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The paper presents the results of numerical analyses of certain properties of plane stress
discontinuity lines systems, which are specific for the Oyane condition, and do not appear when
one assumes other yield conditions, such as Huber-Mises or Tresca conditions.

The results have been obtained by applying general algorithms that do not require for-
mulating any individual relationships. The algorithms aid solving problems for any boundary
conditions, of practically any type, which can be met in the problems of construction of dis-
continuous statically admissible fields, mainly the limit fields. In the assumed formulation, the
solution consists in finding initially the fields arising around isolated nodes of stress disconti-
nuity lines, and then integrating the fields into two-dimensional complex fields.

Application of these algorithms makes it possible to quickly find all the existing solutions
of the stress discontinuity lines around the nodes, at the same time eliminating the need of
forecasting (guessing the solution), which until recently was the main difficulty in solving each
new complex field.

Physical justification of the Oyane condition is beyond the scope of this work.
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NOTATIONS

a, indexes of homogeneous stress state regions on physical plane,
{a} global plane system,
{€ }(°‘) local plane system associated with principal stress directions
in homogeneous region a,
opl  yield point of material without pores (material of skeleton),

Vy

Vo + Vs
the volume of skeleton of isotropic porous material),

L stress discontinuity line,
£#  line separating adjacent regions a and S,
o  stress tensor,

fo  porosity ratio (f, = , where: V, is the volume of voids, and V;

0ij stress tensor components in homogeneous region a (i,7 = 1,2),

oi principal stresses in homogeneous region « (i = 1,2),
p stress vector,
w  stress parameter (w € [0, 360] or € w [0,180] ),

(a) . Y
w  stress parameter w in homogeneous region a,
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(«) (8) :
{w,w} parametric spaces,
@ stress multiplier in homogeneous region « ((.%) € [0,1]),
angle of principal stresses in homogeneous region «,
defined in system {a}; it is the angle that the a;
axis makes with the direction of the larger principal
stress component,
unit vector normal to line £&? directed towards
outside of region a (e*? = —e?®),
angle determined for direction of e, defined
in system {a},

QP =1,2; ¢*f = 1,2,3,4 families and subfamilies of stress discontinuity line £,
¢*? =1,3 are assigned to Q*¥ =1,
and ¢*** = 2,4 are assigned to Q** = 2,

Ay = A'y((w) @ , @*?)  function expressing the angular parameter that
determines versor e*?, defined in local system
{ €} (Ay € [0,27]), B region adjacent to

®)  (a)
Ap = A (( ), (m, QP )= ¢ — ¢  function expressing differences between the angles

of principal stresses in adjacent homogeneous regions a
and f3, defined in local system {¢}(® (A¢ € [ = 71-] ),

A
() 2 3
Av =yt —pa-be angle between lines £2~1* and L2+
A region of existence line £;

Aa ,a+1 ) (a+1

admissible subregion of variability @ , w ’ obtained for

the settled values: (w) (5), N,

I interval of existence line £,

Pl("‘,& admissible interval of variability @ obtained for

N
the settled values: (1), (w) N,

0 angle between outer stress discontinuity lines
of field around node,
N number of homogeneous regions in field around node.

1. INTRODUCTION

1.1. Introductory remarks

We will consider plane, statically admissible, discontinuous stress fields, which
are piecewise homogeneous, and whose stress discontinuity lines £ are segments
of straight lines. Application of such fields is based on the lower bound the-
orem which is known from the limit analysis. The fields can be applied to
finding a lower bound of the limit load causing plastic yielding of structure ele-
ments of a given shape, or for approximate shaping of these elements
(W. SzczEPINSKI, [1]).

In both formulations, only the boundary conditions are given, and one needs
to find the statically admissible stress field, inscribed within the boundaries,
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which in each point fulfils the assumed yield condition, or at least guarantees
that this condition is not exceeded. These formulations are characteristic for the
method known under the already well-recognised acronym of SADSF.

