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Summary of the whole paper: By now, the SADSF method is practically the only tool
of shape design of complex machine elements that provides an effective solution even to the
problems of 3D distribution of the material, and at the same time it is still enough user-friendly
to be useful for engineers. This unique property of the method is due to the existence of its
simple application version. When using it, a design engineer does not need to solve by oneself
any statically admissible field - which could be very difficult — but obtains such a solution
by assembling various ready-made particular solutions. The latter are in general obtained by
means of individual and complex analyses and provided to a designer in a form of libraries.

The algorithms presented in this paper break up with the individual approach to a particu-
lar field. The algorithms are the first ones of general character, as they apply to the fundamental
problems of the method. The algorithms enable solving practically any boundary problem that
one encounters in constructing 2D statically admissible, discontinuous stress fields, first of all
the limit fields. In the presented approach, one deals first with the fields arising around iso-
lated nodes of stress discontinuity lines (Parts II and III), then integrates these fields into 2D
complex fields (Part IV).

The software, created on the basis of the algorithms, among other things, allows one to
find all the existing solutions of the discontinuity line systems and present them in a graphical
form. It gives the possibility of analysing, updating and correcting these systems. In this way,
it overcomes the greatest difficulty of the SADSF method following from the fact that the
systems of discontinuity lines are not known a priori, and appropriate relationships are not
known either, so that they could be found only in an arduous way by postulating the line
systems, and verifying them.

Application version of the SADSF method is not described in this paper; however, a ref-
erence is given to inform the reader where it can be found.

PART II

THE ALGORITHMS FOR SOLVING LIMIT STRESS FIELDS AROUND ISOLATED
NODES OF STRESS DISCONTINUITY LINES

Summary of Part II: In the paper, the author introduces the sets of conditions that
create the algorithms of the functions on which one defines the boundary problems met in the
search for discontinuous limit fields existing around isolated nodes. Among those, there are
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functions describing states of stress in the component homogeneous regions, the parameters of
lines that separate these regions, and, first of all, the formulae for determining the domains
based on the general conditions of existence. These formulae play a key role in numerical
implementations of the method.

The fields satisfying the Huber—Mises yield condition are of primary choice however, the
derived relationships have a general meaning. To emphasise this fact one presents not only the
areas of existence valid for the Huber—-Mises condition, but also the areas obtained for several
other yield conditions applicable to plastically homogeneous materials. The knowledge of the
areas opens the possibility of developing the method of search for the fields that obey these
conditions, and for algorithmizing this method. This could be applied even for the fields that
are characterised by arbitrary, admissible states of stress.

One also presents, basing on a mathematically complete set of conditions, typical formu-
lations of problems concerning the fields around the nodes. One discusses the balance between
the set of conditions and the unknowns, as well as the transformations into global systems
connected with complex fields.

One consequently applies parametrisation of the yield conditions, which not only reduces
the number of unknowns and leads to simple, recursive forms of the formulae, but, first of
all, makes it possible to find the formulae for generation of domains, without which numerical
solution of the fields and algorithmization of the method would not be possible at all.

Key words: shape design, limit analysis, numerical methods.

6. CONVERGENT SYSTEM OF STRESS DISCONTINUITY LINES ON A PLANE

6.1. Introductory remarks

In the accepted hierarchy, the fields arising around the nodes of stress dis-
continuity lines are treated as fundamental component units of complex fields.
However, in the problem considered here, these will be also treated as isolated
fragments of such fields, which means that the analysis of field interaction around
the neighbouring nodes will be omitted.

In construction of the formulae presented in this paper, one refers to the
works [2] that give grounds for the formulae, and then present particular forms
of them — the forms valid only for the Huber-Mises condition. In this paper, this
condition is also treated as the preferred one, however, the formulae derived here
have a general character, independent of the assumed yield condition.

The considerations concerning segments of a straight line can be, in a natural
way, adapted to the elements ds of curves [3]. The presented analyses of fields
around the nodes can then be referred also to infinitesimally small neighbour-
hoods of nodes of curves.

The symbols and denotations accepted here are almost identical with those
used in the software implementation created on the basis of fragments of the
presented algorithms.
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6.2. Description of the field around the node in a global system

Figure 4 shows a general sketch of the field created around an isolated node of
stress discontinuity line. It is assumed that its component homogeneous regions
are numbered by consecutive natural numbers, & = 1..N, in ascending order, an-
ticlockwise. In each region, there exists a planar state of stress, defined either by

the components ((TO;,; (4,7 = 1,2), or the principal stresses and the principal stress
o) (@)
angle (al) , ¢ (i = 1,2). When one assumes the limit state and parametrisation of
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the yield condition, these are defined by: (w), ¢ ([2])-
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Fi1G. 4. General diagram of convergent stress discontinuity line system.

