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DEFORMATIONS - HYPERELASTIC MATERIALS CASE

A Ziotkowski

Institute of Fundamental Technological Research
Polish Academy of Sciences

Swiqtokrzyska 21, 00-049 Warsaw, Poland

The present work is directed at evaluation of the simple shear test for identification of
constitutive behaviour of materials submitted to large deformations. For that purpose, actual
experimental conditions together with theoretical background of the test are analyzed on the
example of two hyperelastic material models. Advantages and disadvantages of various strain
and stress measures used for presentation of simple shear test (SST) results are analyzed. The
most often presented as the only result of “standard” SST proof chart, i.e. shear nominal stress
« shear nominal strain (0512\/) — 7/2), characterizes the material energetically in the sense that
it reveals its capacity for elastic energy storage dW/Vo = agv)d"/. However, it characterizes
the constitutive behaviour of the material only partially, since it is equivalent to shear II
Piola Krichoff stress « shear Green-Lagrange strain (ag) - ng’) chart, within the large
deformations context. This data alone does not even allow to reconstruct the shear Cauchy
stress « shear spatial Hencky strain (! « 6(102)) chart for the tested material. In order to
take full advantage of the constitutive information available from simple shear test, it is highly
recommended to extend the experimental methodology of “standard” SST proof in such a way
as to determine simultaneously two components (shear and normal) of nominal stress tensor
in the same SST proof. Such experimental information allows for subsequent recalculation of
non-symmetric nominal stress tensor components into Cauchy stress components.

Key words: simple shear, large deformations, hyperelasticity, identification of constitutive
behaviour.

NOTATIONS

Bo, B: undeformed configuration (initial; reference) and deformed
configuration (actual),
dA, da initial and actual cross-sectional area with direction vectors
N and n, respectively,
dft, dF'=F~'df* actual force operating on cross-sectional area nda, force
“pulled back” to reference configuration,
unit direction vectors of initial and actual cross-sectional areas,

N, n
x position vector of material point in actual configuration,
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position vector of material point in reference (initial)
configuration,
displacement vector,

fixed orthonormal coordinate frames defined in actual

and reference configuration,

deformation gradient,

material rotation tensor,

right stretch tensor,

left stretch tensor,

deformation parameter,

determinant of deformation gradient,
eigenvalues of stretch tensors (principal stretches),
material principal directions,

spatial principal directions

instantaneous angle between v, and E;,
instantancons angle between v, and e,
deformation gradient velocity tensor,

velocity gradient tensor,

deformation velocity tensor,

work increment per unit reference volume

of undeformed material,

Hencky strain tensor,

Biot strain tensor,

Green Lagrange strain tensor (C = U?),
“nominal” strain tensor,

small strains tensor,

spatial (rotated) Hencky strain,

spatial (rotated) Green Lagrange strain,
Cauchy, Biot, II Piola-Kirchoff,

Nominal, I Piola-Kirchoff stress tensors,

@ =dft/n da (aff) = df!;/da:),

o™ = dft/N dA (o5} = o770 = dft /dAs),
a® = dF'/N dA,

actual force component in direction e; operating
on cross-sectional area with direction vector e;,
actual cross-sectional area with direction vector e;,
initial cross-sectional area with direction vector E;,
pressure,

volumetric part of strain,

energy function of elastic material,

energy function of incompressible elastic material,
length of deformation path,

width of deformation path,

thickness of deformation path,

simple shear test.
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1. INTRODUCTION

Experimental setup of the simple shear test (SST) with two symmetric de-
formation paths is sketched in Fig. 1.

A thin sheet of specimen piece is fixed in a rigid jig. The specimen is specially
designed to deliver two symmetric deformation paths. In earlier experimental lit-
erature, asymmetric layout with only one deformation path dominates. However,
symmetric layout ensures better precision of measurements, results in smaller
asymmetric loadings in the testing machine and in this way, it allows for its
prolonged longevity. It also allows for applying less stiff and in this way, less
massive grips in comparison to traditional layout with one deformation path,
which is advantageous in dynamic tests. The deformation scheme is outlined in
the inset. The loading force Fj (t) and deformation parameter - (¢) are registered
in a “standard” simple shear test.

