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FLOW THROUGH POROUS MEDIA INDUCED BY AN IMPERVIOUS
ROTATING DISK IN THE PRESENCE OF MAGNETIC FIELD
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The flow of an electrically conducting viscous incompressible fluid, due to an infinite im-
pervious rotating disk bounded by porous medium is discussed. It is assumed that the flow
between the disk and the porous medium is governed by Navier-Stokes equations and that in
the porous medium — by Brinkman equations. A uniform magnetic field is applied in the direc-
tion normal to flow. At the interface (porous medium - clear fluid boundary), a modified set
of boundary conditions is applied. Analytical expressions for the velocity and shearing stress
are calculated and effects of various parameters upon them are examined.
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1. INTRODUCTION

In recent years, the requirements of modern technology have stimulated the
interest in fluid flow studies, which involve the interaction of several phenomena.
One such study is presented, when a viscous fluid flows over a porous surface,
because of its importance in many engineering problems such as flow of liquid
in a porous bearing (JOSEPH and TAO [1]) and porous rollers, and its natural
occurrence in the flow of rivers through porous banks and beds and the flow
of oil through underground porous rocks (CUNNINGHAM and WILLIAMS [2]).
DARCY (3] initiated the theory of the flow through a porous medium and later
on BRINKMAN [4] proposed modifications of the Darcy law for the flow through a
porous medium. The flow of viscous fluid over the porous medium is divided into
two regions, namely, the Region I where the fluid is free to flow and in Region II
where the fluid flows through the porous medium. To link flows in two regions
certain, matching conditions are required at the interface of two regions. This
type of couples flows, with different geometry and with several kinds of matching
conditions, have been examined by several authors, viz. JONES [5], JOSEPH and
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TAo0 [6], SINGH and GUPTA [7] and PADMAVATHI and AMARNATH [8]. SRIVAS-
TAVA and SHARMA [9] discussed the flow and heat transfer of a viscous fluid
confined between a rotating plate and a porous medium, by assuming that the
flow in the porous medium was governed by BRINKMAN equation [4] and that
in the free flow region - by the Navier-Stokes equations. The subject of hydro-
magnetics has attracted the attention of many authors, due not only to its own
interest, but also to many applications to the problems of geophysical and as-
trophysical significance. It is desirable to extend many of the available viscous
hydrodynamic solutions to include the effects of magnetic field, for those cases
when the viscous fluid is electrically conducting. In view of its wide applications
in industrial and other technological fields, the problem of flow near a rotat-
ing disk has been extended to hydromagnetics initially by KATUKANI [10], and
SPARROW and CESS [11]. Also, WATANABE and OYAMA [12], and KUMAR et al.
[13] studied MHD flow near a rotating disk. Recently, ARIEL [14] studied the
computational analysis of MHD flow near a rotating disk. This analysis aims
at a quantative assessment of coupling effects as these evolve in the motion of
viscous liquids around and through liquid-saturated porous materials. The for-
mulation is developed and applied to obtain the variation in the velocity and
shearing stress as these evolve in ground flow induced by a rotating disk in the
presence of magnetic field. Further the flow in clear fluid region is governed by
the Navier-Stokes equations and the flow in the porous medium by the Brinkman
equations [4].

2. FORMULATION OF THE PROBLEM

We consider the flow of an incompressible, viscous, electrically conducting
fluid confined between an impervious rotating disk and a porous medium fully
saturated with the fluid in the presence of magnetic field. Let (r,6,z) be a set
of cylindrical polar co-ordinates and let the disk rotate with angular velocity §2
about an axis r = 0 and be represented by the plane z = d, the interface by
z = 0 and the porous region by z < 0. The problem we consider here may be
represented geometrically by Fig. 1.

The basic equation of magnetofluid dynamics and conventional fluid dynam-
ics differ by only an additional force term due to electromagnetic field. The
Maxwell equations have to be satisfied in the entire field. In order to derive the
basic equations for the problem under consideration, the following assumptions
are made:

1. The flow is steady and laminar and the magnetic field is applied perpen-
dicularly to the plane of the disk.

2. The fluid under consideration is viscous, incompressible and finitely con-
ducting with constant physical properties.
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3. The magnetic Reynolds number is assumed to be small enough so that the
induced magnetic field can be neglected.

4. The Hall effect, electrical and polarization effects are neglected.
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FiG. 1. Schema of the flow configuration.

Under these assumptions we write the continuity and the Navier-Stokes equa-
tion for clear fluid region between z = 0 and z = d (Region-I) in the presence of
magnetic field as

ot

where the third term on the right hand-side of Eq. (2.1) is the Lorentz force due
to magnetic field B, and is given by

(2.2) JxB=o.(vxB)xB,

(2.1) p[él+(v.V)v =-Vp+uViv + (J x B)

(2.3) Vv =0

respectively, where p, u, p, V2, o, are respectively the density, viscosity, pres-
sure, the Laplacian operator, electrical conductivity of the fluid and v is the
velocity vector at any point. The porous region z < 0 is called Region II and in
this region the flow is governed by the Brinkman equation [4] and the equation
of continuity given by

(2.4) 0 =—VP+pv2v—‘ikX+(JxB),
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(2.5) Vv =0

respectively, where k is the permeability of the porous medium, i is the effective
viscosity of the porous medium and v, P are the velocity vector and pressure
at any point in the porous medium. Let u,v,w be the velocity components
in the directions of 7,0, z, respectively in the Region I and the corresponding
components in the Region II are U, V,W. Then the boundary conditions of the
problem are:

w=0,.. . v=rQ, . w0, absedi—vdy
(2.6)
U—-0, V=0, as z — —oo.

