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The paper discusses the fiber orientations imperfections effect on the optimum design of
a laminate plate exposed to compressive load. It is assumed that fibers angular imperfection
for each design variable can not exceed maximum allowable deviation from variable’s nominal
value. These maximal accepted deviations are called tolerances. The incorporation of tolerances
into the design algorithm is achieved by diminishing the limiting values of state variables by
the product of assumed tolerances and appropriate sensitivities. Therefore, the given method
allows to introduce tolerances into the design in a relatively simple way and ensures safe results.
The paper is illustrated by examples of the rectangular laminate plate minimum thickness
design. Numerical results show the reliability-based design to be important for structural safety
compared to the approach where tolerances are not taken into account.
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1. INTRODUCTION

Because of high strength/weight and stiffness/weight ratios, composite ele-
ments are applied in light-weight structures, especially as in-plane loaded struc-
tural components. Therefore their optimum design for maximum buckling load
has been studied extensively in recent years. One of the most often consid-
ered problems of laminate plates optimization are ply stacking sequence designs,
where optimum orientation of fibers in each ply should be determined - e.g. [3].

Unfortunately, most of the research papers deal with that problem under the
assumption that design variables are not subject to imperfections arising from
manufacturing processes. Following this approach, optimal solutions obtained
for perfect design variables can lead to violation of the constraints imposed on
state variables - i.e. buckling load - while considering real structures. This is
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because of both the high sensitivity of an optimum structure to variations of
design variables [2] and the fact, that at least one constraint in the optimal
structure comes to its limit value (i.e. is active).

The circumstances mentioned above force an engineer to introduce design
variables’ imperfections directly into the optimization algorithms. As a result
of this approach, the state variables in new optimal design are less sensitive
to variations of the design variables, and the structure remains safe even
though the design variables in the problem vary due to the manufacturing tole-
rances.

One of the ideas to deal with the uncertainties in laminate plate optimiza-
tion is given by B.P. KRISTINSDOTTIR et al. in Ref. [7]. This approach is based
on changing the right-hand side of the inequality constraints and replacing the
initial zero value in original problem by a small positive number called a safety
margin. Next the structure is re-optimized and checked, if new design param-
eters have the specified earlier tolerances as compared to the design variables
in the original problem. If not, the safety margin is increased and the redesign
procedure is run again. The process is repeated until the assumed tolerances of
all design parameters are achieved. In the discussed paper, the presented method
is illustrated by an example of a hat-stiffened composite panel optimum design.

In the present paper, a more formal approach is proposed to optimize the lam-
inate plates considering tolerances of fibers orientations. The method presented
is a further development of an original concept worked out by W. GUTKOWSKI
and J. BAUER in [4]. In the discussed paper, the authors incorporate dimen-
sional imperfections (i.e. manufacturing tolerances) directly into the optimum
design search. The main idea of this method is based on sensitivity analysis.
First, the sensitivities of state variables to all design parameters are determined,
and next the original limit values of state variables in constraints are reduced
by products of the derived sensitivities and manufacturing tolerances. In the
mentioned paper, the authors illustrated the proposed method by an exam-
ple of truss optimum design with constraints imposed on stresses and displa-
cements.

2. STATEMENT OF THE PROBLEM

A sandwich panel that will be considered in the present study is given in
Fig. 1. The plate is assumed to be rectangular and simply supported at all four
edges. It is symmetric and consists of N plies, each of the equal thickness . In
each ply £ a nominal fibers’ orientation is denoted by 6. The laminate is assumed
to be composed of layers with 0°, 90° and +45° fibers only. Additionally, it is
assumed that the sandwich plate is balanced — the number of plies having +45°
fibers is equal to the number of plies with —45° fibers.
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FiGg. 1. Laminate sandwich plate.