Simple Shear Test (SST) is more and more commonly applied for experimen-
tal identification of constants and functions of constitutive models describing
the behaviour of rubberlike materials [7], elastic-plastic materials — metals (6],
polymers [4] and recently also biological tissues [3]. The SST is used in quasi-
static and dynamic proofs at small and large deformations imposed during the
proof [6].

The SST proof growing popularity results from the fact that in a relatively
simple technical way it allows to investigate the response of the material sub-
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Fic. 1. Simple Shear Test — scheme of experimental setup with two symmetric deformation
paths.
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mitted to multiaxial, non-proportional in the stress space loading. The SST
kinematical scheme of deformation results in continuous rotation of principal
axes of the stress tensor. The SST is especially well suited for industrial investi-
gation of material properties of “flat” semi-products in the form of sheets, tapes,
etc. submitted to strictly defined series of production technological operations.
The reason is that test specimen preparation for a SST proof is limited only
to cutting of the prescribed shape, without any additional handlings (thermo-
mechanical treatments) not taking place in a standard technological production
cycle. When necessary for the test specimen preparation, such additional oper-
ations can easily influence e.g. microstructure of the specimen material and in
the effect, they can lead to erroneous values of material properties determined
on the basis of tests in which such specially handled specimen were used.

The simple shear test, besides its growing popularity, seems to be insuffi-
ciently analyzed in view of effective identification of the material properties.
There exists a rich theoretical literature (see e.g. [2], recently [1]) devoted to
investigation of hypoelastic formulation of constitutive relations and its compat-
ibility with hyperelastic formulation for materials submitted to large deforma-
tions, in which the SST results are recalled. The knowledge of the costitutive
relations governing the material behaviour is assumed to be known in advance
in these works. They in principle contain only a comparison of theoretical curves
obtained for various assumed constitutive model formulations — various corota-
tional rates of stress in hypoelastic formulation, and usually do not contain any
experimental curves.

In majority of experimental works aimed at determination of the material be-
haviour and model parameters, the most often presented results of SST proof are
the experimental stress-strain charts labelled on the axes “shear stress”, “shear
strain” even, if strains attained in the proof reached numerical values of 40-50%.
In more carefully prepared experimental works, the chart delivered as the typical
result of SST proof is labelled on the axes “nominal” shear stress — ag) Versus
“shear strain” — + [4]. However, deformation parameter 0.5, being the compo-

nent ES) of a small deformations tensor, in the case of large deformations is the

component Eg) only for the Green Lagrange strain tensor, which is not work-
conjugate with the nominal stress tensor (see Table 1). In the case of other strain
measures, e.g. logarithmic E(°) = In(U) (Hencky) strain or E(!) = U — I (Biot)
strain, the components Eg) are nonlinear functions of the loading parameter ~.
In order to characterize constitutive properties of the invesigated material, in
material description, it is necessary to prepare charts of the corresponding com-
ponents of work-conjugated pair of strain and stress tensors, hence in the case of

(2)
1

component E}5" of the Green Lagrange strain there should be given component

ag) of the II Piola—Kirchoff stress tensor.
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There exists a gap between theoretical and experimental works discussing
the simple shear test when large deformation are induced in the tested mater-
ial. In theoretical works on constitutive relations the none or few experimental
conditions of the SST proof for verification of theoretical concepts are discussed,
while in experimental works the theoretical knowledge on the SST proof in finite
deformations regime is rarely taken into account. The present work is directed
at filling this gap. In the present work we will formulate an interpretation of the
chart agg) +— v for a simple shear test, and we will analyze applicability of SST
proof to identification of material properties, simultaneously taking into account
the theoretical and experimental conditions.

