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In this paper, we study some characteristics of the peristaltic motion of an incompress-
ible micropolar fluid through a circular cylindrical tube. Many authors have investigated the
peristaltic motion of non-Newtonian or viscoelastic fluid through a channel or tube due to
the relevance of peristaltic action in both mechanical and physiological situations. For exam-
ple, peristaltic mechanism may be involved in vasomotion of small blood vessels. Here the
microstructural effects on the pressure rise, average flow and friction force are investigated.

1. INTRODUCTION

In recent years, the mechanism of peristaltic pumping i.e., the transport of
a fluid by a wave of contraction and/or expansion propagating along the walls
of a tube or channel has received much attention of the researchers because
of its applications to some mechanical and physiological situations. For exam-
ple, peristaltic motions are involved in the transport of spermatazoa in cervical
canal, celia transport through the ductus efferente of the male reproductive or-
gan, functioning of ureter and expansion or contraction of small blood vessels.
Several authors have contributed to the peristaltic transport of Newtonian and
non-Newtonian fluid through tubes or channels. In reference [1], peristaltic trans-
port of inertia free, Newtonian flows driven by sinusoidal transversal waves of
small amplitude has been studied. The closed form solutions for peristaltic waves
of long wavelength and arbitrary amplitude are obtained in paper |2]. While, the
effects of fluid inertia and wall curvature and allignment on peristaltic flow pat-
terns and pumping flow characteristics have been investigated in paper |3]. Some




4 K. N. DEY, S.PORIA, H.P. MAZUMDAR

authors [4, 5, 6] have studied the shear thinning and shear thickening effects on
the peristaltic transport of non-Newtonian fluids. In paper [7], the peristaltic
transport of a power-law fluid has been studied in reference to the ductus effer-
entes of the reproductive tract. The peristaltic transport mechanism, in the case
when viscosity of transported fluid is shear-dependent and direction of mean flow
can oppose the direction of wave propagation in presence of a zero or favourable
mean pressure gradient has been analyzed in reference [8]. The vasomotion of the
small blood vessels, considering blood as a viscoelastic fluid has been discussed
in paper [9].

In the present model, we treat blood as a suspension of particulate matter in a
microscopically continuous media. The theory of micro-fluids, which are applied
to flow in rhelogically complex fluids, such as liquid crystals, polymeric suspen-
sions and animal blood was developed in reference [10]. A subclass of these fluids
which can support couple stresses and body couples and exhibit microrotational
effects and microrotational inertia are termed micropolar fluids [11]. In effect, we
investigate the peristaltic transport of a micropolar fluid through a circular tube
under long wavelength approximations. Microstructural effects on the pressure
rise, flow rate and friction force are determined.

2. ANALYSIS OF THE PROBLEM

We consider here the peristaltic transport of a simple incompressible microp-
olar fluid through an axially symmetric circular tube (Fig. 1). Since the walls of
the tube are executing sinusoidal wave motion due to peristalsis, the geometry
of the tube wall is given by

P L
RLX 1P =8 +bsm{/\(X ct)

= @ [1+esin-2—/\7£(X—ct)] ;

Here o’ is the mean radius of the tube and ¥’ is the amplitude of the wave,
€ = a'/b'(< 1) is the dimensionless amplitude of the wave. a’(1 + €) and a’(1 —€)
are, respectively the maximum and minimum disturbed radii, A is the wave-
length, ¢ the phase velocity, ¢ is the time and X is the axial coordinate. The
wavelength A is assumed to be much larger than the radius a’ of the tube ( i.e.,
a’'/X < 1). Now it is convenient to use the moving coordinate system (r,z) trav-
elling with the wave so that » = R, z = X — ct where (R, X) is the stationary
coordinate system. Let (U, V') and (u, v) be the velocity components, respectively
in the stationary and moving coordinate system, then

(2.2) U= V=v+e

(2.1)
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FiG. 1. Tube geometry.