The external fields are traditionally denoted by index 0. Accordingly, the
internal lines of the field that separate the previous region « from the next one
a + 1 are denoted by £L*%t! while the external lines are denoted by £%' and
LNO respectively. It is assumed that external loads p®! and p™0 are applied
on these lines. The case when loads p®®*! are applied along the internal stress
discontinuity lines is considered separately in Part III.
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The whole field is defined in an orthogonal system of co-ordinates {a} called
the global system, in contrast to the local systems {¢}(®) (introduced in further
part of this paper), which are connected with the principal directions of stress in
each of the homogeneous regions. The versors t? of discontinuity lines LB that
separate the adjacent regions a and [ are defined by the angles v*8 measured
with reference to the axis a; of the system {a}. Notice that for internal lines there
is B = a+ 1, while for external lines the angles are v%! and v, respectively.

In one of the most typical cases of the problem formulated for the fields
surrounding the nodes, mentioned in Part I of this work, the data are the com-

ponents of the limit state of stress éli)j, ((71:]) in the outer regions 1 and N. One

seeks there for the remaining parameters of the field: the states of stress ((J‘Z in

the regions 2..N — 1, the angles v®®*! of directions of lines £L***! and the

number N of homogeneous regions in which the solution of the field exists.
Later in this work, in Sec. 11 (Part II), we will discuss a similarly formulated

¢ . [CORNC
problem, where the stress in the external regions o;;, 0;; is calculated separately
on the basis of the given parameters %! and v™'0 of lines £>! and £, and of
the loads p%!, p™?, applied on these lines.
Various particular cases of the boundary problems, frequently met in prac-
tical applications, will be discussed in Sec. 13 (Part III). These will be called
elementary problems.

6.3. Parametrisation of yield conditions

In order to identically satisfy the assumed yield condition, to reduce the
number of variables, and obtain the forms of the boundary line conditions con-
venient for examination, one accepts that the yield conditions should be used in
a parametrised form. For the Huber—Mises condition, treated in this work as the
preferable one, the author found it convenient to apply an analytical parametri-
sation formerly used by NADAI ([1]):

(6.1) gxl) =k (\/?;cos (:1) + sin ((Z)) : (0('!2) =k (\/§c0s (::) —sin (:))> ( = %).
In the space of principal stresses, the parameter w can be interpreted as a certain
angle measured clockwise from the straight line o; = o2 (see Fig. Ta), although,
in the case of Huber-Mises condition, this angle has not any geometrical inter-
pretation.

In cases of other yield conditions, the parameter w should be treated in
a similar way (Figs. 8a to 10a), and the parametrisation may be assumed in
a more general form:

(6.2) Gi=onfi(@)  (G=1,2).
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One can go even further. Having additionally introduced stress multipliers

a) N &
(m that take values from the interval [0,1], one consequently assumes parametri-

sation in the form:

(a) (Ot) (0) ®
(6.3) oi = mop fi(w) (i=1,2),

which makes it possible to take into account also the discontinuity lines that
separate arbitrary states of stress, not necessarily the limit states.

Although the possibility of reducing the number of variables and the num-
ber of conditions is very important for solving complicated nonlinear problems
such as those met in the SADSF method, this is not the only reason for in-

troducing parametrisation and operating in the parameter space ©. The most
important reason is the possibility of creating the formulae allowing one to find
the function domains in which the problems are well defined. This possibility
has a fundamental meaning for solving the problem by numerical methods.

In this work, the values of the parameter w will be given alternatively in
radians or degrees.

6.4. Field parameters in local systems

Besides of the system {a}, one also introduces local systems {¢}(*) connected
with the principal directions of stress in individual regions a (o = 1..N), in which
the axes ¢; take the direction of the greatest stress. In order to avoid creating
other types of systems, one also defines, on the basis of system {{}, two artificial
systems {¢}(© and {£}(N*+1). The latter ones, connected with the lines L' and

LN are useful in formulating boundary conditions on the external lines, and
0) (N+1) (0
are defined by the angles ¢ and ¢ , and by the relationships: ¢ = ol
(N+1)
¢ =vN0 (see Fig. 4).
One can formulate the problems either in the arbitrary systems {a} or in
particular systems {¢}, and both possibilities are equally justifiable. However,
the choice of system is important as far as the method of solving and the level of

difficulties are concerned. In particular, the functions expressing differences be-
(a+1) (@)
tween the angles of principal stresses A¢ = ¢ — ¢, and the functions defining

the unit vector e»®*! normal to the line £%%*! can be formulated in the local
systems {¢}(®) in the simplest way.

Unlike the field parameters given in the system {a}, the parameters A¢, A,
Av, defined in the systems {¢}(®, actually express differences, and therefore
they are preceded by the symbol A. This fact has not only a formal meaning. As
it turns out, the mentioned parameters can be expressed only by the components
of stress states in the adjacent regions. According to this property, one can easily
create recursive formulas, convenient for the algorithmic approach.