It is worth noticing at the very beginning that the set of unknowns in such
problems consists not only of stress components in the homogeneous regions
and the co-ordinates of the line nodes, but it also includes the system of stress
discontinuity lines itself — as this system is not given a priori. If one assumes it
arbitrarily, then for the given boundary conditions the solution might not exist,
and in most cases it does not exist. The solution exists only for some particular
line systems, depending on the boundary conditions; however, one cannot find
any formulae, which would express this dependence ([8, 9]). In other words, at
the start point, even the system of conditions, which one should formulate for
solving the boundary problem, remains unknown.

The mentioned fact explains the greatest difficulty that appears in any prob-
lem concerning construction of stress discontinuity line systems. It explains why,
among other things, these systems have been solved, for many decades, by pos-
tulating and verifying the solution, and the attempts of formulating the problem
in an algorithmic form have failed for such a long time.

The author was encouraged to undertake the analysis of stress discontinuity
line systems in porous media by the results reported in works [4, 5|. In these
works, the line systems were assumed a priori on the basis of already-known
solutions, but those had been obtained for the Huber-Mises yield condition.

The aim of the work was to examine the specificity of properties of the system
of discontinuity lines, which appear for the Oyane condition in a plane stress,
and which do not appear in the case of the Huber-Mises and Tresca conditions.
The results presented here have been obtained during testing general algorithms
for the analysis of stress discontinuity line systems [9], while the Oyane condition
was substituted to these algorithms.

These are the algorithms, in which discontinuous statically admissible stress
fields are treated as certain abstract objects, which are described exclusively by
the systems of conditions that define such fields. For this reason, the objects have
only those properties that result from the mentioned conditions. Introducing any
further-going assumptions usually leads to wrong results, for example it may
cause that some roots of the solutions are lost.

1.2. Qutline of the investigation method

The equilibrium equations formulated for each line £ separating homo-

geneous states of stress (3), @ in adjacent regions « and [ of the statically
admissible field have the form (see Fig. 1 [8, 9])
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Fic. 1.

(1.1) (65-05) e=0 (ii=12a%8 §29),

where e is a unit vector normal to £%#. One can see that the system is homo-
geneous, so that non-zero solutions exist if

(@)  (B)

(1.2) det |0;; —045| =0.

The other set of conditions is the content of solutions e; in the domain
(0 < (e;)? < 1), which — when considering ( 1.2) - leads to two conditions:

(e) (8)

OAA — OAA (a) (8)
§ < —=<1 (o (03
(1.3) s il o
05— 04

(@#pB; j,A=1,2; A—isnot summed)

set for A=1and A = 2.

Condition (1.2) is called the equality condition of existence of line L8 while
conditions (1.3) are known as the inequality conditions determining the domain
of solutions of the system (1.1). In the limit fields, the yield condition is also
added, while in non-limiting ones the inequality condition is applied.

It can be noticed that among the above-mentioned conditions, none is de-
termined on the parameters determining either the number of lines £%#, or the
structure of link system of these lines. In fact, we deal with the problem in which
the system of conditions is not given beforehand.
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In this situation, which apparently might seem hopeless, one could find a
positive solution, anyway. Discontinuous stress field does not need to be treated
as the field consisting of homogeneous regions separated by stress discontinuity
lines. Its other universal components could also be the fields around nodes, and
these can be solved by creating universal algorithms, as shown in work [9].

For the algorithms, the essential matter is to have at one’s disposal the yield
condition in a parameterized form. The aim of parameterization is not only to
reduce the set of variables but, most of all, to create the possibility of constructing
appropriate mapping and being able to generate beforehand the domains (1.3),
what determines the efficiency of numerical procedures.

The Oyane yield condition [2, 4, 5] for plane stress state can by written in
the form:

(1.4) n(fo)(01 + 02)* + (01 — 02)® = 4k°6(f,).
The functions of the porosity ratio: 8(f,), n(fy) are defined as follows:
1 1+4a
0=(1- 4, a= ) n= )
1 B apen
v

while the constant k = op/ /3 is equal to the yield point of the skeleton material
under pure shear.

Condition (1.5) will by satisfied identically if we express the stress compo-
nents o1, o9 as functions of the parameter w:

= -'Ekvo(fv)

S
n (fv)

cosw + sinw

(15)

B 5

o2 = zk+/6 (fv) L n—(lf;—)cosw — sinw

and substitute there z = 1.