In further considerations we assume that the actual fiber orientation angle in
each k-th ply (k = 1...N) may be varied from its nominal value ; and stays
within a range from (6 — Afy) to (6 + Abg) — see Fig. 2. In the above relation
the summand A6 represents the maximum allowable deviation of actual fiber
direction in ply k£ — i.e. it corresponds to the accuracy of manufacturing. It is
assumed that the admissible tolerances are constant and equal for each laminate
ply. Moreover, it is assumed that the thicknesses of all the layers remain nominal
and are not subject to any imperfections.
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Fi1G. 2. Tolerances of fibers’ orientations. The actual fibers’ orientation stays within
the allowable range (0x — A6y, 6 + AOk).

Allowing for manufacturing tolerances, where only the maximal acceptable
deviations are given, makes the exact values of design variables to be unknown.
To deal with that problem, the following approach to optimum design is pro-
posed. The equality constraints are solved for nominal (average) values of design
variables and the imperfections (manufacturing tolerances) are introduced into
the inequality constraints imposed on state variables. This is done by diminish-
ing the limiting values of these variables by the absolute value of a product of
admissible imperfections and appropriate sensitivities.



60 J. LATALSKI

Application of this approach makes the optimum structure safe, even though
the actual design variables in the system vary from their nominal values due to
the accuracy of manufacturing. Moreover, the presented method allows to the
introduce the manufacturing imperfections directly into the design optimization
in a relatively simple way.

3. PLATE BUCKLING ANALYSIS

The laminate plate optimization capability presented herein is based upon
the classical buckling analysis for a simply supported equivalent orthotropic plate
subject to inplane loading conditions. The plate material is assumed to be lin-
early elastic, with given longitudinal F; and transversal Ej elasticity moduli,
and Poison’s ratios v19, 191 respectively.

The uniform longitudinal stress resultants AN, and AN, are applied at the
edges of the panel, where A is the amplitude parameter — see Fig. 3. No shear
forces are considered in the present research.

Fi1G. 3. Plate loading scheme.

Taking into account the above assumptions and following the results achieved
by other authors (i.e. [1, 6]), the equilibrium equation for the compressed plate
is given by the differential relation

*w tw otw w 0%w
+ 2 (Dq2 + 2Dgg) = )\Nzﬁ +/\Nya—y2,

il Phigg 070 * oyt

where w is lateral deflection and D1y, D19, Dos and Dgg are flexural stiffnesses.
These can be expressed in terms of material invariants U; (i = 1,...,5) and
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three integrals Vp, Vi, V3 as follows:

Dy, = U1 W + UaVy + U3V, Dig = UsVy — U3V3,

(3.2)
Dyy = Uh Vy — UaVy + U3V, Dgg = UsVy — U3 V3.

The variables Vp, V7 and V3 depend on the laminate ply stacking sequence
and are given as:

N
1
Vo = / Z’dz = 3 Z(zk — %_1)s
~h/2 s
h)2 .
(3.3) i= / z2cos20dz = %Zcos 20 (22 — 23_1),
—h/2 okl
h/2 S
V3 = / z2cos4fdz = —;Zcoswk (22 - 23_)),
—h/2 L5

where ) denotes the fibers orientation angle in the k-th ply corresponding to
the global coordinate system (see Fig. 1), h is the total thickness of the laminate,
z is the distance from the plane of symmetry and N is the total number of plies
— for details see Fig. 4.
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Fi1G. 4. Laminate cross-section.

Material invariants U; (¢ = 1,...,5) appearing in (3.2) are given by the
relations:
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1
U = §(3Q11 + 3Q22 + 2Q12 + 4Qs6),
1
§(Q11 - Q22),
1
(34) g(Qu + Q22 — 2Q12 — 4Qs6),
1
g(Qu + Q22 + 6Q12 — 4Qss6),
3
g(Qu + Q22 — 2Q12 + 4Qs6),
where:
E
Q1 = 1—1»
— V12021
G vigFy 3 vo1 By
(3.5) 1—vigvor 1 —wvigva’
E
Q2 = 1—2——,
— Vg1
Qes = G12.