__'n',
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6.5. Families and subfamilies of stress discontinuity lines

In the case when the limit state of stress is given in the region « ((:)) (;5)
see Fig. 5), and additionally the stress parameter “G" is set up in the region
@+ 1, one can obtain two families (Q***! = 1,2) of directions of lines £L&+!,
and two values £A¢ associated with these lines. One can join a pair of two
opposite versors €***! to each of these directions. In consequence, there are
four (¢®»2*! = 1,2,3,4) half-lines that originate from the node. The parameters
q»*t! are ca.lled the parameters of subfamilies of the lines £%*t1, It is assumed
that the subfamilies ¢®**! = 1,3 are assigned to the family Q®*! = 1, while
the subfamilies ¢***! = 2,4 are assigned to the family Q®*+1 = 2,

d) €)
)
o & I‘ %
2 o
<o Yo ¥ A¢4
§3‘ l,_\ o ﬁ( ém
i

FiG. 5. a) Denotations, families and subfamilies of line £; b), ¢), d), e) Configurations of
homogeneous regions and stress discontinuity lines on the physical plane.
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7. RECURSIVE FORMULAE

Assuming that operations are performed on the systems {¢ }("‘) and making
use of parametrisation (6.2), one can derive the function A¢ from the equality
condition of existence (see Eq. (1.6)2 in Part I). The algorithm for determining
this function on a physical plane is given by the following set of equations (see
also Fig. 4):

(a+1) (o)

(7.1) Ad)( (:))’ (a+1) Q™ a+l)
= (~1)@ " sign( BV - YA g (8,57,

(soe[-5

b

] a=1.N-1),

where:

(a) (a+1) e " (821)—(?11))(312)_(%1)) - T
(793, A e X v Bl (f?f—?é)(“?ﬂ”—(%”) (A¢e [o,—]),

and, when the limit field is considered:

(e) (a> (a+1) (a 1) .
oy —Uplfz( ), o —Uplfz( ) (Z= 1a2)'
The symbol A ¢ is used to denote the function expressed here only by the param-

(@) (a+1) . Y J . ™ I .
eters w, w , and uniquely determined in the interval [0, —], which is defined

in order to separate the variables. One can substitute the parameters of the fam-
ilies @ into Eq. (7.1), or, alternatively, substitute there the parameters of the
subfamilies q.

Consequently, on the basis of equilibrium conditions (see Eq. (1.2) in Part I),
and assuming that the equality condition of existence (Eq. (1.6)2 in Part I) is
fulfilled, one can derive angular parameters Ay determining the versors e normal
to lines £. Making use of parametrisation (6.2) in the system {E}(O‘) one obtains
(see Fig. 4):

a) (a (a)
(7.3) A’)’(( ) (Jl) qa,a-H) = Va,a—H e d) +£

2
24 Sqﬂ‘ % (-—1)(qu‘n+l+l)A’3{< (:)), (0(31))

<A'y € [0,2x); o =1..N; & * m&”),
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where s — selector defined in the following way: s & [0, 11,2y, A'y( @ (QJI)) -

term of function A'y((a) i q""’“) the function Afy((a) (autl)) is deter-

mined exclusively by (4?)) rig , and is weighted in the interval [0, g] in which it

is unique. The function has the form:

(7.4) Aﬁ( i “’J}”)

(@ (a+1)) [ (@) (a+1)
& : S e R L LT O (@) , (at1)
o (@) (@) (a+1)  (a+1) (@) (a) £ 0
o1+09 ) —\| 01 + 09 o1 — 02

and
G=auhi(0), ‘W=oun(D’), =12

As it can be seen, although the above relationships are possibly the simplest
ones that can be derived here, they are still quite complicated. In this situa-
tion, one gives up beforehand the attempt to transform them, and leaves them
in their original form - such as that given by their algorithms. The simplicity
of description is achieved, however, at the cost of complexity of the numerical
implementation.

In the following considerations, only the headers of definitions of the functions
A¢ and Ay will be used, as these are not too complicated. However, in order to
properly use them, one should collect some additional information:

1. The formulae (7.1) as well as (7.3) do not exhibit any symmetry about (:1),

(a+1) i ;
5y , and then are valid in the system {¢}(®) connected with the state of

stress in the region . If the system {£} was related to the state of stress
in the region a+1, then the value of A4 would be different, and the index
of subfamily q would be different, too (see Fig. 5). In order to emphasise
this fact, the parameters of ¢ and @ are, in the whole work, provided with
additional indices:
g@tl Q@2+l —in the case of formulae valid in {¢}(®)
or
gthe (Q@t1a) — when the formulae are valid in {£}(@+1),
Similarly, it is convenient to use e®*! as a denotation of the unit vector
normal to line £L»**! directed towards outside of the region «. Then, it
holds that e®tl= — eatla

2. It can be shown that the relationships (7.1) and (7.3) keep the property

() (a+1) -
that the values of parameters w, W belong only to the interval [0, n].
Then, in order to express all the states of principal stresses, one must allow
for changing the indices of the principal stresses.



ALGORITHMS OF THE METHOD OF STATICALLY ... 239

3. The formulae (7.1) and (7.3) have been constructed in a partly artificial
way. These are based on the equality condition of existence of the lines,
and on the equilibrium condition, both defined on the sets of stress param-
eters. On the other hand, the values of A¢ and A+, calculated from these
equations, are specified on a physical plane. By establishing the uniqueness
of assignment of the indices to the function values, one could successfully
select the terms connected with the index (@, q) of the solution root, and,

consequently, obtain such a notation of both functions in which all the
R (a) (a+1) : 5
base variables { W, o, gl }, belonging to a set that is not any more

reducible, are explicitly specified.