Now, using very long wavelength approximation and neglecting inertial terms,
the equations of continuity and momentum in cylindrical polar coordinates, are

given by (following [11])
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where p, is the viscosity of the fluid, w is the suspending particle rotation, K,
is the relative rotational viscosity and v, is the viscosity gradient of the total

rotation.
The boundary conditions are chosen, as
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From Eq. (2.4) it is seen that p is independent of r and we may treat the

pressure p as a function of z only, p = p(x).
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Integrating Eq. (2.5) and using the boundary condition (i) of (2.7), we obtain,

v r Bp
(2.8) (o + Ky )8 5

Substituting dv/dr from (2.8) into (2.6) we get the differential equation
for w as

+ Kyw = —

2
(2.9) 7“2(2 = 88— — (8% + 1)w = Ar®.
where
K, + 2#1})K'u K ]. ap
2.10 2 & h2) Ky @ D gl il
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On using the boundary conditions (iii) and (vi) of (2.7), we obtain the solution
of the differential Eq. (2.9) as

(2.11) PrLm . BP[ 211_(@]

2(Ky +241,) 0z |~ BTo(Bh)
where 3 is given in (2.10) and I,(z) is the modified Bessel function of order n.

Putting the value of w from (2.11) in (2.8) we get the differential equation for v
as

ov K dp 2L(Br)] rop
Gl L K”)ar 2(K, + 2uy) Oz [T BIo(Bh)| 20z
Integrating Eq. (2.12) and using the boundary condition (i) of (2.7) we obtain
FEoidgy 2(po + Ky)
2. B S e o ) e
() e RTST 4(iy + Ky) Oz [(h A (K,,+2pv)
4K, {Io(ﬁr) Iy (Bh) H
(K +2u,) 2 Io(Bh) '

With the assumption that the observer is moving with velocity ¢, the flow
rate ¢ in the moving coordinate system is given by

h
(2.14) g= 27r/rvdr.
0

Substituting the value of v from (2.13) in (2.14) and performing integration,
we obtain

(2.16) ' g —moh? = ™ dp [ po + Ky o 4 8K, h

4(:“‘1) + Ky) 5; K, +2u, Ky + 2p, ﬂQIO(ﬂh)

: {.;.Il(ﬁh) 4] glo(ﬁh)H ¥
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Integrating equation of continuity (2.3) with respect to r and using the
boundary conditions (2.7), it can be shown that ¢ is constant with respect to z.
In the stationary coordinate system (R, X) we may write

h
V=v+e, Q:27r/VRdR=27r/(v+c)rdr.
0
Thus
(2.16) Q = q + mch?.
Taking the average over one period,
1 7 1 ’
(2.17) Q= X/Qdm 8 /(q + mch?)dz.
0 0
s . .. 2m . y
Substituting h = a’ |1 + esin % i (2.17) we obtain
i 3 52
(2.18) Q = q+ mca’ (1 + 7) ;

The pressure drop Ap = p(0) — p(A) across one wavelength is the same
whether it is measured in the fixed or moving coordinate system, given by

(2.19) / it Y

Here Op/0x can be determined from Eq. (2.15). On using Eq. (2.19) we
determine pressure drop as

- J —mea'” [ 1 EE) + mch?
(220) Ap= e t+K) / ( j 2 . b
0 ah!+ 8b5210(ﬂh) {311(5’1) - 510(5’1)}
where
(2.21) = 'uv—_”(i, e Ky : /32 = (Ky + 2u) K,y c
K, + 2,“11 K, + 2;1,1, (/‘v L Kv)

The frictional force F' at the wall in the stationary coordinate system which
is the same as in the moving system across one wavelength is given by

A

(2.22) F=- / nhQZ—p dz.
0
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On using (2.15), (2.16), (2.18) and (2.22) we obtain easily

i 52
A — mea' (l -+ 5) + mch?
(223)  F =4(po + Ky) / -

1
o ant 8t {6 - Sa(sn) |

where a,b, 32 are given by (2.21).

dz

3. NUMERICAL RESULTS AND DISCUSSION

For numerical computations we use the values for y,,, K, and v, (following [12]
and [13]) as p, = 0.8, 1, 1.4 c.p., K, = 0.82, 0.98,1.14 c.p. and v, = 12 x 1078
g. cm/s. The values of a,c and e are chosen as (see references [8] and [14])
a' =09 cm, ¢ =0, 50, 100, 150 cm s~ ! and € =0, 0.1, 0.2.