The solution of the given differential plafe equilibrium equation (3.1) is

(3.6) w = W sin (Tﬂ) cos (n_wg) g m,n € N.
a b
Parameters m and n determine the buckling mode and correspond to the
number of buckling half-waves in z and y directions, respectively.
Substituting (3.6) in (3.1), the critical value of the amplitude parameter
A may be obtained. Therefore, the laminate buckles when the load amplitude
reaches the limit

D (2)' 42000+ 200) ()} (2)" 5 (2)

m\ 2 n\2
(5) 2+ (5)

In further research is is assumed that an eigenmode corresponding to a
lower eigenvalue is more critical than that corresponding to a higher one. If

so, then the lowest A value — over parameters (m,n) — must be taken into ac-
count.

(3.7) Aaemn)=x
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The problem of plate optimum design with discrete design variables may be
solved by the method proposed by R.T. HAFTKA and J.L. WALSH in [5]. In this
approach the original design problem is described in terms of zero-one variables.

Plies stacking sequence is defined in terms of N sets of four fibers-orientation-
identity variables ok, ng, f,’c’, fit, k =1,...,N that are of Boolean type. The
variable o, ng, f,f or fi* is equal to one if there are 0°, 90°, +45°, —45° fibers
respectively in the k-th layer; otherwise it is equal to zero. Finally, recalling that
the plate is symmetric and only the plies above the plane of symmetry can be
considered, the stacking sequence variables (3.3) are given as:

2 N/2
Vo= 3 kZ (k2 — (k — 1)3)(ok +nk + fL + F),

2 N/2
(3.8) - —t3 2 (k* — (k — 1)3)(ok — i),

) N/2
=38 X 1B = (k= )%l(ox + i = f2 = IP).

The above given relations allow to determine the critical buckling load of a
laminate plate in terms of (4 - N/2) fibers-orientation variables.

4. STATE VARIABLES CONSIDERING MANUFACTURING TOLERANCES

As it was stated in the second section, it is assumed that the actual fibers
orientation angle in every k-th ply may be varied from its nominal value 6 by the

tolerance +A0. This imperfection will cause a change in plate critical buckling
load

(4-1) ACT = ACI‘ = |AAcr| = Acr ko |Sk . Aekl,

where the right-hand side A, denotes the amplitude factor for a plate with
nominal fiber orientations and s; denotes the sensitivity of amplitude parameter
to design variable 6.

In a general case the allowable deviations are of unknown sign. Moreover, the
derived sensitivity may be positive or negative. It means that their product may
also be either positive or negative. In order to be sure to stay on the “safe” side,
the absolute value of the si - A product must be taken into account in (4.1).

Extending the considerations to all plies in the laminate, the new value of a
state variable A, is given as follows:

(4.2) Acr = Acr o IAACTI = Acr e |S .4 Ael .
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In the above relation s denotes the sensitivity vector of A to all N design
variables 8 = {6,...,0n}T

(4.3)

o BDa _ [Da Da dda dAe)”
o 80 L8/ dfs.! N R0V dfne] oo

whereas A0 in (4.2) denotes the vector of admissible deviations of fibers orien-
tations from their nominal value - see Fig. 2

(4.4) AO=100. 00, .... O0, ..., B0y} .
Following the Eq. (3.7), individual terms of the sensitivity vector are given
dD11 m\4 dD12 sts m\2 /n\?2
Do _ o B <E) +2( o A dn ) (E) (3)

(4.5) 7 (%)2Nz+(%)2Ny

b

v O

Considering the relations (3.4), (3.8) and substituting them, into (3.2), the
derivatives dD;;/dby are:

dD 2

do,lcl = §t3(3k2 — 3k +1) [Ur(ok + nk + £ + f*) + 202(fF — ™),

dD 2

d()z? = §1:3(3192 — 3k + 1) [Ui(ox + nk + fF + ) — 20(fF - )],
(4.6)

dD12 s 2 3 2 P m

i 3t Us(3k® — 3k + 1)(ok + i + [ + f1),

dD 2

dGzG = §t3U5(3k2 — 3k + 1) (o + nk + fL + M),

bearing in mind, that

dVs 2.3 : 3 31 —
(47) a—o—k' ="‘§t '4'Sln40k [k —(k—l) ] ::0,
since for all admissible values of design variables 6 € (0°, 90°, +45°, —45°) we
have sin46; = 0.
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In practical structural applications, a laminated plate is mainly stacked sym-
metrically with respect to the mid-plane to avoid bending-extensional coupling.
However, allowing for manufacturing tolerances results in the actual values of
fiber orientation angles to be different from their nominal values. Thus the actual
stacking sequence of the laminated plate will not be symmetric, even though the
mean (nominal) stacking sequence is assumed to be symmetric. Consequently,
this causes the anisotropic plate behaviour and buckling analysis for an unsym-
metric laminate is required.