In the formulae (1.5), w is a parameter from the interval [0, 180]") (the values
from the remaining interval can be obtained by swapping the indices of principal
stresses), and z is a multiplier from the interval [0,1], which allows us to take
into account also non-limit states of stress.

The limit curve obtained for the condition (1.5) is shown in Fig. 2 (curve 1)
along with the inscribed ellipse (curve 2), which is analogical to that obtained for

UBy convention, the values of w are expressed in degrees, and it is important when we use
formulae (1.5), or convert degrees into radians. However, w is only a parameter, which generally
has no meaning of an angle. For this reason, it is written as a number.
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the Huber-Mises condition, but proportionally scaled down. Both curves were
determined for a particular value of porosity ratio f, equal to 0.29181982753,
actually accepted in the investigation in order to facilitate inputting the data.
At the same time, this value represents such a level of voids in the material, for
which the porosity effect is well visible.
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Next to this figure, the plots in Fig. 2b present graphical interpretation of the

conditions of existence (1.3) obtained in the space {(:J), ((f))} when (1.5) is substi-
tuted into (1.3). This is the region of existence A determined in the mentioned
space for the Oyane condition and for the assumed f,,.

As it can be seen, the region has a rectangular shape, as in the case of Huber—
Mises condition, but this time, with Oyane condition, the size of the region is
variable and depends on porosity ratio f,. For f, = 0, the region is identical
with that for the Huber-Mises condition (broken line), but with increasing f,
one of the sides of the rectangle becomes shorter, while the other expands. For
example, with the assumed value of f,,, the coordinate of the lower vertex shifts
from w = 60 for material without pores, to w = 66 for the porous one.

In the following part, we will consider the fields around the nodes (Fig. 3), in
which homogeneous regions « are enumerated with consecutive natural numbers

&) o) (o)
1..N, and whose states of stress are represented by (w), ¢ (a =1..N), where ¢

is the angle of principal stresses in region «. The parameter @ from Fig. 2b will

then have the meaning o

Substituting the parameterization equation (1.5) into the equilibrium equa-
tions, and taking into account the equality condition of existence (1.2), we obtain
recursive formulae for the functions:

(1.6) A= A ((:)), (a(;l), Qa,a+1) il ((5)), (a(jl),qa,aﬂ) _
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Figure 3b illustrates the meaning of these functions. One can see that A¢
is the angle of principal stresses in the region a + 1 measured with respect to
the axis £; of the system {¢ }(0‘) associated with the directions of principal stress
in the preceding region «. In turn, Ay is the angular parameter of the unit
vector e, normal to line £%**1, and measured with respect to the same axis of the

system {£}(®).

g (8.9 gt - AHB, B, g*)
‘iﬁk ’ ,a.n+| Ay(d (aﬂ) a'a“)
T s {5 4005 8, g

2 vm

a—l a

A ((a 1) (a) a-l.a)

F1G. 3. a) Boundary conditions and graphical formulation of the problem for field around
node; b) notations used in local systems {£}(®).

We omit presenting functions (1.6) in explicit forms. The functions are very
complicated and difficult to transform, so it is better to leave them in the form
of the algorithms, and analyse them numerically.

In formulae (1.6), the parameters of line families £%%*! are denoted with
Q = 1,2, while ¢ = 1,2, 3,4 pertains to their subfamilies. In fact, these are the
indices of the roots. The values Q@ = 1 and Q = 2 refer to ¢ = 1,3 and q = 2,4,
respectively.

In solving an arbitrary boundary problem that could be met in the fields
around nodes, it is possible to single out four elementary problems ([9]). One of
them, most extensively used in this work, is the following problem:

for the given states of stress in the outer regions 1 and N (Fig. 3a):

(1) (1) (N) (N)

{w,¢,w, ¢}
one should determine:

(2) (N-1) i
(N, D, W, g2, g3, .., ¢N-LNY,
which means to find the number of regions of the field N and the states
of stress in its internal regions, taking into account only the solutions that
exist on the physical plane.
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Obviously, it must be done in a numerical way. Then, the control over the
content of variables in the domain becomes an essentlal task. Note that when

the stress parameters are fixed in the outer regions w w’, then, simultaneously,
(@ (N-1)
additional constraints are imposed on the domains of parameters w,.., w in

the internal regions. The evolutions of domains, pertaining to this situation,
are described in detail in work [9] for the Huber-Mises condition. For the Oy-
ane condition, the evolutions are similar, so that we limit our considerations to
presenting only their recursive formula:

(1.7) MR st i Tty

@atl (htained

and the sketch of development of the sub-regions of existence Aply
for the data:
(V)

w=9, W=1711, N=4, f,=0291819827532
The sketch of the Ay 1 for the given data is shown in Fig. 4.
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In other words, for the fixed {(w) (w)} the domains A"y 1 of stress parameters

for each couple of adjacent regions are determined beforehand, and next the
following conditions are formulated:

{ (a) (01+1)} Aa a+1 :
According to Fig. 3b, one can also write the formula for the value of parameter:
(18) A = Ay ((a 1)’ (:))’ (0‘(31), qa—l,a’ qa,a+1)’

which expresses the angle between two consecutive stress discontinuity lines.

) For these data we obtained (see also Fig. 4):
I} =09.0,90, r# =[570,750], % =[1050,123,0, I =[171.0,171.0].



ANALYSES OF PLANE STRESS DISCONTINUITY LINES SYSTEMS... 405

Finally, single equation can by derived to solve the problem:

(1.9) (Z Nz: ((a) (et ) oo a+1>,

which must be solved with the following conditions:

(a) (01+1) P 1 i
} e A“ S (conditions of existence of each line L),

(1.10) (@

N
(1.11) AV >0(@=12,.,N), §=) AV <o
a=1
(conditions of existence of each homogeneous region «)

and, possibly, with taking into account additional geometrical limitations.

In software implementation of the problem, the solutions are depicted as
graphs of the fields on a physical plane ([9]). All existing solutions are presented
there.

In order to construct a complex field from them, it suffices to choose the ones
which create a net to secure a physical place for the realisation of the particular
stress states.

1.3. Purpose of investigation

In the undertaken investigations, the author considered the cases characte-
ristic for the systems of lines appearing when assuming the Oyane condition and
plane stress. The essential aim of the investigation was finding the answers to
the following questions:

e What are the significant differences between typical, known systems of
stress discontinuity lines obtained for the Huber-Mises condition, and those
for the Oyane condition.

e How to construct the systems of stress discontinuity lines in Oyane-type
limit fields in such a way that one could make use of already known struc-
tures of such line systems found for the Huber-Mises, or possibly also
Tresca conditions.

Physical justification of the Oyane condition is exhaustively presented in

papers [4, 5]; in this work this problem will not be considered.
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2. RESULTS OF ANALYSES

2.1. The essence of distinctness of stress discontinuity line systems
in Oyane fields

In the analyses, as well as in the software implementation used in the in-
vestigation, a specific value of porosity ratio f, was assumed, as mentioned in
the previous section. The limit curve, determined for that value and the Oyane
condition, is shown in Fig. 2a (curve 1). As it can be seen, the curve is not an el-
lipse, which becomes evident when we compare the limit curve with an inscribed
actual ellipse (curve 2) in Fig. 2.
To avoid introducing special definitions of characteristic points on the Oy-
ane curve, we will continue describing it by means of the parameter w and the
numerical values. For the assumed value of f, we have (see Fig. 2a,b):
 The state of biaxial isotropic tension when w = 0; the values of principal
stresses are then 01(0) = 02(0) = 0.44587-0y,, where oy is the yield point
of material without pores, i.e. for f, = 0.

e The state of uniaxial tension for w = 57, while ¢, (57) = 0.48568- 07,

e The state of uniaxial compression for w = 123; in this case: 09(123) =
—0.48568- 0.

¢ Maximum normal stress obtained for w = 33, while ¢(33) = 0.5316406-07,.
In non-limited fields, constructed in further part of the example, we will also
use the quotient: z = 01(0)/01(57) = 0.44587/0.48568, whose value equals
0.91803923.