2. HOMOGENEOUS PROCESS OF SIMPLE SHEAR

Homogeneous deformation of simple shear is defined by the following formula

21) x=(X1+vX2) e +Xoe,+ X3
& 1=X1+7Xy, z2=2Xo, x3=X5,
where x and X denote position vector of the material point in actual config-
uration B; and in reference (initial) configuration B, — respectively, v denotes
the deformation loading parameter. The {e,}, {E;} denote fixed (laboratory)
orthonormal coordinate frames defined in actual and reference configurations
(see Fig. 2). In the present paper the vectors g;, E; have the same physical direc-
tions (e; = E;), and we on purpose distinguish them by large and small letters
in order to make it easier for the reader to immediately distinguish the material
(defined on reference configuration) and spatial (defined on actual configuration)
geometrical objects - strain and stress measures.
Undeformed

Configuration
Initial; Reference)

Deformed
Configuration
(Actual)

Es €3

FiG. 2. Basic concepts used for description of finite deformations of materials.
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Tensor of deformation gradient F = 02;/0 X; ¢; ® E; in the case of simple
shear has the form

(2.2) F=¢ ®E +e,®E, +te;®E; +7e; ®E,.

The theorem on polar decomposition of the second order tensors ensures the
existence of unique representation of tensor F in the form F = R U =V R,
where R = 2A(e; ® E; + e, ®E,) +v A(e; ® E; —E; ®e;) is called the material
rotation tensor (RTR = I); A = (4 ++°?)~Y/2. Symmetric positive-definite ten-
sors U = (ETF)Y/2 and V. = (F ET))!/2, called right and left stretch tensors,
have the following forms in the case of simple shear deformation, when expressed
in fixed coordinate frames

[ 24 vA 0
U= |74 (2+7%)4 0 | E; QE;
L0 gt g
(2.3)
[ (2+7%)A yA 0]
V= 4 24 0 ]| 88y
i 54 o714

The spectral decomposition theorem ensures existence of the following represen-
tations of tensors U and V

(2.4) QzZ)\igi@Dgi, Y_=Z)\a!a®ga.

The scalars A\; = A, > 0 called principal stretches, eigenvalues of the char-
acteristic equation det(ET_F_ — A%2I) = 0, have the same values for tensors U
and V

- M=+ VEA+12)/2,  d=1h=(—y+VE+22)/2,  M=1,
‘ ’)’=/\1—/\2:)\—/\_120.

Corresponding to them eigenvectors u; and v, are called material and spatial
principal directions of stretch tensors U and V. (v; = R u;, I =1,2,3). During
simple shear deformation they constantly rotate, and their instantaneous location
is described by the following formula

tan(20r) = —2/7, /A O, <y 24
(26)
tan{20m )= 2/(-, 0 <0 <7/4,

where 0], denotes instantaneous angle between u; and E;, while g denotes in-
stantaneous angle between v, and e,, fr denotes instantaneous angle between

the respective Lagrangian and Eulerian principal axes (see Fig. 3).
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FiG. 3. Homogeneous simple shear. Location of Lagrangian u; and Eulerian v, eigenvectors
with increasing deformation parameter . On the right, initial (y = 0) and final (y = o)

positions of vectors u;, v, are shown.

In Fig. 3b, the initial (v = 0) and final position (y = 00) of material »; and
spatial v; principal axes is shown. We have also indicated the direction of their
motion with the growth of deformation (v,). Simple shear deformation is an
isochoric deformation as J = det(F) = dv/dV = py/p = 1.