4. The forms of functions (7.2) and (7.4), defined directly on (c?)), (O&JH), could so

far be obtained only for the Huber—Mises condition parametrised according
to (6.1).

8. LOADED LINES

Let us first consider a particular case, when the external line £%! is externally
loaded, and when the Huber-Mises condition, parametrised according to (6.1),
is satisfied in the adjacent homogeneous region 1.

FiG. 6.

Substituting (6.1) into the equilibrium conditions p; = c(rlz)] n; one initially gets
the equation:

3 1
cos?w — % (p1n1 + pang) cosw + 1 (p% +p§ — 1) ebls
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and then obtains a set of formulae being the solution to the system p; = t(flz)] Nis
valid in the system {a}:

2
A= Z(plnl +pang)? — (p} +p3) +1 >0,

V3
(8.1) 5 (P71 + pana) + (-n+vVa a
1 cosw = 5 = w (wEwE[O,W]),
- 5 i 57 (1)
s m L _Pae L VIn iglo s = dadbisin 2.
sinw 22
where:

p; — components of stress vector p%! applied to the line £%! (dimensionless,
related to k = op V/3);
n; — components of unit vector n normal to £%! directed outside of the region 1;
Q = 1,2 - indices of the root w having a similar meaning as the indices of families
of lines L.
It is worth mentioning that:
e in technical terms, calculation of the value of w from (8.1)y with fixed @
gives unique results, because the parameter w takes values from the interval
[0, 7];

e the choice of root ¢ associated with the determined parameter w can be

: i ey i (1)
made by inspecting equilibrium conditions p; = 0;; nj;

e the limitation (8.1); imposed on external loads can be interpreted as the
realisation of the limit state condition in the region 1, whose edge is loaded
with stress p, and has an external normal determined by vector n.

In the system {¢}(®) connected with the line £%! and defined as shown in the
figure, there is n; = 0, ng = 1, and the above-given formulae take a more simple
form. The latter will not be quoted, because the change of form is not significant.
Instead, we should present the general relationships valid in this system:

1) (1) ; (1)
(P2*02)(P2*01)+(P1)2=0=> w,

(8.2) 1, @

2py — (01 + 09

Gl
g1 —09

cos 2A¢ = ) = Ad.

These are expressed by principal stresses and components of the stress vector,
and then they remain independent of the assumed yield condition. Such a re-
lationship can only be established after the condition is imposed, preferably in
the parametrised form (6.2). This will lead to the reduction of the number of
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variables, and will make it possible to determine first (ul)), and then A¢. In such a
generalised case, the inequality condition, related to (8.1);, must be formulated
individually for each yield condition on the basis of the conditions of existence

of roots @ of Egs. (8.2).
The formulae (8.2) can be obtained almost immediately by simple transfor-

mation of the expressions for stress components élz)] defined in the system {¢}(0)
(see Fig. 6):

(1) (1) (1) (1)

(1) (1)
) (01—02) 5 (01+02) (01—02)
pP1 =012 = e Sin2A¢, py =099 = 5 - 5 cos 2A¢.

The system of relationships (8.1) will be treated as definitions which are not
to be transformed any further - similarly as all the functions of complicated form,
mentioned in previous examples. Symbolic notation of the function’s headers that
specify all the function variables is sufficient for the use in references used in the
algorithms. According to (8.1), one can see that the notation may have the form:

(Bellsons Iolpam) 200y o FHPRAQNT oot

It must be noticed (Fig. 6) that in the two systems of co-ordinates, {¢}(©)
and {a}, the values of function ¢ are measured out in different ways - in each

particular system with respect to its primary axis. In the system {a}, the angle
(1)
¢ has the same meaning as ¢, while in the system {5}(0) its interpretation is

similar to that of Adg.

The cases of lines, which separate adjacent limit states, and at the same time
are externally loaded, can be treated similarly. One can also treat them as the
cases of two arbitrary states separated by a stress discontinuity line, which will
be described in Part III.

9. THE DOMAIN OF ALGORITHM

9.1. The area of existence of stress discontinuity line

The domain of functions (7.1), (7.3) is defined by the following system of
inequality conditions (see formulae (1.6) in Part I):

((a) (a+1))((a) (u+1))
g1 5 .92 Ol 55104
(9.1) 0<

<
w7 (a) (@) (a+1)  (a+1) () Al G AR
[(vs) - (50 )] (R-5)

)
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b : (a) (a 1
which can be conveniently expressed by the parameters w, S (6.2), and which,
in the products:

(a) (a+1) (a+1)

(9.2) N E{(w, w ): ((:11)6[0,71'], w G[O,ﬂ']},

determine the admissible areas A (see Figs. 7..10). If the pair of numbers ‘23’,

(@+1) . . : . : ; o
w ', being the image P®®*! of the line £***! in A, satisfies the condition:

(9.3) {‘5), ("(;5”} €A,

then the functions (7.1), (7.3) are defined in their domain.

