (D)/n can be interpreted as the probability distribution of link
diameters in the set of supercritical links. It satisfies the condition

/ (D) /ndD = 1.
>

Taking into account the fact that the layer < z > of surface area S is crossed
by mI S capillaries filled with mercury, the volume of mercury dV contained in
this part of the layer is

dV = mZSdv .

Consequently, the volume of mercury contained in the porous layer of surface
area S and thickness L can be obtained as an integral of the above relation,

oy N

L
(3.2) Valo) = vDDré JEC
0

where B4
Vo = mm,LSD?/4

represents the total volume of pores in the distinguished part of the medium,
whereas D? is the mean value of the squared diameter of all links.
From relation (3.2) we have

L (e}
(33) Vﬁfip) E ;’% / G(2)dz / 9(D)dD
0 I
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where
(3.4) 9(D) = D*)(D)/D?

can be interpreted as the volumetric probability distribution of the diameters
of links. It characterizes the volume fraction of links of various diameters in the
whole volume of pores. Therefore,

0/ 9(D)dD =1 .

Relation (3.3) describes the capillary potential curve of a layer of porous
media for the two-side intrusion of mercury. For one-side intrusion it can be
reduced to the form

L 00
(3.5) VLT(:'”= niL 0/ F(2)dz / I(D)dD .
2.

Using relation (2.20) for mercury distribution in the layer and expression
(2.9), the function of capillary potential (3.3) for the two-side mercury intrusion
takes the form

(3.6) Vilp) _ (—2—1—_”1 % nN~1) 719(1))(11) :
2

Vo N 1_77

and the capillary potential (3.5) for the one-side mercury intrusion can be rewrit-
ten as

o0
Vip)  11-—n"

A o dD;
V2 N 1-1 /ﬁ(D)
D*

(3.7)

The above relations describe the process of mercury intrusion into a layer of
chain architecture of pores. In a special case, when the length of the links in
chains is equal to the thickness of the layer, the chain architecture of pores in
a layer reduces to the capillary architecture. Then N = 1, and from (3.6) and
(3.7) we obtain

(3.8) Vif(p) - / 9(D)dD.
D*
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4. INFLUENCE OF PORE ARCHITECTURES ON THE CAPILLARY POTENTIAL
OF POROUS MATERIAL

Above we have obtained three different functions for the capillary potential of
a porous layer. For the chain model at one-side and two-side mercury intrusion,
these functions are given by formulas (3.7) and (3.6), respectively, and for the
capillary model by formula (3.8). From their form it results that the volume
fraction of pores filled with mercury at a given pressure is defined by the product
of two quantities: the volume fraction of supercritical links in the layer,

o0

/ 9(D)dD ,

D*

and the coeflicient characterizing the degree of filling of the supercritical links
with mercury. This coefficient depends on the pore architecture of porous medium,
on the way of mercury intrusion and number N = L/a of links in each capillary.
Its form determines the difference between functions (3.6)-(3.8) of the capillary
potential. These functions indicate that only in the capillary model all super-
critical links are filled. It is an obvious disadvantage of this model.

The capillary potential curves for the two-side mercury intrusion into a porous
layer with the capillary and chain architecture of the pore space structure are
shown in Fig. 3 (solid curves). It was assumed that the pore diameter distribution
in both cases are described by three parametric rational function of the form

+n . n—1 D))
(4.1) Y(D) = ZLWD:LSIH< 7r) - +((D//D3)m+n .

volume fraction

0 10 20 30 40 50 60
pressure [kPa]

Fic. 3. Capillary potential curves of porous layer for capillary (C), chain (CH) and network
(N1, N2) pore architectures and the same pore diameter distribution.
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This ensures that pore distributions in the ranges of small and large pore diam-
eters are power functions. Parameter m is the power of limit distribution in the
range of small pore diameters (D < D,), whereas n is the power in the range of
their large values (D > D,). Parameters m, n and D, of the distribution function
¥(D) are related to the average values of pore diameter D and their square D2 by

sin(m(n — 1)/(m + n)) D% — D2 sin(r(n —1)/(m + n))