2.1. Strain measures at large deformations

Hill introduced a family of material strain measures defined on the reference
configuration by the formula (2.7);

ef™ =R EM™ RT = (V™ - I)/m.

oy EUS@-Dm mz0 EO=h@,  m=o
2.7

The Green-Lagrange E®® = 0.5(C — I), Biot E") = (U — I), Hencky
E© = In(U) strains are all the material strain measure tensors. Corresponding
to them spatial strain measures defined on actual configuration (generalized Hill
measures) are based on tensor V (see (2.7)2). It is convenient for purposes of
the present paper to introduce “nominal” strain tensor E(N ) = (F — I) work-
conjugate in the sense of Hill (see (2.8)5) with the tensor of nominal stress g)
in order to be able to characterize the material energetically. In a general case,
the tensor E(N ) does not satisfy the requirements posed on the strain tensor
appropriate for describing large deformations namely invariance with respect to
rigid rotation. Similarly, the small strains tensor E®) = 05(F+FL —21) is also
not invariant with respect to body rotation. Formula for various strain measures
components expressed in fixed and principal axes (rotating) reference frames
valid for a simple shear test are listed in Table 1.
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All large deformation strain measures specified in Table 1 converge to the
small deformations tensor E®®) = (v/2) (E; ® Ey + E; ® E;) when the loading
parameter 7 tends to zero.

Spatial (rotated) Hencky e = R E(® R” = In(V) and Green-Lagrange
E® =05 (g2 —I) strain tensors components, expressed in a fixed laboratory
coordinate frame as functions of deformation parameter «, are shown in Fig. 4.
It is interesting to note that while the shear component of Green Lagrange strain
Eg) is linearly growing with increasing v, the shear component of spatial Hencky
strain reaches maximum at v = 3.02 and then diminishes with further increasing
of v, when expressed in a fixed laboratory reference frame.

a) 2 T T
Strain ©) In(4) |7
n(V)=—== eQ®e
nly) Ja+ 22 ety

4 — &9, \
e(o)" \

e,
Gamma
-2
0 1 2 3 4
b
) 8 T T
Strain 110
E?=050U%-I)== [y 72] E ®E;
6 - 2 ¥
4 7
e, E(2)12
2l s -2 E(2)11
/
- E(2)22 /
o B
Gamma
-2
0 1 2 3 4

FiG. 4. Spatial (rotated) Hencky ¢® = R E® R” = In(V) and Green Lagrange E® =
0.5(U? — I) strain tensors components, expressed in a fixed laboratory coordinate frame,
as functions of the deformation parameter .
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We would also like to note that while the “volumetric” part of Hencky strain
tensor gives a null value e§,°) = 0 in accordance with the physical situation
of incompressibility in the case of simple shear deformation, the “volumetric”
part of the Green Lagrange strain is not zero E,(,2) # 0. Hence, in the case of
this last measure the description of “volumetric” and shear effects are coupled.
Independent the theoretical description of material behaviour of these two types

of effects is difficult by means of the Green Lagrange strain measure.

2.2. Stress measures at large deformations

Together with the family of strain measures (2.7)1, HILL [5] introduced also
the concept of work-conjugate with them family of stress measures, in order to
enable a coherent description of the behaviour of various materials. It can be
shown that the following measures of stress and the strain measures are work
conjugated in the sense of Hill

(2.8) W/ = Jtr (6OD) = tr (@VEM) = tr (c@E?)
=t (Q(N)E) =tr (Q(IPK)ET)’

where W/ Vb denotes the work power per unit reference volume of the unde-
formed material, D = 0.5(L + L) is the deformation velocity tensor, L =
ov/ox = m is the velocity gradient tensor, F is the deformation gradient
velocity tensor, 0@, ¢V, g@ gN) gUPK) denote the Cauchy, Biot, II Piola
Kirchoff, Nominal, I Piola Kirchoff stress tensors — respectively, dot denotes usual
material derivative. It can be shown (see e.g. [7]) that various stress measures
are linked together by means of the following formula