The conditions (9.3) are formulated separately for each stress discontinuity
line. These conditions have the highest priority, because they define the domain
of both functions. One can use them as the conditions of existence of both A%Y
(Ay) and A ¢ (Ag).

Having the knowledge about the admissible area A, one can effectively take
control over the contents of variables in the domain, and prevent a priori the
attempts of performing illegal numerical operations that usually lead to a break-
down of the calculation process. This ability has then a fundamental meaning
for solving the problem by numerical methods.

Some of such areas A, obtained for different yield conditions, are shown in
Figs. 7-10. It is worth noticing that the functions A <13, A% actually have almost
the same domains in all that cases.

Then, if the conditions of existence of A(j; are fulfilled, the conditions of
existence of A4 are satisfied as well, although the points of indeterminacy, or
sets of points of indeterminacy, generally are not identical. There might be cases
when A(fS exists, but A% is undetermined, and vice versa. We have to leave out

(a+ 3 ()
O: (O] ()]
z 1804 : - » 1804 23,
‘f i
135 1364
Lo
S0t 204
45 2540kt
$in 0/0 - ARRmERRR L Co(w)
Sinnear 0 - pEmETRERD : :
Sinnear 1 - SE———— ; :
In segment (0,1) - 0 45 90 136 180 0

FiG. 7. The areas of existence of line £ for Huber-Mises yield condition and plane stress;
a) limit curve, b) area determined from the condition of existence d¢, ¢) area determined
from the condition of existence §%.
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(at+) a+?
() (O}

Sin 00 - ARERRR ((%)
Sinnear 0 TR
Sinnear 1

In segment (0, 1)

FiG. 8. The areas of existence of line £ for Tresca yield condition and plane stress;

a) limit curve, b) area determined from the condition of existence 8¢, c) area determined

from the condition of existence 4.

O, (@*d e
(O] (O]
(0
0-1
Sin 00 - ARmRRR
Sin near 0 - RN ; ; ;
Sinnear 1 & 0 45 90 135 180
In segment (0, 1) -

Fic. 9. The areas of existence of line £ for Tresca yield condition and plane strain;

a) limit curve, b) area determined from the condition of existence 8¢, c) area determined

from the condition of existence 7.

FiG.

(a+D (at?
- ) ®
(O]
S
Sin 00 - MRABEARR
Sinnear 0 - CERERTR
Sinnear 1 -
In segment (0,1) -

10. The areas of existence of line £ for the yield condition of maximum principal stress

and plane stress; a) limit curve, b) area determined from the condition of existence 5,

c¢) area determined from the condition of existence 7.
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the description of the rich variety of inferences that follow from the analyses of
these areas. This will be the subject of a separate work.

9.2. Dependence between the algorithm domain and the boundary conditions

When some of the parameters @ are a priori set up in the field, which usu-
ally takes place in the external regions 1 and N, then there are some additional

(o ) (@t
w ). These

1) (V)
depend on the set-up parameters w, w" and on the number of homogeneous re-

gions N which form the subareas denoted as /1‘11 1‘:‘,“ in the area A. The conditions

of existence of functions (7.1), (7.3) in the domains take then the form:

limiting conditions that are imposed on the field of variability (w

<a) (at)

(9.4) {0, w e APyt c A

The derivation of this formula for A, performed with assumption of the Huber-
Mises condition, is given in [2] together with the formulae of algorithm. The
mentioned condition will be recalled at this point, however, the meaning of (9.4)
will be explained by an example and illustrated with graphs.

In order to do so, let us first consider the simplest limit field consisting of two

" : S (1)
homogeneous regions 1, 2 separated by a discontinuity line £12. Let Wee e acl

be given in region 1. In order to make it possible to draw the statically admissible
discontinuity line £1'? between the two region% of the field, it is necessary to find
the interval I" that must contain the value ((cfz) ern).

Taking into consideration the segment of the straight line W = 15 enclosed
within A in Fig. 11a, we immediately find that the interval @ we sought for is as
follows: & € I' = [45,75] (heavy dashed lines in Figs. 11 and 12). We denote it
by 1’1(2), which means that it is the admissible interval of variability @ obtained

for the settled value & in the region 1.

In a similar way one can find the interval and the subarea of admissibility
for the case when the analysed field is additionally extended by the region 3
separated by the line £2? from the region 2 (see Figs. 4 and 11b). In order to
do so, after having drawn the area A (Fig. 11b) on the axis of abscissae of the

system {w w} we place there the previously found interval @ € Flm (45, 75],
whose extreme values determine the lines parallel to the axis of ordinates. These

2 R . (@) (e -
two lines will separate the subarea of permissible parameter values w), @ within
the area A. The subarea will be denoted as A**. The indices /1"12‘3 inform that

go i eisia (2 . .
this is the subarea of permissible parameter values w y & determined with the
(1) (1 .
fixed value & = ¢ (see Fig. 11a, b).
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Similarly, the segment of the straight line e ilg 1 Fig. 1la, comprised
within the area A, will be denoted as A;”.

