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BOUNDS FOR THE EFFECTIVE SHEAR MODULUS
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This paper deals with the uniform torsion of nonhomogeneus elastic beams. The concept
of the effective shear modulus is deduced from torsional rigidity. Upper and lower bounds
are derived for the effective shear modulus. It is proven that the effective shear modulus of
a compound beam is between the weighted arithmetic and harmonic means of shear moduli of
the beam components.
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1. INTRODUCTION

The paper deals with the uniform (pure) torsion of isotropic nonhomoge-
neous elastic beam whose cross-section A may be simply or multiply connected
bounded plane domain. The outer boundary curve of A is the closed curve
cg and the inner boundary curves are the closed curves c¢;, ca, ... ¢,. The
shear modulus G depends on the cross-sectional coordinates z and y, so that
G = G(z,y). It may be, that the considered beam is a composite of different
homogeneous materials, G is piecewise constant on A. Types of these beams are
compound beams and reinforced beams (see ARUTJUNJAN, and ABRAMJAN [1],
LEKHNITSKII [3], MUSKHELISHVILI [6]).

According to the Saint—Venant theory of pure torsion of a nonhomogeneous
elastic beam, equations

(1.1) V. <éVU> = -2 in A,
(1.2) U=0 on c, U=K; ong

(1.3) }{én-VUds =24, ¥ =10 17
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must be satisfied [3, 4]. In equations (1.1), (1.2), (1.3) V is the two-dimensional
del operator
" 0 0

(1.4) Vi = aez = 5:;
€z, €y are unit vectors in the directions of axes z and y, respectively; U is the
Prandtl’s stress function; K; is the value of U on the inner boundary curve c¢;,
(Ki= constant); n is the outer unit normal vector to the inner boundary curve
¢;; Aj is the area enclosed by the curve ¢;; dot denotes the scalar product of two
vectors according to [5].

Knowing the elastic torsional stress function U = U(z,y) we can determine
the shearing stresses 7;,, 7, and the torsional rigidity R by the following for-
mulas according to ECSEDI [2], LEKHNITSKII [3], and LOMAKIN [4]

ey.

ouU U
(15) Tez = 195?;, Tyz = —19%,
(1.6) R=2 /UdA+ZK,-A,- ,
7 i1
_ [|vVUP
(1.7) R—/ o dA.
A

The connection between the rate of twist 9 and the applied torque T is T' = RY.

We denote by & = &(z,y) the warping function of the cross-section for the
unit value of ¥. Using the solution U = U(z,y) of the boundary value problem
(1.1), (1.2), (1.3) we can write according to LEKHNITSKII [3], and LOMAKIN [4]

o 8 LBl bl i 1T
£ or G dy #a oy G Oz :
In the next section we will present two bounding relations for R and we will

give the definition of the effective shear modulus.

2. INEQUALITY RELATIONS, EFFECTIVE SHEAR MODULUS

THEOREM 1: With any continuous function ® = &(z,y) in the domain A =
n

AUc (c= U ¢) for which the integral

=1

(2.1) I[@] :/G(x,y) (g—f— )2+<g—f+x)2 dA
A
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exists, the relation
(2.2) R<I [qﬁ]

holds. Equality in (2.1) is valid only if ® = & + C, where C is an arbitrary
constant.

The proof of the upper bound formula (2.1) can be obtained from the princi-
ple of minimum of potential energy (see ECSEDI [2], and LOMAKIN [4] WEBER—
GUNTER [7]).

THEOREM 2: With any function U = U(z,y) being continuous in the domain

n

A=AUc (c= | c¢) and satisfying the boundary conditions
i=1

(2.3) U=0 onc, U = K; = constant on ¢; (i=1, 2, ..., n),
the inequality relation
. et .
4 <fUdA+ Z K,;Ai>
(2.4) R L
L (0]

is true, assuming that the integral

P
(2.5) L[ﬁ] = / @(M
A

ezists and is positive. Equality in the relation (2.4) holds only if U = AU, where
A is a constant different from zero.

The proof of the inequality relation (2.4) is based on the principle of mini-
mum of the complementary energy (see ECSEDI [2], and LOMAKIN [4] WEBER—
GUNTER [7]).

We denote the stress function by Uy, the warping function by @, the torsional
rigidity by Ry if the shear modulus has a unit value; in this case the beam
is homogeneous. The concept of the effective shear modulus is based on the
torsional rigidity of nonhomogeneous, isotropic, linear elastic beam. The effective
shear modulus G, for a beam is defined by the equation

R
2.6 Ge=—.
26) =%
The aim of the present paper is to give upper and lower bounds for the effective
shear modulus.
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It is evident for compound beams that due to ARUTJUNJAN, ABRAMJAN (1],
EcseDI 2], LOMAKIN [4].

where p is the number of the phases forming the beam, the whole cross-section is

A= U A; and the shear modulus of the homogeneous material in the domain
j=1
Aj is denoted by Gj.

_ Here, we note tha.t the functions U = U(z,y), U = U(z,y), ® = & (z,y) and
=9 (7, y) must satisfy some fitting conditions on the common boundary curve
of the regions A; and A;. These conditions mean that [1, 2, 3, 4, 6]

a) the stresses acting on the surfaces separating different materials, are equal
in magnitude and opposite in direction,

b) the displacements remain continuous across the common boundary of the
regions A; and A; (because different parts of the beam are joined together
by perfect bonds)

3. BOUNDS FOR THE EFFECTIVE SHEAR MODULUS

The upper and lower bounds of the effective shear modulus will be formulated
in terms of Prandtl’s stress function Uy = Up(z,y) of the homogeneous beam.