The porous material containing the fluid is a nonhomogenous medium and
there can be numerous in homogeneities present in a porous medium. The porous
material offers resistance to the fluid velocity, therefore at the interface the veloc-
ity may not necessarily be continuous. Using this fact, the boundary conditions
at the interface of porous medium and clear fluid have been investigated by
WILLIAM [15] who has shown that the velocity and pressure of clear fluid region
are equal to the product of porosity with velocity and pressure of porous region,
while the shearing stresses of clear fluid region are proportional to the shear-
ing stresses of the porous region. Using these interface conditions, SRIVASTAVA
and BARMAN [16] studied the flow of a non-Newtonian fluid (second-grade type)
confined between a rotating disk and a porous medium. At the interface of the
porous medium and clear fluid z = 0, the boundary conditions in our notation
can be written as

(2.7) ui=.0l v =@V, w = PW, p = ¢P at usEsl;

ou oU ov oV
0T U S M

where ¢ = i/ is the porosity of the medium and ) is a positive constant.

(2.8) ab ik =10,

3. EQUATION OF MOTION

We assume the following form of velocity components for Region I:
B1)  u=r2f'(y), v=rgy), w=-2d0f(y), p=-ulpi(y),
(3:2) y = z/d,

where primes in Eq. (3.1) denote differentiation with respect to y. The forms
of the velocities in Eq. (3.1) are so chosen that the equation of continuity (2.3)
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is satisfied. Writing Eq. (2.1) in cylindrical polar co-ordinates and substituting
(3.1) in it, we get the following equations of motion in the direction of r and 6,
respectively:

R[(f")? —2ff/ — g% = f" — M2f",

(3.3) :
2R(f'g - fg'] = ¢" — M?qg.

where
R (Reynold’s number) = p?y,

0. B2d?

M (Hartmann number) = 7

The equation in the direction of z serves merely to determine the axial pres-
sure gradient and hence it is not given. Assume the following form of velocity
components for Region II:

34) U=rQF'(y), V=rRGy), W=-2d2F(y), P=—-uRP.(y).

The forms of the velocities in Eq. (3.4) are so chosen that the equation of
continuity (2.5) is satisfied. Again, writing (2.4) in cylindrical polar co-ordinates
and substituting (3.4) in it, we get the following equations in direction of r and
0, respectively:

FII/ 25 (02+M2/¢)FI . 0,
(3.5)
G" — (0® + M?/$)G =0,

where
o(Darcy number) = d/(k)'/2.

The boundary conditions (2.6) can be written as:

fi=F =0 "lgmle—at-g=1

(3.6)
F' -0, G =0, as y — —o00.

Conditions (2.7) and (2.8) at the interface can be written as:

f'(0) = ¢F'(0),  g(0) = ¢G(0),  £(0) = $F(0),

(3.7)
f"(0) = ApF"(0), ¢'(0) = ApG'(0).
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4. SOLUTION OF THE PROBLEM

The solutions of (3.5) satisfying the boundary conditions (3.6) are given by:
(41)  F'(y) =4  F(y) =(A/)?+C,  Gly) = B

where 8 = /(0% + M2/¢).

The constants of integration A, B and C can be determined from match-
ing conditions (3.7). In our present effort we make the small Reynolds number
approximations to the viscous equations. We consider the distance d between
the rotating disk and porous interface as small, hence Reynold’s number may be
also taken small. For small values of R, a regular perturbation scheme can be
developed for Eq. (3.3) by expanding f and g in powers of R as

(4.2) o= Y B s g Y R
n=0 n=0

As f and g have to be matched with Egs. (4.1) at the interface, the constants
A, B and C must also be expanded in powers of R as

oo o0 o0
(43) A=) R'A,, B=) R'B,, C=) R'Ca
n=0 n=0

n=0

Using this perturbation scheme, the solutions of Egs. (3.3) for Region I are
given by:

(4.4) f'(y)/R = [agezMy + age MY | g5 + ageMY + a7e'My] ;

(4.5) fY/R= [agezMy — age” MY 4 IMasy + 2age™Y — 2a7e~MY

+2M¢A1/,3+2MC1¢—20,6 + 2a7 — a3 +a4] /ZM,

(4.6) 9(y) = a1eM¥ + ape™™Y,
and solutions of Eq. (4.1) in porous medium are given by :

dyM + dsM + 2a3M — 2a4M} B
$(AB + diM + d3 M) ’