Based on to Fig. 11b, one can also determine the admissible interval of vari-
ability F1(3) of the parameter (c?)), namely 1"1(3) =10,135}.

The presented method can be easily generalised for constructing the admis-
sible subareas in consecutive homogeneous regions 4,5..N, added to the analysed
field (see Fig. 4), and the lines £%**! that separate them (Fig. 11c, for N = 4).
It makes it possible to analyse the development of the intervals 1"1(0‘) and the

subareas A‘l"’o“H for increasing a (the forward development, Fig. 11b, c), and for

. Feit | 1y W
different initial values of the parameter w = c.

a)

D @ 10
)
L

FiG. 11. Development of the admissible intervals I’l(o‘) and subareas A*1! for Huber-Mises

2
yield condition and with fixed value: = (c) =15 (the forward development).

120 130
I" (1)
N

Fic. 12. Development of the admissible intervals I'\®) and subareas A$***! for Huber-Mises
yield condition and with fixed value: @ =% =170 (the backward development).

: Wb 1ol Mixg {
This problem can also be reversed. One can start from w = ¢ given in
)

the last homogeneous region N (Fig. 12c), and find intervals 1"1(\,“ and sub-

areas AOI(,’"‘H for the consecutively decreasing a (the ‘backward’ development,
: )
Fig. 12¢, b, a, one assumes: o ok 170).
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IR =[15,15]
(Y =(45,75]
I ={0,135]
I\ =[0,180]
I} =[50,180]

: ; ; s > 1(6) _
0 .30 6 % 120 150 180 30 60 90 120 150 180 FI,N =(110,130]

I =(170,170],

P30 6 %0 1 1s0 10 |

180 ‘180

150

1150
‘120 120
90 |-

| 60

L B 41 ;
30 60 90 120 150 180

30 60 90 120 150 180 : 30 60 90 120 150 180

Fic. 13. Two-way development of the admissible intervals Fl(o;& and admissible subareas

AN for Huber-Mises yield condition and with fixed values:

1 N N
PP AV = (e )

In practical applications, however, one usually meets problems in which the
(1) ) (V) (N)
parameters w = ¢ and w = c¢ are given simultaneously in both external

regions (Fig. 4 and Fig. 13 show it for field with 7 homogeneous regions), and
the task consists in finding the subareas A}y @+1 and the permissible intervals

F(a) for all stress parameters w in the inner regions 2..N — 1. It follows from
the presented analysis of the forward and backward development of the intervals

that, by creating logical products Fl(o]‘\), =5 I‘la)ﬂl“( ), one can easily determine the

intervals F1( 1\)“ as the development of intervals proceeds simultaneously in both

a,a+1

directions. Similarly, the subareas A;’y"" can be determined from the formula

(9.5) AR B .

The analyses of the development of intervals and the subareas of existence,

performed for different initial data (ul)), (&VJ), bring out a multitude of inferences that
can be hardly juxtaposed or even classified in a sensible way. It is not absolutely
necessary, anyway. However, it is important that the subareas AO‘ R occupy
only small segments of the area A, and sometimes can be reduccd to isolated

points, which are very difficult to find unless the formulae (9.4) are known.
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N
Obviously, the solution of the field can only exist for the data (al)), @ if none

of the intervals I“l( 1\), (and consequently, none of the subareas AO‘"’H) is empty.

It must be mentloned however, that this is the domain of the algorlthrn whose
contents is only the necessary condition of existence of solution to the field on
the physical plane.

A similar algorithm that allows for examining the evolution of subareas
/1'1)"’1‘\","'1 for the Tresca yield condition is presented in [4].

10. GEOMETRICAL AND STRUCTURAL CONSTRAINS

10.1. Conditions formulated on physical plane

The conditions (9.3) are expressed exclusively by stress parameters, and do
not take into account the limitations connected with the existence of solution
to the field on the physical plane. However, one of the fundamental conditions
of its existence on the physical plane is that each homogeneous region « has a
place for its realisation. In the case of fields around nodes, it leads to the set of
inequalities

N
(10.1) AP >0(@=12.), §=Sa%<onm

a=1

which express the demand that the angles between consecutive lines £~
L%*1 should be positive, and all the lines are comprised within the half-plane
limited by the angle § # 2m. Extensions of the field by completion of ¢ to 7 are
not analysed.

Sometimes, in practical problems, there could be a need to impose conditions
concerning the demand that all the discontinuity lines originating from a node
are contained within the area between two fixed straight lines, whose versors
have angular parameters denoted by 81, d2 (d; > d2, see Fig. 4). In general, it
introduces very strong limitations, which have not been regarded necessary in
the algorithms for solving the fields around nodes. The reason is that one could
almost immediately obtain a full spectrum of solutions, and then make a proper
choice.