o = 0.5 (c®@U + Ua®), ¢ = JE @O E,
(2.9)
SR J(g(o))TE_T, o) = JF-1g©),

Formulae (2.9) are valid for any constitutive material model, isotropic or anisotro-
pic. In order to evaluate the usefulness of a simple shear test for identification
of the material properties, we will limit our attention in the sequel to isotropic
elastic materials undergoing large deformations. Behaviour of such materials is
completely known if we know the form of elastic energy function W = W (),
which must be an isotropic function of principal stretches A;. It can be shown
(see [7]) that then the Cauchy stress tensor o () must be collinear with tensor
V and takes the form (2.10);. Comparing the increments of elastic energy once
expressed by elastic energy function W, and next by the work of external forces
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(2.10)2, the following formula can be obtained for principal values of the Cauchy
stress tensor expressed in terms of derivatives of function W

(2.10) {g<0)=_6_W— oOv,®v;  i=1,2,3,

ag(o) 0; 'V
oW oW
W = = (0) 0 _
d (6/\ ) d\i = Jtr(ao D)} {O’,L e }

Corresponding formula for other stress measures are obtained with the aid of
relations (2.9)

o =o' w0 u, o® =0y @
™ =My, ® vy Akl Uz(IPK)V ®u,,
(211) M 1,0 _ W (2) AL
SRR s e sl= /\-_2 (0) =t
o} JN\; oy o g; JA; "o i,
o _ oW
% o\’

2.8. Identification of material parameters — Discussion

Simple shear test belongs to the class of biaxial tests, as all components a§;) =

0, j = 1,2,3 are identically equal to zero (plane state of stress). In this case
only two principal values of stress tensor remain non-zero and only two principal
stretches of the strain tensor can be varied independently. Hence, in SST proof
a complete identification of the elastic energy function W in the most general
case of elastic isotropic material is not possible. It is possible for certain special
subclasses of isotropic materials, e.g. isotropic, incompressible, elastic materials,
since in this case elastic energy function W depends on only two independent
principal stretches W(/\l,)\g) = W (A1, A2, /\1_1)\2_1) (using J = A;A2A3 = 1). The
principal values of various stress tensors in the case of incompressible, isotropic
material are determined with accuracy to the Lagrange multiplier p; and can be
expressed by the following formula

o0 _ g1 ( iE)W > i ABS ow

y N sosio A

(2.12)
@@l ) _ W
B Pein O

It results from the fact that application of any hydrostatic pressure p does
not influence the strain state of the incompressible material.
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It is worth to note here that the SST proof can be also useful for investi-
gation of the behaviour of compressible materials (J # 1) when the volumetric
behaviour of the material can be separated from the shear behaviour (such a
situation takes place for metals in a broad range of pressures). Then SST can
serve for determination of “shear part” of the elastic energy function W in full
analogy with the case of incompressible materials, while the “volumetric part”
must be identified with the aid of additional volumetric test.

The Cauchy stress tensor o(® has a simple physical interpretation of its
components ag-)) =d fj /da;, where d itj denotes the force component in direction
e; operating on the cross-section area with direction vector e; (see also Fig. 2).
The strain measure work conjugated with the Cauchy stress is the spatial Hencky
strain tensor e(?). This strain measure in a “natural” way uncouples description of
the volumetric and shear deformation effects, what suggests that using this pair
for theoretical description of incompressible materials behavior is particularly
advantageous. This can be easily illustrated by analysis of components of the
strain measure tensors e® and E® in the case of investigated here simple
shear deformation. This deformation is isochoric, as det(F) = 1. In accordance
with physical conditions, the Hencky strain tensor e(®) immediately reveals no
volumetric changes tr (e(?)) = 0, but trace of the Green Lagrange strain tensor is
non-zero tr (E(Q)) # 0. This suggests that in the case of this later strain measure
description of the shear and volumetric effects is mutually coupled (cf. Table 1).
Direct experimental determination of components of the Cauchy stress tensor is
in experimental practice difficult and thus expensive, as it requires measurement
of actual cross-section areas da;. If the deformation gradient F is known with
good approximation, it is more convenient and economically justified to measure
experimentally the variation of forces d itj (7) and measuring only the initial cross-
sections dA; = const, on which these forces operate. Such experimental data
allow to determine the components of nominal stress tensor 0§N) = UgPK) =
d itj /dA;. Inverted formula (2.9)4 enables the determination of the components
of Cauchy stress tensor from the components of nominal stress tensor

0 N 0 0 N N
L a5 BHT g R,

0 0 0 0
(213) iy =o oy, kst
N N
oly) = dffy/dAs, ol = dffy/dAs.