The importance of anisotropy on analytical predictions of structural response
is examined in detail in several papers — for instance by M.P. NEMETH in 8].
It is proved that the anisotropic constitutive terms (D, Dys) appear whenever
a ply is stacked with fiber orientation other than 0° or 90° to the reference
axes of a plate. Moreover, the importance of these coefficients depend on ply
orientation, number of plies and their stacking sequence. Values of D;5 and
Ds6 asymptotically approach zero when the number of plies is increased. On
the basis of a criterion presented in the discussed paper, the derived analy-
sis indicates that the buckling loads obtained for laminates with more than 12
plies are within 2% of the loads obtained while neglecting the anisotropic co-
efficients. Having this in mind, one may assume that the relations (3.7) and
(4.1) for critical amplitude parameter remain valid, even if the actual plate
stacking sequence is not symmetric, and the influence of anisotrophy may be
neglected.

5. EXAMPLE PROBLEM

To illustrate the proposed method of incorporating the manufacturing tol-
erances into design the problem of the laminate with minimum thickness for a
given buckling load is considered. The presented example comes from the paper
[5] by R.T. HAFTKA and J.L. WALSH however it is solved there only for nominal
values of the design variables.

For minimum plate weight design, the lowest number () of plies is searched
for. Since this number is unknown at the beginning of design, a sufficiently
large value is initially assumed. This can be done by analyzing any trial de-
sign and then scaling the laminate thickness so that it does not buckle — see
relation (5.3). Thus an additional constraint is put forward, that if there are
any “empty” layers, they are located outermost of the symmetry plane — see
relation (5.6).

The discussed problem is as follows:

1) find

(51) Ok,nka.f]f,flzn’ k=1’ ) N/2,
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2) such that

N/2
(5.2) min Zok—i-nk-%‘f,f-l'f/zn f
k=1
3) with constraints
(5.3) )‘cr(ok)nkaflfafl?,man) g ¥ m=1, ..., Mmax
n=1, » Mmax
(54) 0k+nk+f/f+flzn=1v Oka""kaflf,flzne(()?l)
where k ='1; 1] NJ2,
N/2
(5.5) Y- =0,
k=1
(56) Ok—l,nk—l’flf_lvflzrllSokvnk,flf,flznv k=1, LERY N/2

The solution of this problem must be an integer and an even number (plate is
assumed to be symmetric). Therefore, it is not unique, since there may be many
plates having the same number of plies that ensure the structural stability. In the
present research, to achieve a unique solution, a plate having the largest possible
buckling margin among all plates of the same thickness that ensure stability is
chosen. To achieve this goal, an additional analysis is performed and amplitude
parameter A\ values are compared.

5.1. Numerical results

Computations are performed for the plate consisting of plies, each of
the equal thickness ¢ = 0.127 mm and having dimensions a = 50.8 cm and
b = 25.4cm, (b/a = 0.5). Graphite-epoxy laminate material properties are as-
sumed: F; = 128.0 GPa, Fy = 13.0 GPa, G132 = 6.4 GPa and vj2 = 0.3. The
axial stress resultants are constant (N, = 175N/m), while transverse loading
Ny (see Fig. 3) is varied within the range (0,...,13140) N/m. The problem is
solved by a direct enumeration method.
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Fic. 5. Examples of ply stacking sequence in optimal laminate plates according to fiber
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F1G. 6. Amplitude load parameter Ac: for optimal plates considering fiber tolerances A©.
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Table 1. Ply stacking sequence for optimum laminate plates considering
manufacturing tolerances, N.s. — number of equivalent solutions; ply
order as in Fig. 2.