Analysing these characteristic points on the Oyane curve we notice that the
stresses 01(0) = 02(0) = 0.44587-0y, pertaining to the state of biaxial isotropic
tension are lower than those obtained for the state of uniaxial tension, which are
equal to 01(57) = 0.48568-07,. It can be deduced from the graph of Oyane limit
curve (Fig. 2a), where appropriate lines are drawn, and also from the graph of
region of existence A (Fig. 2b), which shows that the limit state adjacent to the

assumed & = 0 can only be the limit state pertaining to W= 66. We can also
; ( ! 2)55 : A
realise that, for b 57, the interval of parameters @ in the adjacent region

spreads over the values [9, 123], so that it does not include the point A 0.

In effect, one of the most frequently used limit systems of stress discontinu-
ity lines (Fig. 5), applied in the region of converging tension (or compression)
strips ([1]) that is admissible, for example, for the Huber-Mises condition, in
the case of Oyane condition is no longer an admissible system, or it is not
a limit one. If we assume 0,(57) = 0.48568- 0p) in the strips, then in the re-
gion ABC the yield condition will be exceeded. However, when assuming that
01(0) = 02(0) = 0.44587-0, in this region, the stresses in the strips must also
be equal to o7 = 0.44587-0y,, and the limit state would not be reached there.
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In the libraries of particular solutions used in the application version of the
SADSF method and in its software implementations (for example [10]), the field
from Fig. 5 is denoted with a two-character symbol 20, and this symbol will also
be used in the present work.

Because the system of stress discontinuity lines of the field type 20 is used in
a vast majority of systems known for the Huber-Mises and Tresca conditions, the
impact of the mentioned particular property of the Oyane condition is equally
extensive. Then, we should either seek for entirely new solution, or try to pre-
serve known systems of stress discontinuity lines and stresses, putting aside the
question of achieving limit state in the strips of field 20, which means assuming
there the stress multiplier z = 0.91803923, which leads to o1 (57) = 0.44587-0y,.

If one seeks for new solutions specific for the Oyane condition, the obvious
way is to examine first a system of stress discontinuity lines characteristic for a
known field type d1 (see Fig. 6, [1]) which, on its boundaries {3,4} and {1,2},
takes loads in the form of normal stresses of different values. In particular, it
would be desirable to find such a limit field of type d1 or other, which is loaded
with stresses of values 01(57) on one boundary, and ¢;(0) on the other. Such
solutions will be presented in the next section.

2.2. Obtained results

For the field type d1, we assume the state of uniaxial tension in homogeneous

regions 2 and 4 (Fig. 6). We then have there @ = & = 57 and %)1(57) =

0.48568-0p). For the fixed value - 57, we draw the conclusion, based on
the region of existence A (Fig. 2b), that the parameter w in the adjacent regions
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1 and 3 can vary within the interval [9, 123]. In the interval [9, 57) we have the
same signs of stress in the adjacent region, and we assume the same interval
of stress variability in region 1. However, in the interval (57, 123), the signs of
stresses are different, and such signs we assume for region 3. With w = 123, the

state adjacent to ¥ = 57 is the uniaxial limit compression.
i

//+\\

(90)

0,(0)

(2) (4> (2) (1)

- =57, T = T = 0.91803923),

T =1), (W

=90, ¥ =1)}.

F1G. 6. Field parameters: {((Lb) =0,
@
(w

Then, in the presented investigations on the coupling of stress states in the
field type dl, we have assumed that  takes values from the interval [9, 57),

and & = = 57 is fixed. Consequently, we calculate the values @ (numbers of the
regions according to Fig. 6). The fields type d1 are so easy to investigate that
one actually needs to analyse only their internal node 5.

(1) (1)
Two obvious cases were considered, when ¢ = 0°, and when ¢ = 90°, and
the obtained results are presented as graphs shown in Figs. 7a and 7b.
As it can be seen, limit states can only be obtained in the whole field type d1

if one takes the angle values from the 1ntervals (approximately): d) € (70°,90°)
— for ¢ s 90° and qS € (0°,20°) - for ¢ s P,
With gb € (20°, 70°), the limit field can not be constructed for the assumed

system of lines. Let us also notice that the stress c(fli in region 1 is always greater
than that obtained for w = 57, which means that it is not possible to draw a
strip loaded with the limit uniaxial tensile stress out of the top of the field. Then,
this field is not suitable for creating branching of the strips, in contrast to the
case of the field type 20.
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Although the limit field having line system structure type d1 can not be

)
constructed for the angles from the interval of ¢ € (20°,70°), the boundary
conditions, pertaining to such a range of angles, are very often met in practice.