In the above formula, for determination of component ag(l)), the so-called uni-
versal relation was used, which is valid for each material remaining in the class
of isotropic hyperelastic materials (see e.g. [7]). Please note that even for re-
construction of relation of the Cauchy shear stress, spatial Hencky shear strain

agg) — egg), the relation ag) « /2 is not sufficient, cf. (2.13)2. In order to
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reconstruct the Cauchy stress tensor components from the nominal stress ten-
sor components, experimental determination of at least two components of the

(N) (N) .

nominal stress tensor namely o5’ and o’ is required.

We are now in a position to deliver the interpretation of agg) + v experimen-
tal curve, specified the most often as a result of SST proof within the context of
large deformations. Firstly, using the formula (2.8)s, it can be stated that such a
relation determines the capacity of elastic energy storage of the investigated ma-
terial subjected to a SST proof, in the class of hyperelastic materials, regardless
of the specific constitutive relation that the material obeys. For any hyperelastic
material submitted to a SST proof Fia = % is the only non-zero component of
the deformation gradient velocity tensor and dW/Vp = oig)d'y. Secondly, using
the formula (2.9)2 and (2.9)5 (g® = g ™ F ~T) and special form of the defor-
mation gradient F, it can be shown that for any material submitted to a SST

proof O'g21) = 0&2) Hence, the relation ag) — /2 is equivalent to the rela-

@, E( )in a large deformations regime (see also Table 2). Hence, this
relatlon characterlzes not only energetic but also constitutive behaviour of the
material in this sense that it is the characteristic of the corresponding stress and
strain components of a work conjugate pair of stress and strain tensors. How-
ever, this relation constitutes only a part of information, which can be obtained
from the SST proof and not to be easily interpreted, as the second Piola Kirchoff
stress tensor does not have any simple physical interpretation. We shall under-
line again that this information is insufficient to reconstruct from it a convenient
connection ag) o egg) which has clear physical interpretation. In order to ob-
tain convenient constitutive information about the material behaviour available
theoretically from the SST proof, the shearing and normal forces dfé, (y), dféy ()
must be simultaneously measured in the simple shear test.

We will now illustrate how important it is to determine experimentally two
components of nominal stress in the SST proof. The stress response of two
“known” — in the sense that their constitutive relations does not have to be iden-
tified — incompressible (J = A Ag2A3 = 1) isotropic elastic materials submitted
to simple shear deformation are shown in Table 2.

The first material model with elastic energy function W, = 0.5G [(A\1)? +
(A2)?+ (A3)% — 3] is used for description of the behaviour of rubberlike materials
(in the sequel we will refer to this model as a “rubberlike” material). The con-
stitutive law of this material model, when expressed in terms of work-conjugate
pair 0@ e (9 (Cauchy stress—spatial Hencky stain), is nonlinear. It is inter-
esting to note that the same law, when expressed in terms of not work-conjugate
pair (9 « e (Cauchy stress«>Green Lagrange strain), gives a linear rela-
tion 0'( ) = 2Ge . The second material model with elastic energy function
Wy =G [In(A\)? + 111(/\2)2 +1n(X3)?] is often used for description of elastic shear

tion gy
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behaviour of metals. In the sequel we will refer to this model as “metallike” mate-
rial. The name “metallike” is used because real metallic materials never undergo
large elastic shear strains, instead they start to flow plastically. The constitutive
law of “metallike” material model, when expressed in terms of the work-conjugate
pair a® — e is linear a® = 2Ge©® in Eulerian description. It is nonlin-
ear when expressed in terms of @ — E ) conjugate pair in the Lagrangian
description.