Ny/N. AG[°) Aer  AXer[%] | Stacking sequence m,n  Ns.
0.000 0 | 1.406 — | (0°,-45°,-45° 45° 45°), (21) 12
11386  -1.42 | (0°,-45°,-45° 45° 45°), (Bl 12

21366  -2.84 | (0°,-45°,-45° 45° 45°), 21) 12

3 (1346  -4.27 | (0°,-45°,-45°,45° 45°), @b, 1

51307  -7.04 | (0°,-45°,-45°,45° 45°), @21) 12

0.250 0| 1.025 — | (90°,90°,90° -45° 45°), 21 2
1{1.019  -0.58 | (90°,90°,90°,-45° 45°), s B

2 [ 1.010  -1.46 | (45°,45°,90°,-45°,-45°), (s b

3(1.008  -1.66 | (45°,45°,90°,-45°,-45°), ¥ 5 ) aa |

5 1.681  +64.00 | (45°,90°,90°,45° ~45°,-45°), (21 1

0.750 0 | 1.050 — | (90°,90°,-45°,90°,45° 90°), Hik. " 8
1| 1.038 -1.14 | (90°,90°,45°,90°,~45°,90°), (2,1) 1

2 [1.021  -2.76 | (45°,45°,-45°,90° -45°,90°), M 4

3|1.013  -3.52 | (45°,45°,90°,-45°,90°,-45°,90°), 29 h

5 | 1.570 +57.00 | (90°,90°,45°,90°,90°,90°,-45°), (1,1) 1

1.500 0 | 1.033 — | (90°,-45°,90°,45°,90°,90°,90°), (1,1) 2
1]1.011  -2.12 | (0°,-45°,90°,45°,90°,90°,90°), T

2 | 1.495  +44.72 | (90°,90°,45°,90°,~45°,90°,90°,90°), 1 =1

3| 1475  +42.78 | (45°,45°,-45°,90°,-45°,90°,90°,90°), 8

5 | 1.434 +42.01 | (0°,45°,90°,90°,90°,~45°,90°,90°), (2,1) 2

2.000 0| 1.228 — | (90°,-45°,45° 90°,90°,90°,90°,90°), 7% (i
1| 1.207 -1.71 | (45°,90°,90°,-45°,90°,90°,90°,45°) (1,1) 1

2:1:1,191 -3.10 | (45°,90°,90°,-45°,90°,90°,90°,90°) (2,1) 1

31172 -4.56 | (90°,45°,90°,-45°,90°,90°,90°,90°), @) 1

51141  -7.08 | (45°,90°,90°,90° -45°,90°,90°,90°), i mgle

2.500 0 | 1.020 — | (90°,90°,90°,90°,90°,90° 90°,90°), e
1| 1.005 -1.47 | (45°,-45°,90°,90°,90°,90°,90°,90°) (151} 1

2| 1410 +40.19 | (45°,90°,-45°,90°,90°,90°,90°,90°,90°)s  (1,1) 2

3| 1.385  +37.75 | (0°,-45°,45°,90°,90°,90°,90°,90°,90°),  (2,1) 1

5| 1.342  +31.57 | (45°,90°,90°,90°,-45°,90°,90°,90°,90°), (1,1) 1

6. CONCLUSIONS

The problem of optimum design of composite laminates considering fiber
orientations tolerances is addressed. The theoretical and numerical results allow
the following conclusions to be drawn.

e The algorithm presented in this study offers an efficient and safe approach
to incorporate manufacturing tolerances into the optimum design.
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e The linear integer programming formulation of a problem is solved by direct
enumeration. Since in case of laminate plates multiple solutions exist, this
approach ensures all the optimum designs to be found.

e Imperfections of fibers orientations cause a significant decrease in critical
plate buckling load. Therefore, the minimum number of plies achieved for
ideal (nominal) problem formulation does not ensure the structural safety
- in several cases examined extra plies are necessary.

e Considering the manufacturing tolerances in laminate plate optimum de-
sign results in different ply stacking sequence as compared to the solutions
of the ideal (nominal) design problem.
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