THEOREM 3: The two-sided bounding formula

J G(z,y) [VU,|* dA f |VU|? dA
(3.1) 4 D it st s
[ 1VUs[* dA /5 VUI® ,
8 G(z,y)
holds.
THEOREM 4: For a compound beam we have
2 1
(3.2) Z Ge > — 74
- Xz,
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where
[ |VUy|*dA
A.
3.3 aj = ———— p =212
(3.3) J flVU0|2dA (J p)
A
and
P
(3.4) S =1
=1

Pr oo f The validity of Theorem 3 and 4 follows from the inequality rela-
tions (2.2) and (2.4). Putting U = U to the lower bound expression (2.4) and
using the formula

(3.5) Ry=2 ( / UodA+ZK0,~Ai) = / |VUy|* dA
A =1 A

we obtain the lower bounds of G, formulated in two-sided bounding formulae
(3.1) and (3.2). Application of the inequality relation (2.1) yields the result

(3.6) RSA/G(;z,y) [(%%_ )2+(%%9+$)2 dA

= / G(z,y) |VU,|* dA.
A

In the derivation of formula (3.6) we have used the following equations:

~ 8<I>0 Uy 09 Uy
Sl %o, 5z T ¥ oy’ dy e oz
From inequality (3.6) by the use of formula (3.5) we get the upper bounds of G,
formulated in the two-sided bounding formulae (3.1), (3.2). O

4. EXAMPLES

4.1. Ezample 1

Let us consider a solid cross-section bounded by a circle whose radius is a,
the centre of the cross-section being the origin of the cross-sectional coordinate
system z, y. We introduce the polar coordinates r, ¢ by the definition

Z = rcos(p; g=rsifip  (0<p<2r, 0<r<a).
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The shear modulus is a given function of r and ¢, that is G = G(r, ). Applica-
tion of the bounding formula (3.1) leads to the following result:

2w a

2 [ [G(r,p)r3drdy 5

00 a ' m
(41) 0,471' 2 Ge 2 2T 3

a
2 drd
I ] Goayirde

4.2. Ezample 2

The cross-section in this example defined by:

A={(z,y)]—a<z<a and 0<y<b},
A1={(m,y)|—aSwSO and 0 <y < b},
Ay ={(z,y)|0<z<a and 0<y<b}.

The shear modulus in the region A; is G; (i = 1,2). The considered cross
section is a composite rectangular cross-section.
In the present case we have

1
/lVU0|2dA=/|VU0|2dA= §/|VU0]2dA.
A Az A

By the use of the two-sided bounding relation (3.2) we obtain

(4.2) %(Gl +G3) 2 Ge 2 —1"2—1
(S

4.3. Ezample 8

Consider a circular tube with outer and inner radii a and b, respectively. Let
it be reinforced by a ring of rods, made of different material, each of radius §.
The centers of the rods are spaced uniformly on a concentric circle of radius P,
as shown in Fig. 1. The origin of the cross-sectional coordinate system is taken
at the center of the tube. The number of inclusions is q. The tube is made of an
elastic material with shear modulus G and the elastic material of the inclusion
has shear modulus Gs.

Application of the relation (3.2) gives the result

1
11—« a’

G Ga

(4.3) (1-a)Gy+aGy >G>
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where

(4.4)

Fic. 1. Circular tube having a ring of circular inclusions.

4.4. Example 4

The elliptical beam reinforced by a circular beam of a different material is

analysed (Fig. 2). Let the boundary curve ¢g be given by the equation
72 2

(4.5) it %5 =
and let the radius of circular inclusion be h. The centres of boundary curve ¢y and
the circular inclusion are the same point, the origin of the cross-sectional coor-
dinate system zy (Fig. 2). The elliptical beam is of a from material with a shear
modulus G and the material of circular inclusion has the shear modulus G3. In
this case we have [1, 6, 7]

a2b2 $2 y2
(4.6) Uo(z,y) = 21 <1 =g b_2> )
4
2
(4.7) [VUo|* = @) (b*2 +a*y?),
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b3
(4.8) / VO dA = o
[ |VUy|*dA

(49) al=1—a, a=(12=A2 _(a4+b4)h4

f |VU0l2 dA & adh3 + a3pd
A

.

} Yi\:
b
Y & %

///////a//////

- .
- —

Fi1G. 2. Elliptic cross-section reinforced by a circular inclusion.

Here, we note A = A; U Ay and A; is bounded by ellipse ¢y and the circle
c12 whose inside is the domain A, (Fig. 2). The bounding formula for effective
shear modulus is obtained from inequality (3.2) by means of the results derived
above as

(410) (1 e a) Gl +aG2 Z Ge 2 m——a

We remark that in (4.10):
e for the case @ > b = h we have

(4.11) =

e for the case a = b = h we have

(4.12) a=1
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5. CONCLUSIONS

This paper deals with the pure (uniform) torsion of isotropic, non-homo-
geneous linear elastic beams. The formulation of the torsional problem is based
on the Saint-Venant theory of uniform torsion [3, 4, 6, 7]. The roots of the
presented upper-lower bound formula are the minimum principles of elasticity
which give a possibility to estimate the torsional rigidity [2, 4, 7]. The concept
of the effective shear modulus of nonhomogeneous elastic beam is based on the
torsional rigidity obtained from the Saint—Venant theory of uniform torsion.

The bounding formula of effective shear modulus for compound beams has a
simple meaning, namely the upper bound expression is the weighted arithmetic
mean and the lower bound expression is the weighted harmonic mean of the shear
moduli of the beam components. The weight factors of the shear moduli of the
beam components in the arithmetic and harmonic means are the same, it depends
on the Prandt stress function of a homogeneous beam which is geometrically
identical to the considered nonhomogeneous beam.
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