Various stress measures components for “rubberlike” and “metallike” material
constitutive models of incompressible, hyperelastic, isotropic materials resulting

a) A
aterial
— 26 -E?, Yy
— 0‘2)11’26 'E(Z)11
21— oP,06-EP,
» E?) = 4.5
6 _ n(A) [-7B+y7) 2417
6P,y = -11.9 e YT E; ®E;
-2
0 1 Strain components 2
b)
4
Stress components ¥ e =3 Rubberlike
material
— 02,126 - E?,
— 09,4/2G - E?
R 0@ ,12G - EP,, 5
09 = 4.5
0. ‘
E‘(z’zl[: 7:|E'®E’ £= —}’2/2 }'/2 E,@E
2y 1 i e IR 1
0‘2)11 T 4.5
-2 .
0 1 Strain components 2

Fi1G. 5. Normalized component-wise stress response of two materials submitted to simple

shear deformation loading expressed as functions of the respective strain components of work-

conjugate strain measure in material description, II Piola—Kirchoff stress +» Green Lagrange

strain 0 /2G — E®, a) “metallike” material - elastic energy function Wa, b) “rubberlike” ma-
terial — elastic energy function Wh.
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Fic. 6. Normalized component-wise stress response of two materials to simple shear defor-

mation loading expressed as functions of respective strain components of work-conjugate

strain measure in spatial description, Cauchy stress < rotated Hencky strain _q(o)/ 2G — e,

a) “metallike” material — elastic energy function Wa, b) “rubberlike” material — elastic energy
function W;.

from the energy functions Wi, Wa expressed in fixed and principal (rotating)
reference frames for simple shear test are listed in Table 2.

In Fig. 5a normalized (with shear modulus 2 G) component-wise stress re-
sponse of two materials to simple shear deformation loading is presented as a
set of functions of the respective work-conjugate strain measure in material de-
scription (IT Piola Kirchoff stress and Green Lagrange strain; o(®) /2G « E®).
In Fig. 5a response is shown of “metallike” material characterized by elastic en-
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ergy function W, and in Figure 5b response is shown of “rubberlike” material
characterized by elastic energy function Wi. In Fig. 6a and 6b analogous curves
are presented in spatial description (Cauchy stress and rotated Hencky strain
a0/2G & ),

In the case of a rubberlike material described by the elastic energy function
W1, considerable pressure builds up —p = tr (a(?)/3 = (a{‘” + 050) +0)/3 =
G~?/3 during simple shear deformation (see Table 2). No volumetric strain e, =
tr (e(?)/3 = 0 accompanies this pressure, as from the definition the material
is incompressible (see Table 1). In the case of “metallike” material described by
the elastic energy function W, the pressure within the material remains zero
(p = 0) during simple shear deformation. Experimental measurement of only
one component of the nominal stress tensor O’ézlv) during a “standard” SST proof
does not allow to determine these differences in constitutive behaviour of the

materials.

3. NON-HOMOGENEOUS PROCESS OF SIMPLE SHEAR DEFORMATION —
EXPERIMENTAL LAYOUT

In the SST proof it is not physically possible to ensure a completely homo-
geneous deformation in the whole specimen. The reason for that is generation of
a rotational moment M = Fy; - Hy where Hy denotes width of the deformation
path. The only possibility for balancing this moment is a non-uniform distri-
bution of normal force fi, along the axis e, (see Fig. 7). Measurement errors
resulting from non-uniformity of the strain field can be well evaluated by per-
forming a modelling simulation of SST proof by the finite element method. These
errors can be minimized by increasing the ratio Lo/ Hy of gauge length of the
sample to its gauge width. G’Sell |4] recommends a ratio Lo/ Hy > ~ 15, in order
to limit the measurement errors of strain resulting from non-uniformity to a few
percent at deformation parameter « value of several units. The other important
requirement imposed on overall dimensions of the specimen for simple shear test
is stability of the specimen for buckling. Estimates of G’Sell |4] indicate that the
ratio of specimen width to its thickness should exceed Hy/Go > ~ 3 (when the
condition Lg/Hy > ~ 15 is fulfilled) in order to avoid buckling of the specimen
deformation path.