’sin(w(n —2)/(m +n)) ’ ° " T%in(r(n—3)/(m+n))’

W) sy Dissl

Both graphs in Fig. 3 have been drawn up for the same values of parameters of
function ¢(D): m = 3, n = 6, D, = 0.1 mm at N = 30, 0 = 0.485 N/m and
6 = 130°. It means that in both cases the pore volume distributions in the layer
are identical. Therefore, the difference between the capillary potential curves in
Fig. 3 characterizes the degree of their dependence on the pore architecture in
the layer. From Fig. 3 it results that in the whole range of pressures the volume
of mercury intruded into the porous layer with the chain pore architecture is
smaller than the volume of mercury intruded at the same pressure into the layer
with the capillary pore architecture. At the same time both curves are the limit
capillary potential curves which, for a given length and diameter distribution of
links, can have porous media of any net architecture.

In the capillary model all supercritical links of the porous layer are filled
with mercury at a given pressure, whereas in the chain model the number of
supercritical links filled with mercury is minimal due to the lack of connections
between the chains of the links. The occurrence of such connections in a porous
medium changes the chain pore architecture into the network type, and results in
an increased number of supercritical links filled with mercury at a given pressure.
This is possible because of a greater number of ways through which the links can
be filled. Consequently, the capillary potential curves for porous material of the
network architecture have to lie between the capillary potential curves for the
media of the capillary and chain pore architectures and the same pore diameter
distribution. In that sense the capillary and chain models are two limit cases
of the network models. Therefore, the functions of the capillary potential for
both limit cases can be considered as the estimating functions for the capillary
potential of network models.

The two dashed curves in Fig. 3 are drawn to represent the exemplary poten-
tial curves of a porous material with two different network architectures of pore
space, the links of which are of the same length and pore diameter distribution
as the links of the capillary and chain models. It can be seen in Fig. 3, that
capillary potential curves of porous materials depend both on the pore diameter
distribution and on the pore architecture of their pore space.

.
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5. ESTIMATION OF PORE SIZE DISTRIBUTION

The procedure used for determination of the pore size distribution of porous
materials in the mercury porosimetry must be based on a theoretical model
describing the process of mercury intrusion into a porous sample. Its accuracy
depends on the degree of compatibility between the assumed model of pore space
structure and the structure of the investigated material. Due to the complexity
of pore structure of real porous materials, such models are still subject to study.
Therefore, in the standard mercury porosimetry the pore size distributions are
determined using a simple, capillary model of pore space structure.

In this section we will show that the application of capillary and chain mod-
els of pore architecture for interpretation of the mercury intrusion curves makes
it possible to determine the limit pore diameter distributions defining the in-
cidence of real diameter distribution in the investigated material. In our con-
siderations we assume that the network model is a good representation of the
pore space architecture of permeable porous materials and we use the fact that
the capillary and chain models are limit cases of the network model. In this
case the capillary potential curve of a sample of porous material obtained from
the mercury porosimeter can be interpreted as a curve determined for porous
sample of the network architecture of pore space. Therefore, according to the
analysis of the previous section, the measured curve will be contained between
the potential curves for materials of the capillary and chain architectures of
pores and the same pore diameter distribution (Fig. 3). The pore size distrib-
ution could be determined from each of those three capillary potential curves
provided that we use for their interpretation a proper model of mercury in-
trusion. However, in the case of a network model, although we know the ex-
perimental potential curve, we don’t know its theoretical description. In the
two other models the situation is the opposite. The theoretical descriptions are
known whereas the experimental curves of capillary potential are not known.
It means that the exact determination of the pore diameter distribution is
impossible.

Therefore, we shall use capillary and chain models for interpreting the capil-
lary potential curves obtained from the mercury porosimeter. Such a procedure
is interesting because it enables us to determine two different distributions that
limit the range of pore diameter distribution in the porous material. It follows
from the fact that independently of the model of pore architecture, the displace-
ment of the capillary potential curve towards greater pressures (Fig. 3) corre-
sponds to the displacement of the pore diameter distribution towards smaller di-
ameters, and inversely. Therefore, interpretation of the capillary potential curve
of porous sample by means of the capillary model enables us to determine the
lower limit distribution of pore diameters, whereas such interpretation by means
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of the chain model allows us to determine the upper limit distribution. It is a
direct consequence of the fact that the capillary potential curves for the net-
work model of pore architecture lie between such curves for capillary and chain
models.