(2) 3
For example, we obtain a value of angle ¢ from this interval if we take @ =90
in region 3, in other words, when assuming pure shear in this region. In this case,

when we take @ = 57 in region 2 we obtain such values of angle (;: that the yield
condition is exceeded in region 1.

The way out of this difficulty is not to attempt to reach the limit state in
regions 2 and 4, but, instead, assume there the stress multiplier equal to po
0.91803923, in effect of what one can obtain gi = 01(0) = 0.44587-0p in this
region. Due to of this concession, one gains the possibility of making use of the

state & = 0 in region 1, and the freedom of creating branching of the strips,
similarly as it was possible in the field type z0. Obviously, the stress discontinuity
line separating regions 2 and 1 will be perpendicular to the direction of principal

stress g{, similarly to the case of field d1 created for the Huber-Mises or Tresca
conditions.
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In order to avoid repetition of drawings, an appropriate sketch of field of
such parameters is shown in the lower part of Fig. 9 along with an example of
its application. Description of it will be given later.

Figure 8 presents a particular case of field type d1, whose characteristic fea-
ture is that from below (on segment {1,2}), there is an applied stress load
equal to 0.44587-0, which is obtained for Dl ke 66, so that it is the same as
for w = 0.

0,(9.40278)=0.48719 o,

zﬁmnnfmw@
| P
gl

VT

0,(66)=0.44587 o,

FIG. 8. Field parameters: {(W = 9.40278, @ = 1.0031), (¥ =57, ¥ 51), (¥ =66, ¥ =1),

(W =57, 7 =1)}.

In region 2 we have, as in the previous case, %)1 (57) = 0.48568-0p,). With

. X (1) (1)
these assumptions, one obtains two roots of parameters w = 9.40278 and & —

47.25827 in region 1. The stresses ((17)1 for the root 21) = 9.40278 are equal to
0.48719-0p, and are not significantly greater than o (57) = 0.48568-0p; in the
tensioned strip. The difference appears only at the third decimal position. It
seems that, in practical conditions, we can well tolerate such an insignificant

exceeding of the yield condition ((5:) = 1.0031) in the strip built above the seg-
ment {3,4}, the more so that there are not any other solutions to limit fields
type dl in which stresses equal to 01(0) and (approximately) 01(57) are ap-
plied from below and from above, respectively. Then, we can make use of this
field in the same way as if the stress applied from above was actually equal to
g1 (57)

Owing to this property, the previously mentioned solution appears to be one
of the most important ones for the Oyane condition. It makes it possible, among
other things, to combine three such fields to construct, for this condition, an
equivalent of the field type 20, as shown in Fig. 9a.
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Using the field of Fig. 8, one can also realise the effect that the load of
the stresses 01(0) = 0.44587-0y is taken over from an arbitrary field type dl1
assuming that the limit state is not reached in regions 2 and 4. We presented
an example of such a field in Fig. 6 assuming pure sheer in region 3. Connecting
such fields in the way shown in Fig. 9b, we obtain a complex field, which can
take over practically arbitrary loads of admissible values from below, and which
can be balanced from above by limit reactions of the tensioned (or compressed)
strip, which are equal to 0.48719-0p,). As it can be seen, in order to achieve such
a freedom of choice of the load value at the lower boundary, one needs as many
as two component fields type d1. With the Huber-Mises or Tresca conditions,
one such field was sufficient.

For the second root @ = 47.25827, on the upper boundary of the field (on

segment {3,4}), we obtain stresses of values ((17)1 = 0.51526-0p), which exceed the
limit stress, equal to ¢1(57) in the tension strip. The importance of this solution
seems to be marginal.

Figure 10 presents two new systems of stress discontinuity lines obtained
for the Oyane condition, whose structure of line system is different from that
assumed in fields type d1.

The first one (Fig. 10a) was found in the result of seeking for such a limit
field in the connection region between two tension strips, in which the load is

" : : (4)
received from region 4 with w = 0.