The present work studies allowed to formulate the following recommendation:
it is important to design grips for the SST proof specimen in such a way as to
prevent the slip of the specimen not only in the shear direction («g), but also
in the normal direction ( «27), since in the case of some materials there may
develop considerable normal stress in the course of simple shear deformation (see
Table 2, “rubberlike” material).
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LI,

Rigid grip

Lo N2

FIG. 7. Schematic drawing of non-homogeneous distribution of normal force df$,(X1) in
simple shear test ensuring mechanical balance. .

4. CONCLUDING REMARKS

In “standard” at present Simple Shear Test (SST) proof there are measured
and recorded shear force as function of deformation parameter gamma dfa;(7y)
and initial cross-section on which shear force operates dAs. These data enable
determination of relationship agv) > 7, i.e. variation of component ( «j27) of the
nominal stress tensor (non-symmetric) versus the deformation parameter . This
relation constitutes at present a standard result of the SST proof. Its interpreta-
tion in the large deformations regime brings about certain difficulties as to what
information it reveals. The theoretical analysis performed herein indicated that:

e the area under the curve ag) < /2 determines, in the case of hyperelastic
materials, the elastic energy stored within the tested material as a result of simple
shear deformation. Hence this relation characterizes the material energetically
(dW/Vo = 013 dv);

e the relation o§’2")
tion og) — Eg) (component (« g7 of the II Piola Kirchoff stress tensor versus
component ( «9») of the Green Lagrange strain tensor) within large deformations
context. This interpretation is valid only, when with a good approximation, ho-

mogeneous deformation takes place in the gauge section of the specimen. Hence,

— /2 in the case of SST proof is equivalent to the rela-

the relation (agév) - v/2) & (ag) o g)) carries also information about the
constitutive behaviour of the material but in an inconvenient form (II Piola Kir-
choff stress does not have any clear physical interpretation) and only a partial
one — possible differences in the behaviour of tested material resulting from vol-
umetric effects can not be evaluated. An attempt to transform the relationship
ag) < /2 to the convenient relation agg) — egg) — component («g) of the
Cauchy stress versus component («2) of the rotated Hencky strain, having a
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clear physical interpretation is impossible due to lack of knowledge of component
ag) of the nominal stress tensor, cf. (2.13),. This component can be evaluated
if normal force dff,(t) would be recorded, cf. (2.13)¢, which is not the case in
the standard SST proof. Due to that reason, further technological development
of the SST proof experimental technique is strongly recommended in such a way
as to measure in a standard manner two forces: shear — dff; and normal — dff,.
Only this kind of measurements will allow to present this proof results in a phys-
ically clear and convenient form. Namely, the relations between components of
the Cauchy stress versus respective components of the logarithmic strain.

The simple shear test allows to determine the material behaviour in response
to deformation involving rotation of the principal axes of strain. There arises a
natural question: to what other proof results should the SST proof results be
compared. It seems that the best suited for that purpose is the pure shear test
(PST), since in both of these tests, at the same stage of deformation expressed
by the same value of deformation parameter -y, the (corresponding) principal
strains have the same values, and the only difference between these two schemes
of deformation is that in the first case principal axes rotate and in the sec-
ond case they are fixed during the whole deformation process. Comparison of
results of these two tests will enable us to evaluate how different evolution of
microstructure influences the behaviour of the tested material.
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