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STRESS CONTROLLED SHAPE OPTIMIZATION OF 2D ELASTIC
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A simple and effective method of stress-controlled shape optimization of 2D linear elastic
structures is presented. The main elements of the method are: adaptive FE grids fitting well
to the structure shape at each iteration step of the proposed simple optimization algorithm
and the concept of stress level factor, controlling directly the design variables being the grid
parameters. Several examples of beam-type and plate-type 2D structures are investigated.
A few iterations only are needed in order to reach a nearly optimal solution.

1. INTRODUCTION

In the last three decades a lot of attention has been paid to the shape op-
timization. Already the survey by HAFTKA and GRANDHI [1] presents a large
number of papers devoted to this problem. A more recent bibliography of the
problem is given in the book [2] by HAssANI and HINTON. Moreover, the last re-
sults in sensitivity analysis and adaptive fine meshes allow to introduce some new
computational techniques. An example of such approach are the papers [3,4] by
GUTKOWSKI and ZAWIDZKA, where the analytical-numerical methods of satis-
fying the Kuhn-Tucker conditions are applied to optimize plane structures using
the automatically adaptive FE grids. In these grids the node coordinates are
determined directly by the shape design geometrical variables.

However, the shape optimization still remains one of the most complex prob-
lems for designers who are looking for algorithms relatively simple and easy to
apply in the practice. Such an evolutionary optimization algorithm based on the
FE stress distribution is proposed by Ll et al. [5].

The aim of the present paper is elaborating and testing of a simple and effec-
tive stress-based algorithm for shape optimization of 2D linear elastic structures
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using FE adaptive grids, in which the design variables are directly responsible
for the shape geometry and are controlled by the stress distribution.

2. THE CONCEPT OF STRESS-CONTROLLED SHAPE OPTIMIZATION

Let us consider a linear elastic 2D body B in its initial shape By with given
boundary conditions, subjected to some loads P, and to some constraints for
stresses. Some bounds for the body dimensions resulting from technical reasons,
like the minimum depth value for beam-type structures, will be also taken into
account.

In the case of 2D structures we can distinguish usually their more or less
stressed parts. With the given serviceability requirements it is rather impossible
to find a shape assuring a uniform strength in the whole structure. Therefore we
will search for a shape that enables a uniform strength distribution in the most
stressed parts of the structure. As the strength measure, the equivalent stress
will be assumed following the Huber-Mises criterion for the plane stress state:

(2.1) Oc = 1/ 024 + 0% — 05204y + 302,

where 034, 0yy, 0y denote the stress components.
Let o denote a certain reference stress, e.g. an admissible stress. We intro-
duce the stress level SL as:

O¢

Oref

(2.2) SL =

The proposed stress-controlled optimization process consists in covering the
initial body shape by a special kind of an adaptive FE grid and then in the
iterative change of this grid induced by the stress level, (2.2), in order to reach
a possible uniform stress level distribution SL 2 1 in the most stressed parts.

3. THE ADAPTIVE FE GRIDS

Let us consider a body to be optimized covered by a FE grid as shown in the
Fig. 1. The grid consists of R “Columns” and P “Layers” with (P + 1)(R + 1)
nodes. Within this mesh, an additional division into triangular elements is done
what gives the total number of FE equal to 2P * R.

Straight lines S, separating the “Columns” will remain immovable during each
iteration. The distances between the nodes lying on such a line are constant for
this line and equal to h,. The values of h,, r = 1,..., R, are design variables.
They are controlled by the maximum stress level values SL in the right-hand
neighbor “Columns” (hence we assume hgy1 = hpg).
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F1G. 1. An adaptive FE grid (a) and its iterative change (b).

The way of controlling the design variables is as follows: at each iteration
step ¢ the equivalent stresses o, are calculated for each FE, then its maximum
value for each “Column” is chosen and the maximum stress level SL is calculated
according to the Eq. (2.2). The next iteration will be performed with the new
values of h,:

(3.1) he(i+1) = he (i) f(SL(3)) 2 hmin, 7=1,.., R,

where f(SL) denotes a certain function of the stress level that we call the stress
level factor and hp, results from a bound for the minimum structure dimension.
The form of the function f(SL) depends on the particular class of problems and
will be discussed in detail way in Sec. 5.

It is important to note that one of the lines dividing the structure into “Lay-
ers” (line L* in the Fig. 1) has to remain immovable during the whole iteration
process. This is imposed by the main outline of the designed structure (e.g. an
axis of a beam or of an arc, an edge of a plate, etc.).

For some particular problems polar-type adaptive grids can be applied. In
such cases “Columns” are lying between the radii and “Layers” are “circum-
ferential”.

4. THE OPTIMIZATION ALGORITHM

STEP 1. Determine the initial shape of the structure to be optimized and
cover it with an adaptive FE grid.

STEP 2. Perform the FE stress analysis and calculate the maximum stress
level SL for each column. Calculate the structure volume V (%), 4 being the iter-
ation number.
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STEP 3. If the values of SL (excluding the “Columns” with SL<1 influenced
by the Amin condition) are sufficiently close to 1.0, then go to Step 7.