In view of the fact that the state adjacent to @ =0 can only be w = 66, one
must design intermediate regions 5 and 6, where L Y Only from these

regions we can draw the strips in which we have e 57. In region 1 we have

W =123
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F1G. 10. Parameters of fields: a) {(011) =123, W =95 57, @ = 0, =

(1) (2) (3) (4) (5) (6)

= 66; P = b

m=1.6)}b) w =123.0, w,w =570, & =9.0 W, W = 69.45357; T =1, m = 1..6}.

The presented solution is rather characteristic for the Oyane condition. Un-
fortunately, it can be obtained only for particular boundary conditions.

Figure 10b depicts another, new limit field, in which all stresses on loaded
boundaries are equal to 01(57) = 0.48568- 0. The case is then different from
that of fields d1 in Fig. 9a, where this equality was fulfilled only approximately.
Therefore, the field of Fig. 10b fulfils the same boundary conditions as a field
type 20. However, the field was obtained here only for particular values of angles
between the axes of the converging strips.

2.3. Remarks on characteristic fields around nodes

One can not find any significant distinctness in the fields type A and B con-
structed for the Oyane condition that arise around concave and convex vertices
([1], Fig. 11 a, b). The only characteristic feature is the reduced number of so-
lutions, which is a natural consequence of elimination of the roots related to
w = 0 - that exist for the Huber-Mises and Tresca conditions.

7
# /1\ ™ == X
i\ DT il X

i (e mpi o

a) b) c)

The field type C ([1], Fig. 11c) is loaded on one boundary with shear stress. It
was assumed in the example shown in the figure that the stress value is equal to

0.2-0p) and that the stresses in regions 1 and 2 take limit states (21) = 113.19363,
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? = i; etz 57, Z = 1). Another case worth considering is that when the stress

%)1 in the region 2 is made equal to 0.44587-0y, so that the field could later be
used for creating branching, as in the case of the system of lines characteristic
for a field type 20. It can be easily done by assuming unlimited state of uniaxial

tension in region 2, i.e. assuming there o= 57, and taking the stress multiplier

equal to 7 = 0.91803923.

It should be emphasised that the fields type A, B and C were distinguished
here only as a tribute to tradition. The investigation shows that in reality we
find many solution, and the obtained states of stress generally differ from the
prototypes.

3. CONCLUDING REMARKS

The fact that for f, > 0 and Oyane-type medium with plane stress, the
values of stresses o1(0) = 02(0) are lower than limit stresses in the tension strips
(here 01(57)), makes it impossible to use the systems of stress discontinuity lines
constructed with the Huber-Mises or Tresca conditions to the analyses of the
Oyane limit fields. These systems are different moreover, this conclusion applies
to a vast majority of frequently encountered complex systems. Then, in all these
cases, in order to find the field for the Oyane condition, one should either modify
the known systems, or look for new ones.

In the other case this would mean the necessity of solving the boundary prob-
lems, encountered there, from the very beginning, namely from the phase when
even the system of lines is not known. Fortunately, we do not need to foresee
these systems ([9]), but the task is not so simple, anyway, even if one makes use
of the existing algorithms. Despite application of a methodical approach, signif-
icant difficulties appear in controlling the abundance of the obtained solutions.
However, if one only needs to find the field parameters, and the structure of line
system is already known, no significant difficulties are expected.

The question then arises is it possible to avoid solving such difficult problems
for the Oyane condition, at least in applications, and instead to use there the
already known line systems found for the Huber—Mises condition?

The arguments for a positive answer to this question follow from the above-
presented numerical values. For example, for the porosity ratio f, ~ 0.3 assumed
in this study, whose value is relatively high, the stresses in the tension strips of
the field type 20 shown in Fig. 5 can be as high as over 90% of their limit values.
Such a difference lies within the error interval of the SADSF method. The limit
curve would be, in this case, the ellipse inscribed into the Oyane curve, as shown
in Fig. 2a. The contours of elements, obtained upon assuming such a limit curve,
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would lie on the safe side. Obviously, the systems of lines associated with it would

be

characteristic for the Huber-Mises, not Oyane condition.
The greatest collection of such systems, constructed for the Huber—Mises

condition with diverse boundary conditions, is contained in the software library,
which constitutes an integral part of the work [3].

ey
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