The conditions (10.1) are defined on the parameters A 7 that can be ex-
pressed by functions (7.1), (7.3), and then, for @ = 2,3,.. (N — 1), can be
defined only by the parameters {w, q} (see Fig. 4):

o) = (@=1) (a) (a+1)
(102); Av =p®tl — o 1’“5Au( WL, e l’a,qa’a+l)

—A’)’((Q) ("Jl) qa a+l)+ Ad)((“ b ((i“)),qa—l,a)_ A,Y(("(;l), (&")),qa—l,a)'
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However, in the external regions limited externally by the lines of the type £%!
and L0, where v%!, p®! and V0, pN¥ are given a priori, one obtains:

(1)
(102)y AV =220 = [¢ +89(8,8,42) - g] -

(N-1) -
(102)3 AW = MO _yNTIN = MO [ b +ay(w", W, gV — g] ;

10.2. Conditions of structure preservation

The conditions (10.1), and in particular (10.1);, have yet another important
meaning. For the given boundary condition, the solution to the field exists, if
it exists on the physical plane. In other words, there must exist each of its
discontinuity lines and each region « of the homogeneous state of stress.

The conditions (10.1) ensure the fulfilment of the second demand. The first
one, however, is satisfied when conditions (9.3) are fulfilled. The latter con-
trol the existence of the parameter Ay of vector e®**! normal to £»%*!, and
consequently, the existence of the line £&®*! itself. These are then the same

conditions (9.3) that have defined the domain of the algorithm in the space of

(a) (at1)
stress parameters {w, w }.

The system of connections of the component homogeneous regions, and the
discontinuity lines that separate them, is called the field structure. However, one
recognises that this notion pertains not only to the specificity and assignments of
the component regions and lines, but, first of all, to the structure of the system
of equations and inequalities that must be set up in order to solve a specific
boundary problem. The structure determines then the number of the applied
conditions and the number of unknowns that, at the initial moment of solving
of each field, are not a priori known. Up to now, no formulae facilitating finding
the structures have been created.

The conditions (10.1) and (9.3), in the sense discussed so far, can only be
used to examine whether the initially assumed structure is preserved or not. For
this reason, these are called structure preservation conditions.

In turn, the conditions for the contents of the field within the segment defined
by 81, d2, have exclusively a geometrical sense. For this reason, these are called
geometrical conditions for the solution existence.

Obviously, the conditions (10.1) and the geometrical conditions of existence,
unlike the conditions (9.3), do not pertain to the domains of functions Avy, A,
which must be a priori defined. The possibility that (10.1) are not satisfied would
not lead to the attempts of performing illegal numerical operations. Then, the
conditions can be taken into account only at the end of solving of the boundary
problem, and used to eliminate the roots that do not satisfy the conditions (10.1).
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The presented conditions of structure preservation, as well as the geomet-
rical conditions, have a particular form that is valid only for the fields arising
around the nodes. For the complex fields, such as those discussed in Part IV, it
is more convenient to formulate these conditions in a different way, while their
sense remains the same. It should be mentioned, however, that the conditions
(10.1) are defined there based on the co-ordinates of the field nodes (see formula
(1.7) in Part I), so that they are called the geometrical conditions of structure
preservation, in contrast to (9.3) which are called statical (or stress) conditions.

11. FORMULATION OF PROBLEMS FOR FIELDS ARISING AROUND NODES

11.1. System of conditions

In practical problems formulated for the fields around nodes, there are usually
given two external lines of the field £%! and £V (v%1, »N:0) and the load applied
to them represented by stress vectors p%!, pM? that, in general, are different

on both lines (see Fig. 4). Using (8.3) one can immediately calculate the stress
Wy ) o ;
parameters (81), ®), ((w , ¢ ), so that, for determining the states of stress in the

inner regions and the parameters of the separating lines £%**!  one has the
data:
g ). S0 00y i
{&, 9,8, 6,000,070,

while the number of regions N is not given beforechand. When this number is
assumed arbitrarily, the solution of the field might not exist (and it does not
exist generally).

To determine the unknown field parameters, we have at our disposal one
equation defined on the physical plane:

N-1
(@) (u ) Ha,a
A¢( w, 5 7Q +1)’ (X € [—7r,7r]).

o=l

(

N) (1)
(11.1) X = -

What is to be found, are the stress and geometrical parameters in all the inner
regions with the assumed boundary conditions of type (9.4) given in the form:

(@) (at1) 1
{©,%"} eapit,

structural limitations (10.1):

N
R PL T, DR IR Py

o=l
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(where A © are defined by formulae (10.2)), and, in particular cases, also geo-
metrical limitations.

The symbol x in formula (11.1) denotes the angle between principal directions
of stress in the external regions 1 and N (see Fig. 4).

In order to construct correctly the algorithm solving the system of condi-
tions (9.4), (10.1), (11.1), one should notice that the left-hand side of (11.1)

1 (N
is expressed by the angles ¢, ¢ which, according to the so far accepted as-

sumptions, uniquely define orientation of the systems {¢}(1), {£}™). In effect, an
overdetermination appears, which is due to determining one of the two possible
positions of each system (that differ by the angle ), although both of them

pertain to the same states of stress. In order to avoid this effect, it is enough
€y Ny (1)
to assume in applying formula (11.1) that ¢ is fixed, x = ¢ — ¢ takes values

from the interval [—=, x|, and then substitute into the left-hand side of formula
(11.1) two values of angle x:

x +m for x <0,

11.2 =%, =
(11.2) X1 =X X2 {x—wforx>0.