We compute the flow flux, pressure rise and friction force from Egs. (2.15),
(2.20) and (2.23). The integrations in (2.20) and (2.23) are done numerically.

The variation of pressure rise with Q are illustrated in Figs. 2 and 3. In Fig. 2,
the profiles are shown for different p,, e.g. u, = 0.8, 1, 1.4. Here the value of K,
is taken as K, = 0.98. It can be seen from Fig. 2 that pressure rise decreases as
Q increases and the maximum pressure rise occurs at zero flow rate. It is also
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FIG. 2. Variation of —Ap/A with Q for different g, .
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seen that zero pressure difference across a wavelength is achieved around Q = 5.
It is also observed that the pressure rise with @ is shown for different K, e.g.
K, = 0,0.82,1.14. The value of u, is taken as u, = 1. It seen in this figure
that the pressure increases with the increase of rotational viscosity K,. Thus the
microstructural effect increases the pressure for a given value of Q.
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F1c. 3. Variations of —Ap/\ with Q for different K,.
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The variations of flow rate with wave speed c¢ are illustrated in Fig. 4 and
Fig. 5. In both the figures the value of —Ap/\ is taken to be 0.05. In Fig. 4 the
profiles are shown for different y,, e.g. u, = 0.8,1.4 with fixed k,(0.98) and they
are shown for different K,, e.g. K, = 0,0.82,1.14 with fixed u,(1.0) in Fig. 5.
For each profile it is seen that @ is minimum at ¢ = 0. As the wave speed is
increased from 0, it is expected that the mean flow rate will increase, as it does in
Fig. 4 and Fig. 5. In Fig. 4, it is seen that the flow rate decreases with increasing
the viscosity of the fluid p,. It is also seen from Fig. 5 that the flow rate is larger
for Newtonian fluid (K, = 0). As the rotational viscosity K, increases, the flow
rate is seen to be reduced. Thus for a given wave speed ¢, the microstructural
effect reduces the flow rate.
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F1G. 5. Variations of Q with C for different K,.

In Fig. 6 and Fig. 7, the dependence of the mean flow on occlusion is shown
when Ap/A = 0.05. The occlusion number ¢ = b/a measures the degree of
occlusion of the peristaltic wave. In Fig. 6, the variation of Q on € is shown for
different pu, (e.g. py = 0.8,1.4) and in Fig. 7 it is shown for different K, (e.g.
K, = 0,0.98,1.14). In both the figures we see that @ is minimum when ¢ = 0
Le., when the tube does not deform. Then as € increases, the mean flow rate
increases steadily towards its positive limiting value at full occlusion.
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Figures 8 and 9 show the variation of friction force (—F) with Q for dif-
ferent p, (e.g. py = 0.8,1,1.4) and for different K, ( e.g. K, = 0,0.82,1.14)
respectively. The variation of friction force at the wall is found to be similar to
that observed in the case of pressure rise. The friction force (— F) decreases with
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F1G. 9. Variations of —F with Q for different K.
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the increse of Q. In Fig. 8 it is interesting to note that the friction force (—F)
is greater for p, for Q < 2.5 (approximately). Then for Q > 2.5, the effect is
reversed. Similar features are noticable in Fig. 9 for the variation of rotational
viscosity K.

Variation of (—F) with @ for different € is shown in Fig. 10. It is observed
that the friction force (—F') increases with the increse of amplitude of the wave €.
The rate of increase is higher for higher e.
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F1G. 10. Variations of —F with Q for different e.
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