47) F'(y)/R = [

(4.8) F(y)/R = [dzM + dsM + 2a3M — 2(14M} By

dB(AB + di M + d3M)
+ [ag —a4 + a3e2M + a4e_2M —2Mas — 2a66M

+2a7e™™ + 206 — 2a7 — 2M$A; /6] /2M ¢,
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2M
4. -2 By
ek 60) = | sgmrr e g e
where
blog AB+ M
LT NB((eM — e M) + M(eM + e M)’
31 M- \B
27 XNB((eM — e M) + M(eM + e M)’
e a3 _ 2a1a9
03——W§, a4=—m—2» as = M2
A doM + dyM + 2a3M — 2a4 M
1 =

(f)(/\,B +diM + d3M)

Ci= [a3 ={a4 +aged™ 4ale M-I dMas = 2age™
+2aze” M + 2a6 — 2a7 — 2M ¢ A, /B] /2M ¢,

ag = —pA1d; + da, a7 = ¢pA1d3 — dy,

e—-M
di = —F——sr;
(M — =)
B agle M= M) L gqufe™M < e~ 2M) 4 gg5(e~M — 1)
2 -FE (CM 10 e_M) )
M
e
d3 s (CM g e_M),
S az(eM — M) + ay(eM — e M) 4 ag5(eM - 1)
b otsg 5ty )

Now, once knowing the velocity fields, we can calculate the shear stress compo-
nent at the rotating disk and it is given by:

(4.10) [Tr)e=1 = p2rf"(y)/d = p2rRf{(1)/d

where
(1) = 2Maze™ — 2Mase™?M + MageM — Maze™M.

It is worthwhile to point out that the above solutions include the results of the
previous investigations. If we take M = 0 in our investigation and a = 0 in
the work of SRIVASTAVA and BARMAN [16], the results of both the studies are
comparable to one another.
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5. DISCUSSION AND CONCLUSIONS

The investigation of the velocities and shearing stress of the steady flow of
a viscous, incompressible, electrically conducting fluid in porous medium induced
by a rotating disk in the presence of a transverse magnetic field has been carried
out in the preceding sections. This enables us to carry out the numerical com-
putations for the velocities and shearing stress at the rotating disk for various
values of the Hartmann number M and Darcy number o. The values of A and
¢ are consistent with those suggested by WILLIAM [15], while the values of M
and o are selected arbitrarily. The Eq. (4.8) gives

(5.1) F(y)y > RE as z— —o0

where

E [as(1 +e*M) — ai(t e M) — IMas

~ 2M¢
—2ag(e™ — 1) + 2a7(e™™ — 1) — 2M A, /8],

which shows that the axial velocity component at large distance from the inter-
face does not vanish. The axial velocity component in the porous medium at a
large distance from the interface bi given by

(5.2) W (—00) = —2d2RE.

Taking A = 1.5 and ¢ = 0.5, the graphs of radial and transverse velocity com-
ponents in porous medium against distance from the interface are presented in
Fig. 2 for different values of M and o. It is observed that the radial (F'/R)
and transverse (G) velocity components decrease exponentially as we enter the
porous medium. They decrease with increase in both the magnetic field param-
eter M and o. The flow in the porous medium in the radial and transverse
direction reaches maximum value at the interface and decays exponentially as
we enter inside the porous medium, vanishing at a large distance. Hence we con-
clude that when the magnetic field is strong, the radial and transverse velocity in
the porous medium decrease. This decay is greater for transverse velocity than
that for the radial velocity component.

We have plotted the graph of axial velocity in porous medium (Fig. 3) for
different values of parameters. It is observed that the axial velocity decreases
with increasing o and increases with increasing M. It is also observed that the
axial velocity component increases as we enter the porous medium and attains a
constant value at large distance from the surface. A boundary layer is formed at
the interface, whose thickness increases with the increase of strength of magnetic
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field and decreases with the increase of o, the Darcy number. This velocity is
present in the porous medium at a large distance from the interface and there
the fluid moves towards the interface to maintain the continuity of flow as the
rotating fluid is thrown out radially due to the centrifugal forces. The effect of
magnetic field terms is an increase of the magnitude of this axial velocity. Hence
it may be concluded that the rotation of a disk near a porous medium fully
saturated with the fluid extracts the fluid from the porous medium. This fact
may be used by geologists to extract the fluid from the porous ground or rocks.
06
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F1G. 2. The radial (F'/R) and transverse (G) velocity components in porous medium
for A = 1.5 and ¢ = 0.5.
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Fig. 3. The axial (F'/R) velocity component in porous medium for ¢ = 0.5 and A = 1.5.

In Table 1 we have presented the values of shear stress component at the
rotating disk. From this table it is seen that they increase with an increase in
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both o (the Darcy number) and M (the Hartmann number). It is also found
that when the values of Hartmann number M is doubled, the shearing stress
increases rapidly for the same values of o.

Table 1. The shearing stress component [f'(1)] for A = 1.5 and ¢ = 0.5.

Moo= | o =3
1:7150:.23541¢4 0.3373
2 | 0.8956 | 0.9135
3 | 2.0087 | 2.0117
4 | 4.3829 | 4.3835
5 | 9.7608 | 9.7609
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