For example, with x = —60°, one should substitute into (11.1) x = x; = —60°
and x = x, = 120°. If one chooses only one of the two positions of system {¢ }V)
in the last region N, oriented with respect to system {& }(1) in the first region 1,
then elimination of admissible roots in solution to equation (11.1) might not be
done correctly.

It becomes clear then that, with such assumptions, the solution of the field
ey
around a node does not depend on the angle ¢, and this parameter only defines

field’s orientation on the physical plane. Moreover, the solutions of the subsys-
tem consisting only of conditions (11.1), (9.4) do not depend on the data on
the boundaries v%!, ¥™:0. The latter appear in the structural conditions (10.1)
(possibly also in geometrical conditions, if such ones are imposed). Therefore, in
technical terms, the solution of the whole system (11.1), (9.4), (10.1) may consist
in determining initially the roots of system (11.1), (9.4), from among which one
consequently eliminates the roots that do not satisfy the conditions (10.1).
The above principle is actually applied in the described algorithm. An ad-
ditional advantage is the easiness of removing some selected limitations from

the system (10.1), which gives a possibility to examine a wider set of possible

. ; : ; W vy O
solutions. One of the most interesting cases is that when only {w, W , ¢, x} are

given, which means that the lines £%! and £V are not imposed. This case will
be discussed in the examples presented in Part III.
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11.2. Set of problem’s unknowns

As the number of homogeneous regions N is not known, it must be counted
among the problem’s unknowns, similarly as the parameters {w, A} in the
inner homogeneous regions, and the parameters Ay defining the directions of
lines £+ The functions A¢ and A<, as well as the boundary conditions
(8.3) on lines £%!, LN, are expressed only by {w, q}, then the set of unknowns

comprises:
(@  (N-1)

{N’w7"', w ) q1,27q2’3,"’qN~1’N}'

Analysing the number of the unknowns and the equations, one can immedi-
ately notice that there is only one equation (11.1), not being an identity, which
can be used for solving the field around a node. The equation can be formu-
lated for all possible paths defined by the sets of parameter values Q. Q%
.. QVN-LN (for example, in a field of N = 4 regions, one of the paths can be as
follows: {Q'? = 2, Q%3 = 1, @** = 2}). The number of unknown parameters
w is then identical with that of equations only in the case, when the field we
seek for comprises N = 3 homogeneous regions. On the other hand, it is known

that, within the structure consisting of only three regions, there are sets of data
1 vy ) ) ; : g
{w, w, ¢, ¢, v", vNO} for which the solutions do not exist. In such cases,

one typically assumes N = 4 or more regions, and introduces additional con-
ditions to obtain the solution. There are also such cases in which the attempt
of increasing the number of regions proves to be futile, while the decrease of N
leads to finding the solution. These cases will be discussed in Sec. 15.2.

It is worth noticing that, when the condition (11.1) is formulated for all paths
QY2, Q*3, ... QV~LN in such a way that the parameters of the families @ are

eliminated from it, then this condition leads to a set of equations, each of whom

is expressed by the functions A ((:)), g (7.2). The system of conditions

(11.1), (9.4), becomes then defined only in the space of stress parameters.

In practical applications, besides of boundary problems of the type presented
here, one can also encounter problems formulated with different sets of data and
unknowns. However, these are in fact only modifications of the already presented
ones. A set of such problems, necessary for solving arbitrary boundary problems
encountered in the fields around nodes, will be presented in Sec. 13, Part III of
this work.

11.3. Transformations

The set of conditions (11.1), (9.4), (10.1) is valid in systems {¢}(®). When
the results of its solutions are to be used for constructing complex fields, it is
necessary to express them in the system of co-ordinates {a} identical for all the
nodes w = 1..W.



252 W. BODASZEWSKI

A general scheme of transformation of the parameters given in {£}(®) into the
field parameters defined in {a} is denoted by the following symbolic mapping:

(11.3) {4, w, A0, Ay, Av}y &3 {0, b, V).

Detailed transformation formulae used to perform the mapping (11.3) can be
created on the basis of definitions of functions (7.1) and (7.3) (see also Fig. 4):

{(a(-;-sl) ((Z) +A¢<(Q) (a+1) qa,a+1)}w (¢ =1..(Ny — 1)),
(11.4)

{ aatl _ G +A7(<°> ot qa,a+1) L g}w (@, =,15:(Nm — 1)),

(1) (N)
Here, the angles ¢, ¢ are either given a priori, or can be calculated from

the boundary conditions of type (8.1).
The transformation formulae can also be created in other way, for example
by using {Av},,. Both methods are equivalent, in fact.

(a) 2 ) 2 L
The parameters w are invariant for transformations of co-ordinate systems.
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