The pore diameter distributions corresponding to the capillary potential
curves presented in Fig. 3 are shown in Fig. 4. The solid curve (R) represents the
diameter distribution of links used in the previous section to draw the graphs of
capillary potentials for porous samples of capillary and chain pore architectures
(solid lines in Fig. 3). This curve also represents the link diameter distribution
in porous sample of network architecture, the capillary potentials of which are
shown in Fig. 3 by dashed lines N1 and N2. The dashed lines in Fig. 4 were used
to show the limit curves of pore diameter distributions. They were determined
from the capillary potential curves N1 and N2 using expressions (3.6) and (3.8)
for the chain and capillary models of pore architecture and the standard opti-
mization procedure. Lines N1¢ (m = 5.06, n = 8.11, D, = 0.08 mm) and Nlcy
(m = 4.19, n = 5.95, D, = 0.12 mm) in Fig. 4a represent limit distributions
for curve N1, whereas lines N2¢ (m = 3.20, n = 5.51, D, = 0.06 mm) and
N2cy (m = 2.14, n = 4.32, D, = 0.14 mm) in Fig. 4b represent such distribu-
tions for curve N2. The average diameters of links calculated from these distri-
butions are:

Dic = 0.08 mm, Dicy = 0.126 mm,
Dyc = 0.066 mm, Docy = 0.154 mm.

i

04 05 06 07 04 05 06 07
D [mm] D[mm]

Fic. 4. The volumetrical distribution of pore diameters in a porous material (solid lines) and
their limit distributions (dashed lines) determined from capillary potential curves N1 (a) and
N2 (b) shown in Fig. 3.
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Diameters D1¢ and Dyopy estimate the real mean value Dp = 0.1 mm of
pore diameters in a porous sample of network pore architecture for which the
caplllary potential is given by the curve N1 (see Fig. 3), whereas numbers Dyc
and Dacy estimate the value D R in a sample of capillary potential given by the
curve N2.

The developed procedure has been illustrated by determination of the limit
pore diameter distributions for a porous material made of sintered glass beads
of mean diameter 80 um. Points of the capillary potential data determined
by means of the porosimetr Autopore 9220 are presented in Fig. 5a (circles).
Both limit pore diameter distributions are shown in Fig. 5b. Curves N¢
(m = 3.748, n = 20.951, D, = 0.0122 mm) and Ngy (m = 6.012, n = 9.423,
D, = 0.0143 mm) represent distributions obtained from the capillary poten-
tial data of sintered porous material using the capillary (see (3.8)) and chain
(see (3.6)) models of pore architecture, respectively, and the standard optimiza-
tion procedure. Solid lines in Fig. 5a are the capillary potential curves obtained
from (3.8) and (3.6) for parameters of diameter distributions determined in the
optimization procedure. They illustrate the accuracy of description of the ex-
perimental capillary potential curve by theoretical functions obtained for both
models.
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F1G. 5. The experimental capillary potential data ((a) circles) of a porous sample made of
sintered glass beads and the corresponding limit pore diameter distributions (b) determined
by means of capillary and chain models of pore architecture.

6. CONCLUSIONS

It has been shown that the capillary model of pore space architecture, com-
monly used for interpretation of experimental data of the mercury porosimetry
and its chain model, are two limit cases of the network models provided that they
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have the same pore size distribution. It has been proved that capillary potential
curve for a medium with network pore architecture is always placed between such
curves for the media with capillary and chain pore architecture. For both the
limit models, simple expressions for the capillary potential have been derived.
They describe the capillary potential curves for a layer of porous material for
two-side mercury intrusion. They are proposed to be used for determining the
limit pore size distributions defining the range of pore sizes in the investigated
material. The capillary model enables determination of the lower limit distrib-
ution of pore diameters, whereas the chain model determines their upper limit
distribution.
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