STEP 4. Determine the new structure shape calculating the values of h,
from the Eq. (3.1). Calculate the new structure volume V(i+1).

STEP 5. If V(i+1)/V (3) is sufficiently close to 1.0, then go to Step 7.

STEP 6. Go to Step 2.

SteP 7. STOP.

5. APPLICATION EXAMPLES

5.1. Beam-type structures

5.1.1. The stress level factor. In order to specify the stress level factor f(SL)
we will refer to the classical beam theory.

Let us consider a segment of an isostatic beam having an arbitrary elastic
section modulus distribution W,(z) in its initial shape and subjected to some
bending moment distribution M (z). Let W, (z) denote the elastic section mod-
ulus distribution for the uniform strength beam with the admissible reference
stress orer. Because the beam is an isostatic one, we have:

(5.1) |M ()| = Wo(2) |022(2)| = Wu(2)orer,

where |0;;| means the maximum normal stress for the initial shape of the beam.
The stress level for the initial shape is SL(z) = |04z| /0ref; hence in view of (5.1),
the elastic section modulus distribution Wy (z) assuring the uniform strength is:

(5.2) Wu(z) = Wo(z)SL(z).

For beams with rectangular cross-section of the depth h and width b we have the
elastic section modulus W = bh?/6, therefore the depth h,, of a uniform-strength
isostatic beam of constant width b will be:

(5.3) hu(z) = ho(z)+/SL(z).

Let us note that in the frame of the beam theory, Eq. (5.3) yields the imme-
diate solution in the isostatic case, and in the hyperstatic case it can be used for
some iterative procedure.

Because the FE grid parameter h, for the beam-type structures is responsible
for the structure dimension having the depth character, we will refer to the
Eq. (5.3) assuming the stress level factor in Eq. (3.1) as:

(5.4) f(SL) = VSL.
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5.1.2. Numerical ezamples

EXAMPLE 1. Cantilever beam loaded by a concentrated force at the free end.

Let us consider a cantilever beam of length L = 170 cm loaded at the free
end by a concentrated vertical load P = 6 kN.

Like in all the following examples, the thickness of the structure will be 1 cm.
The material parameters are: the admissible stress oref = 21 kN/cm?, the Young
modulus E = 210000 kN/cm? and the Poisson ratio ¥ = 0.25. The minimum
depth of the beam will be assumed to be 4 cm. The FE grid of 1152 elements
and 637 nodes will consist of 48 “Columns” and 12 “Layers” along the length of
the beam. The immovable grid line L* will coincide with the axis of the beam.

The load P is realized by the forces P/13 applied to the 13 free end nodes.
At the 13 nodes of the clamped edge we impose the constraints for displacements
Uz = uy = 0.

As it is shown in the Fig. 2, already one iteration step leads to the known
parabolic solution resulting from the beam theory.

- — Initial shape
1st iteration
~———— Beam theory
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FiG. 2. Optimum shape of a cantilever beam.

EXAMPLE 2. Beam with clamped ends.

The second example is a hyperstatic beam clamped at both ends of length
L = 340 cm, loaded in the span center by a concentrated load P = 12 kN. In
view of the symmetry we can consider one half of the beam only. The conditions
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at the clamped edge are similar to the first example. At the 13 nodes of the edge
being the symmetry axis we assume u; = 0 and we apply the forces P/26.

In Fig. 3 the iterative change of the shape of the beam is shown. It is easy
to see that 3 iterations only are sufficient to reach a stable shape.
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FiG. 3. Iterative shape change of a beam clamped at both ends.

The iterative change of the stress level SL is shown in the Fig. 4. Again 3
iterations only allow to obtain SL sufficiently close to 1, of course except the
beam segment with the lower bound for the minimum depth value.
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Fi1G. 4. Iterative stress level change for a bilaterally clamped beam.
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Let us note that in view of the symmetry, not all features of the hyperstatic
behavior of the beam could be manifested. Therefore the next example seems to
be much more interesting.

EXAMPLE 3. Hyperstatic beam with one clamped and one simply supported
end under uniform load.

The beam and loading parameters are: the length L = 240 cm, the uniformly
distributed load ¢ = 16 kN/m. Because we intend to compare our results with
the uniform strength shape given by WIERZBICKI [6], in the frame of the beam
theory, an idealized case will be considered first.

CAsE 1. In this case we try to assure the support and loading conditions of
our 2D structure in the manner possibly close to the one-dimensional beam case.
The displacement conditions for the clamped end nodes are like in the previous
examples, but the simple support is realized by the condition u, = 0 for the
other end nodes. The load ¢ is applied to the nodes of the beam longitudinal
axis in the form of concentrated vertical loads P = qL/48 = 0.8 kN.
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Fi1G. 5. Iterative shape change of a uniformly loaded hyperstatic beam — Case 1.

The computation results are shown in Fig. 5. It is easy to see a good tendency
of the iterative shape change in approaching the analytical solution [6]. The
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iterative stress level change is presented in Fig. 6. Some peaks occurring at the
transition region to the constant minimum depth segment result from the FE
deformation. Figure 7 shows the iterative volume change. It is easy to see that 3-4
reduce the structure volume. The volume reduction

iterations only are enough to
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in the following iterations is less significant. However, looking at the Figs. 5 and
6 we note some discrepancies between the results of the 5-th and 9-th iterations.
It does not mean any continuation of the optimization process but rather the
redistribution of the same material volume due to the hyperstatic behavior of
the beam, where the more rigid parts become more stressed. Hence 4 iterations
are quite sufficient in order to get the optimum shape of the beam.

Let us note that the analytical solution [6] admits a zero depth of the beam
for zero bending moment. In our solution however, we are obliged to keep some
minimum depth of the beam because the number of finite elements in each
column of the adaptive grid is constant during all iterations.

CASE 2. In view of certain serviceability requirements, sometimes we cannot
admit any convexities of the upper edge of the beam and all the depth change
has to be done by the outline of the lower edge. With the main data like in
the previous case we consider a practical problem where the nodes of the up-
per edge are loaded by the forces P = 0.8 kN, the displacements conditions
at the clamped end remain the same but the simple support is realized by
the condition u, = 0 in the lowest node of the other end. It is important
that the immovable grid line L* coincides now with the upper straight edge
of the beam.

The computation results are shown in the Fig. 8 where the iterative change
of the beam shape is presented. The stress level distributions and the volume
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F1G. 8. Iterative shape change of a uniformly loaded hyperstatic beam — Case 2.




32 W. GUTKOWSKI, J. ZAWIDZKA, J. ZAWIDZKI

change are similar to those of Figs. 6 and 7. Also the conclusion concerning the
practically sufficient iterations number remain the same as in the Case 1.

5.2. Plate-type structures

5.2.1. The stress level factor. For the plate-type structures, the problem of
determining the stress level factor is much more complex because we can not
refer to any simplified theory. Depending on the particular class of problems we
have to determine this function by way of some numerical experiments.

In this section we deal with double symmetry square plates with elliptical hole
under uniformly distributed bi-axial tension applied to the outer edges shown in
Fig. 9. Our aim is optimization of the semi-axes of the hole in order to assure a
possibly uniform stress level distribution around the hole.
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FiG. 9. Square plate with an elliptic hole under biaxial tension.

For this case the stress level factor can be assumed as a linear function of the
stress level:

(5.5) f(SL(4)) = SL(z) + B(2)(1 — SL(3)),

¢ being the iteration number. The parameters 3 are from the range [0,1] and are
introduced numerically at each iteration step.
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5.2.2. Numerical ezample. Let us consider a square plate of side 80 cm sub-
jected to bi-axial tensions p; = 9 kN/cm and p, = 13.5 kN/cm=1.5 p,. In
order to show the efficiency of the method, the initial shape of the elliptic hole
is assumed to be quite different from the known theoretical solution (cf. the pa-
per [7] by NAQIB et al.) where the axes of the ellipse are proportional to the
loads applied in their directions. Hence the assumed values of the semi-axes are:
a =8 cm (0.1 of the side of the plate), and b = 5.28 cm = a/1.5.

For the double symmetry reasons it is enough to consider a quarter of the
plate covered by an adaptive radial-type grid consisting of 24 “Columns” and 21

“Layers” with 1008 triangular elements and 550 nodes (Fig. 10). The immovable
grid line L* follows the outer edges of the plate.
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Fi1G. 10. A polar-type FE adaptive grid.

The parameter 8 in Eq. (5.5) was assumed to be constant for all iterations

and equal to 0.935. The calculation results are shown in the Figs. 11 and 12.
Six iterations were sufficient to get a satisfying solution. The final shape of the
hole is given by the semi-axes a = 4.20 cm and 6 = 6.43 cm = 1.53a. The stress

level range along the hole boundary is [1.04,1.08] whereas for the initial shape it
was [0.30,2.27].
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Fi1G. 11. Iterative shape change of the elliptic hole.
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6. CONCLUDING REMARKS

The presented stress-controlled optimization algorithm seems to be an effi-
cient tool for optimizing the 2D linearly elastic, homogeneous structures in the
small deformation range. The adaptive FE grids follow the structure shape at
each iteration step. The number of iterations required to reach a nearly optimal
solution is rather small and, depending on the problem, it is usually equal to
3-6, what is an unquestionable advantage of the proposed method. Moreover,
already this number of iterations leads to stabilization of the structure volume
on a certain minimum level.

In the present paper, a constraint on equivalent stress only was imposed. It
is possible to take into account also some constraints on the displacements. In
such a case however, the initial shape of the structure should be assumed as
an overestimated one in order to remain within all the bounds at the beginning
of the iteration process. Let us note that in the case of constraints imposed
on stresses only, an underestimated initial shape can be also admitted and the
stress level is then automatically reduced by increasing the FE grid parameters
according to the proposed algorithm.
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